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Abstract: To overcome the shortcoming wherein the accuracy of subsea cable detection can be
affected by the determination of the bias vector, scale factors, and non-orthogonality corrections of
the vector magnetometer, a real-time attitude-independent route tracking method for subsea power
cables is investigated theoretically and experimentally by means of scalar magnetic field checking.
The measurement of the magnetic field Bc produced by the current in a cable is made immune to
the influence of the platform attitude by extracting the component of Bc along the geomagnetic
field using a high-bandwidth self-oscillating optically pumped magnetometer. The self-oscillating
frequency is proved to be independent of the attitude of the magnetometer with the theoretical model.
Experiments are carried out to test the attitude-independent performance, and the effectiveness of
route tracking is verified by the results of the sea experiment. The proposed method will effectively
improve the ability to locate subsea cables under high sea conditions.

Keywords: scalar magnetometer; subsea power cables; attitude-independent detection; route tracking;
high sea condition

1. Introduction

Subsea cables are the main carrier for integrating energy into the onshore grid [1].
However, these cables face potential risks of damage from both natural factors and human
activities. Human activities are the primary cause of cable faults, such as fishing and
anchoring [2,3]. Matrix-type subsea power cable protectors assembled with reinforced
concrete blocks have been tested to protect cables from anchoring [4]. Cables can also be
damaged by natural causes, including ocean currents [5] and earthquakes [6,7]. When a
cable is damaged, it is necessary to locate the fault as soon as possible to reduce economic
losses [8]. Detailed subsea cable route maps serve as valuable references for locating cable
faults, enabling significant time savings. Consequently, the detection of subsea cables has
become a top priority, especially cable route tracking.

The methods of subsea cable detection mainly include acoustics, optics, electricity, and
magnetism. Probe devices are usually integrated into AUVs or ROVs [9,10]. Sonar is the
main equipment used for acoustic detection. High-resolution sonar instruments, such as
multibeam sonar [10], synthetic aperture sonar [11], and side-scan sonar [12], are needed for
subsea cable-like object detection. In order to widen the frequency band, biosonar is used
for cable detection [13]. Acoustic detection is mainly used for cables that are exposed to
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the seabed or buried shallowly in the seabed [14]. Vision technology can provide real-time
observation for optical detection. In order to solve the problem wherein vision technology
has no effect in a turbid sea environment, some methods, including those integrating image
enhancement [15], image segmentation [16], and particle filters [17], have been proposed.
In addition, the high-precision recognition of curved cables has been realized by means
of edge detection [18,19] and the random sample consensus (RANSAC) algorithm [19].
Acoustic and optical methods are only applicable for detecting subsea cables that are
exposed on the seabed or shallowly buried. When the cables are deeply buried beneath
the seabed, both methods become ineffective. Electrical methods are mainly used in cable
fault detection. Time–frequency domain reflectometry is a traditional method [20]. To
solve the difficulty of high-impedance fault location, a deep learning algorithm [21] and a
novel method by analyzing the variation difference in the equivalent current in the Laplace
transform domain [22] have been proposed. When using electrical methods to locate the
fault points of the subsea cables, precise cable route information is essential. Otherwise, it
is challenging to accurately locate the positions of the fault points.

Magnetic detection is a popular method because cables do not need to be seen visu-
ally. Vector magnetic field sensors, including fluxgate [23,24] and multi-probe [25], are
usually applied to cable detection. There are some commercial devices, such as the TSS
350 and MAG-032C. The disadvantage of these magnetic field sensors is that the detection
results are affected by the determination of the magnetometer bias vector, scale factors, and
non-orthogonality corrections [26]. To correct these errors, some calibration methods have
been proposed, but changes in magnetic fields cannot be completely corrected. Figure 10 of
Ref. [26] shows that, after interference component suppression, the respective magnetic
field measurement errors in each direction under the background geomagnetic field are
163.07 nT (2.1%), 328.1 nT (4.28%), and 205.1 nT (2.53%). Ref. [27] used attitude information
to calibrate vector magnetic field sensors and achieved a simulation error of several nT and
a measurement error less than 30 nT under the background geomagnetic field. And these
methods need algorithms to weaken the influence of the sensor attitude; thus, computa-
tional requirements are increased, which affects real-time performance. In refs. [23,24], the
authors achieved very good results in automatic cable tracking with accuracies of <2.5 m
and <1 m, shown in their plots. These papers share a common analytical method, which is
to conduct analysis under the condition of ignoring the changes in platform attitude. In
the first paragraph of Section II. B of Ref. [23], a theoretical model was proposed with the
assumption that the roll and pitch motions of the autonomous underwater vehicles (AUV)
are ignored. Similarly, in the first paragraph of Section IV of Ref. [24], the assumption was
made that the AUV does not pitch or roll. On the ocean surface, the attitude of an AUV or
remotely operated vehicle (ROV) is constantly changing, especially in high sea conditions.
This causes significant measurement errors for the vector magnetometer, thereby affecting
the positioning accuracy of the subsea cables.

The self-oscillating optically pumped magnetometer (OPM) is a high-sensitivity quan-
tum scalar sensor that is widely used in aeromagnetic survey, marine monitoring, geological
exploration, earthquake prediction, medical and health systems, and other fields. The opti-
cal properties of the OPM contribute to maintaining measurement accuracy with only a
weak influence from the attitude of the magnetometer. This paper explores the utility of the
OPM for cable positioning in high sea conditions, employing a scalar magnetic field check-
ing method. In contrast, the proton magnetometer, despite being a scalar sensor, exhibits a
response too slow to detect the 50 Hz signal. To achieve real-time tracking of subsea cables
in challenging high sea conditions, the self-oscillating OPM becomes indispensable. This
paper demonstrates that the measurement of the magnetic field Bc generated by the current
in a cable remains immune to platform attitude influences. This is achieved by extracting
the Bc component along the geomagnetic field using a high-bandwidth self-oscillating
optically pumped magnetometer. In a laboratory experiment, the magnetometer tracks the
cable at various postures to validate the attitude-independent performance of the OPM. In
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a sea experiment, this paper reports the discovery of fifty-one points of subsea cables and
the successful tracking of nine cable routes.

2. Attitude Independence for a Self-Oscillation OPM

OPMs are mainly applied for weak magnetic field detection. They are scalar sensors
using the quantum effect wherein the motion state of alkali metal atoms can be affected by
laser fields and magnetic fields [28]. The properties of the OPM are as follows: the magnetic
field resolution is 3 pT, the dynamic range is 15,000 to 105,000 nT [29], and the bandwidth is
limited by the frequency counter, which has a sampling rate of 250 Hz. The self-oscillation
OPM offers distinct and substantial benefits in the measurement of magnetic fields due
to the principles of both optical pumping and self-oscillation. These advantages can be
found on pages VIII to XI of Ref. [29]. Due to the properties of the self-oscillation OPM, the
measurement accuracy is only weakly influenced by the attitude of the magnetometer. In
addition, real-time performance is also necessary for detecting subsea cables. The response
of the self-oscillation OPM is extremely fast, such that the signal of the 50 Hz magnetic field
can be detected without any appreciable lag in response.

To analyze the influence of the angle φ between the magnetic field B0 to be measured
and the direction of light propagation, the OPM model geometry is established as shown in
Figure 1. An optically pumped atomic magnetometer consists of three main processes: state
preparation, magnetic field–atom interaction, and optical detection [30]. In the process of
state preparation, the depopulation process of the pump lamp and the repopulation process
of spontaneous emission cause the atoms in ground state to establish orientation polariza-
tion [30]. In the processes of magnetic field–atom interaction, the magnetic field B0 causes
the magnetic sublevels to produce linear Zeeman splitting, which generates the Larmor
precession frequency. The weak-radiofrequency magnetic field Br f (t) = Br f cos

[
ωr f t

]
is

parallel to the propagation direction of light. When the frequency of Brf is equal to the Lar-
mor precession frequency, the magnetic resonance phenomenon occurs, and the oriented
polarization established during the processes of quantum state preparation is changed. In
the processes of optical detection, the probe light detects the change in polarization due to
the magnetic resonance.
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According to the analysis of the OPM, the Hamiltonian of the system is denoted

H = ∆F0 + Ωr f F−1 − Ωr f F1, (1)

where the detuning ∆ and Rabi frequency Ωr f are ω0 − ωr f and
µBgF Br f sin[φ]√

2
, respectively.

The physical constants µB and gF are the Bohr magneton and the Landé factor. The opera-
tor Fj(j = 0,±1) is the angular momentum operator in the covariant spherical harmonic
representation [31]. The dynamic evolution of the system satisfies the main equation
.
ρ = −i[H, ρ] + Lρ, where ρ is the density matrix of the system and Lρ is the relaxation of

the system [32]. Next, the density matrix ρ is expanded into ρ =
2F
∑

k=0

k
∑

q=−k
mk,qTk

q using the

irreducible tensor Tk
q, where mk,q is the k-order atomic multipole moment. Then, the signal

of the OPM is obtained as

S(φ, ω) = C0
√

C1
2 + C22 sin

[
ωt + arctan

[
C1

C2

]]
, (2)

where C1 =
√

2m0,0 cos[φ]∆Ω
∆2+Γ2 and C2 =

√
2m0,0 cos[φ]ΓΩ

∆2+Γ2 . The parameters Γ and m0,0 are the
relaxation and injection process of the system, respectively. The constant C0 is related to
parameters of the system such as the gain factor, transconductance amplification factor,
and optical power [33]. The relationship between the signal amplitude of the OPM and
the angle is shown in Figure 2, where the maximum SNR can be obtained at the angle of
45◦. When an OPM is used for subsea cable detection, the equipment should be installed at
a 45◦ angle to the geomagnetic field. According to stability standards established by the
International Maritime Organization (IMO), the maximum swing angle of the ship should
generally be less than 20◦ so that the amplitude of the signal is large enough to be collected.
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Through theoretical analysis, the self-oscillation OPM has real-time attitude-independent
properties. When the OPM is used for subsea cables under the geomagnetic field, since it is
a scalar sensor, the component of Bc along the geomagnetic field will be detected, which
will be used to locate subsea cables. The real-time attitude-independent properties of the
OPM allow this method to be used in high sea conditions.
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3. Positioning Method with the OPM for Subsea Cables

As the OPM functions as a scalar sensor, the analysis of the subsea power cable posi-
tioning method primarily involves extracting the component of Bc along the geomagnetic
field. This approach enables the scalar magnetometer to discern the cable’s direction, angle,
distance, and other relevant information. The real-time attitude-independent properties of
the OPM contribute to obtaining this information with greater precision. The conventional
technique for cable positioning often involves identifying peak or valley values in the
magnetic field signal. In this paper, the approach of identifying the valley value is adopted.

According to the Biot–Savart law, the magnetic field B of a long straight cable can be
calculated by

B =
µ0 I
2πd

, (3)

where the constant µ0 is the vacuum permeability value of 4π × 10−7 H/m, I is the current
carried in the cable, and d is the distance between the calculation point and the cable. The
geomagnetic field and the magnetic field of the cable can be added together by the law of
cosines. The equation is given by

B =
√

B2
g + B2

c − 2BgBc cos[π − θ], (4)

where Bg is the geomagnetic field, Bc is the magnetic field of the cable, and θ is the angle
between both of them. Equation (4) can be converted to

B = Bg

√
1 +

(
Bc

Bg

)2
+ 2

Bc

Bg
cos[θ]. (5)

Equation (5) can be expressed with Bc
Bg

transformed to the variable x and then expanded
as a Taylor series around x = 0, which is given by

f (x) = Bg(1 +
cos[θ]

1! x + sin2[θ]
2! x2 + −3 sin2[θ] cos[θ]

3! x3+

. . . + f (n)(0)
n! xn + o[xn])

. (6)

Since Bg is about 50,000 nT and Bc is about a few hundred nT, the higher-order terms
of Bc

Bg
can be neglected. The formula can be simplified to Equation (7) [30].

B = Bg + Bc cos[θ]. (7)

The conclusion indicates that the magnetic field of the cable, measured through scalar
checking, is approximately equal to the component of the cable’s magnetic field along the
geomagnetic field.

In order to analyze the component, a magnetic field model of the subsea power cable
under the background geomagnetic field was established, as shown in Figure 3. In the
model, the parameter α is the angle between the subsea power cable and the projection of
the geomagnetic field on the sea level. The parameter h is the height between the subsea

power cable and the sea level. The parameter β is the magnetic dip. The vector
→

OP is the

unit geomagnetic vector. The point Q is a detection point. The vector
→

QR is the magnetic
field vector of the point Q.

A Cartesian coordinate system was established with the cable as the x-axis. The
coordinates of Q were set to (0, y, h) and those of R were set to (0, y + a, z). The magnetic
field Bc of Q is given by

Bc =
µ0 I

2π
√

y2 + h2
. (8)
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The angle θ between the vectors
→

OP = (cos[β] · cos[α], cos[β] · sin[α], sin[β]) and
→

QR =
(0, a,− ya

h ) is given by

cos[θ] =

→
OP ·

→
QR∣∣∣∣ →

OP
∣∣∣∣∣∣∣∣ →

QR
∣∣∣∣ =

h cos[β] sin[α]− y sin[β]√
y2 + h2

. (9)

Finally, the component of Bc along the geomagnetic field can be calculated by

B = Bc|cos[θ]| = µ0 I0

2π

∣∣∣∣h cos[β] sin[α]− y sin[β]
y2 + h2

∣∣∣∣. (10)

From Equation (10), there is a least value of 0 nT when

y0 =
h sin[α]
tan[β]

. (11)

By calculating the first derivative of Equation (10), there are two peak values, B1 and
B2, when

y1 =
h sin[α]
tan[β]

−

√(
h sin[α]
tan[β]

)2
+ h2, (12)

y2 =
h sin[α]
tan[β]

+

√(
h sin[α]
tan[β]

)2
+ h2. (13)

By Equations (11)–(13), the distance between y0 and y1 is equal to the distance between
y0 and y2, which is shown as

d =

√(
h sin[α]
tan[β]

)2
+ h2. (14)

Additionally, the ratio of the magnetic field B1 at y1 to the magnetic field B2 at y2 is
equal to the ratio of y2 to y1, which is shown as

p =

 sin[α]
tan[β]

+

√(
sin[α]
tan[β]

)2
+ 1

2

. (15)

During the experiment, d can be measured using positioning equipment, p can be
measured using the OPM, and β can be obtained by searching available information. By
Equations (14) and (15), h and sin α can be derived as

h =
2d

p + 1
√

p, (16)

sin[α] =
p − 1
2
√

p
. (17)

In our experimental area, it was found that the magnetic dip is 45 degrees and I0 is a
constant. Consequently, the magnetic field is related to h and α. Subsequently, we conducted
a re-analysis to understand the influence of these two parameters on the calculation results.
To demonstrate the impact of parameter α on the calculations, the value of µ0 I0 was set to
2π. In Figure 4, the graphical representation illustrates the effect of α on the magnetic field
of the cable. As α increases, the position of the least value shifts. The valley value positions
are noted at 0 m, 0.707 m, and 1 m. The offset distance can be calculated by Equation (11).
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When h increases, the value of d becomes larger, but the shape of the magnetic field curve
does not change.
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measured using the OPM, and β can be obtained by searching available information. By 
Equations (14) and (15), h and sin α can be derived as 

2
1

dh p
p

=
+ , (16) 

[ ] 1sin
2
p

p
α −= . (17) 

In our experimental area, it was found that the magnetic dip is 45 degrees and I0 is a 
constant. Consequently, the magnetic field is related to h and α. Subsequently, we con-
ducted a re-analysis to understand the influence of these two parameters on the calcula-
tion results. To demonstrate the impact of parameter α on the calculations, the value of 

0 0Iμ  was set to 2π. In Figure 4, the graphical representation illustrates the effect of α on 
the magnetic field of the cable. As α increases, the position of the least value shifts. The 
valley value positions are noted at 0 m, 0.707 m, and 1 m. The offset distance can be calcu-
lated by Equation (11). When h increases, the value of d becomes larger, but the shape of 
the magnetic field curve does not change. 
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Figure 4. The magnetic field curves at α = 0°, 45°, 90°; h = 1 m. The current I0 and magnetic dip β are 
both constants. 

Hence, by utilizing GPS devices for location information and employing the OPM to 
capture the magnetic field of the subsea cable, it becomes feasible to gather data encom-
passing the cable’s position, depth, and orientation. 

Figure 4. The magnetic field curves at α = 0◦, 45◦, 90◦; h = 1 m. The current I0 and magnetic dip β are
both constants.

Hence, by utilizing GPS devices for location information and employing the OPM to
capture the magnetic field of the subsea cable, it becomes feasible to gather data encom-
passing the cable’s position, depth, and orientation.

The aforementioned concept introduces a theoretical framework for subsea cable posi-
tioning utilizing scalar magnetic field checking. To verify the attitude-independent feature
of the OPM within this positioning approach, a series of experiments were conducted,
including both indoor and simulation experiments.
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4. Laboratory Experiment, Simulation Experiment, and Results Discussion

In order to validate the attitude-independent performance of the OPM, an indoor
experiment was conducted. The OPM was positioned across angles ranging from −30 to
+30 degrees. As for the positioning of multiple cables, due to the complexity of creating an
experimental setup for multiple cables, a finite element simulation [34,35] was employed
to simulate the magnetic field generated by multiple cables.

4.1. Laboratory Experiment

To examine the impact of the OPM’s attitude on cable positioning results, the magne-
tometer was fixed on a non-magnetic rotation stage, as shown in Figure 5. For this indoor
experiment, a cable was positioned on the floor, carrying a 250 mA (RMS) current at a fre-
quency of 27 Hz. This frequency was chosen to facilitate data collection, with the magnetic
field signal at 27 Hz extracted through FFT calculations. The vertical height between the
cable and magnetometer was about 1.2 m, as shown in Figure 6. The magnetic dip was
about 45 degrees. The angle between the cable and the projection of the geomagnetic field
on the horizontal plane was about 20 degrees. The OPM crossed the cable vertically at
angles of −30 degrees, −10 degrees, 0 degrees, 10 degrees, and 30 degrees and traveled
about 4 m.
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The results are shown in Figure 7. Firstly, the maximum error was 4 nT at the position
of −100 cm. This error may have been caused by the influence of other magnetic fields.
On the ocean, the power of other magnetic fields is much lower, so the error can be
ignored. Secondly, the position was recorded at 40 cm, while according to Equation (10), the
calculated position was 41 cm. This discrepancy is attributed to the movement step length
being set at 10 cm. Thirdly, the magnetic field curve is not symmetrical. The reason for this
is that the direction of the cable was not parallel to the projection of the geomagnetic field.
This result is consistent with the theoretical analysis. The cable positioning results are only
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weakly influenced by the attitude of the OPM, so the attitude-independent performance of
the OPM with scalar magnetic field checking is verified.

Figure 6. Indoor experiment diagram.
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Figure 7. Results of the cable magnetic field under different magnetometer attitudes.

4.2. Simulation Experiment

The above is the experimental result for one cable. Usually, three cables are used as a
set of transmission lines. To model the magnetic field of multiple cables, a finite element
simulation was employed for comprehensive calculations. According to the map, there
are three arrangements of three-phase subsea cables, amounting to a total of nine, and the
distance between them is shown in Figure 8. Positioned above these cables is a 1 km long
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and 20 m high observation line. The currents in the nine subsea cables are 21 A, 35 A, 21 A,
64 A, 42 A, 57 A, 42 A, 28 A, and 42 A, with a frequency of 50 Hz. The magnetic field was
analyzed within 40 ms with a time step of 0.5 ms. According to the geometric relationship
between the geomagnetic field and the cable magnetic field, the component of BC along the
geomagnetic field was extracted.
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resent different phases.). 

Figure 8. Simulation model of multiple cables.

The simulation outcomes are depicted in Figure 9. Each colored curve corresponds
to the magnetic field fluctuation at a specific point in time. Evident within the curves
are valley signals positioned above each cable, serving as indicators for cable localization.
Notably, the applicability of the scalar magnetic field analysis method extends to scenarios
involving multiple cables. In comparison to Figure 4, the peaks on either side of the cables
overlap due to the close proximity of the cables. The simulation results’ envelope can
be utilized for comparison with magnetic field data (as illustrated in Figure 10) acquired
during sea experiments.
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Figure 10. The experiment results of the magnetic field for multiple cables (9 positioning points of
9 cables).

To validate the accuracy of the simulation results, theoretical calculations were con-
ducted for the magnetic field distribution of the nine subsea cables at sea level. According
to Equation (8), the magnetic field BCA in the horizontal plane at a depth of 20 m for subsea
cable A is

BCA =
µ0 IA

2π

√
(278 + x)2 + 202

, (18)

where IA is the current carried in cable A, and x is the positional coordinate at the height of
20 m above sea level. According to Equations (9) and (10), where the magnetic dip β is 45◦

and the angle α between the subsea cable and the projection of the geomagnetic field on
the sea level is 0◦, the magnetic field component B′

CA
of the cable A along the geomagnetic

field is

B′
CA

= BCA · cos[θA] =
µ0 IA

2π

√
(278 + x)2 + 202

·
√

2(x + 278)

2
√
(278 + x)2 + 202

. (19)

The current of subsea cable A is given by IA = 21 cos(2π · 50t + 0◦). Because the time
variable t can be expressed in terms of x and the sailing speed, which was settled as 1 m/s,
and calculation starts from the coordinates (−500 m, 20 m), the current of subsea cable
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A can be expressed as IA = 21 cos[2π · 50(x + 500) + 0◦]. So, the component B′
C of the

superposed magnetic field of the nine subsea cables along the geomagnetic field is

B′
C = µ021 cos[2π·50(x+500)+0◦ ]

2π
√

(x+278)2+202
·

√
2(x+278)

2
√
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√
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√
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√
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√
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√
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2
√
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2π
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·

√
2(x+70)

2
√

(x+70)2+202

+ µ042 cos[2π·50(x+500)+120◦ ]

2π
√
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·

√
2(x+0)

2
√
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·

√
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√
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√
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2
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(20)

Curve plotting for Equation (20) was performed, as shown in Figure 11. This re-
sult matches well with the simulation results in Figure 9 and the sea experiment results
in Figure 10.
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Curve plotting for Equation (20) was performed, as shown in Figure 11. This result 
matches well with the simulation results in Figure 9 and the sea experiment results in 
Figure 10. 

−500 −400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

M
ag

ne
tic

 fi
el

d 
[n

T]

Position [m]  
Figure 11. The calculation results of the magnetic field for multiple subsea cables. 

  

Figure 11. The calculation results of the magnetic field for multiple subsea cables.

5. Sea Experiment and Results Discussion

To validate the viability of subsea cable route tracking, a sea experiment was conducted.
An optically pumped magnetometer was positioned 2 m from the bow of the vessel, as
illustrated in Figure 12. The magnetic dip was approximately 45 degrees. According to the
map, the experimental region hosted nine subsea power cables, oriented in a north–south
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direction. These cables, marked from A to I, were situated at an approximate depth of 20 m.
The primary objective of this experiment was to detect cables G to I. To achieve this, the
ship maneuvered around these three cables, while the status of the remaining six cables
regarding possible crossings remained uncertain. Throughout this operation, the area was
traversed approximately 7 times in an east–west direction, encompassing a duration of
about 1 h. The length of the cables under detection spanned roughly 2 km.
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Figure 12. Equipment installation diagram.

Given the north–south orientation of the subsea cables, the vessel traversed east–west
to cross them. During this voyage, there was a substantial variation in longitude, while
latitude changes remained minor. As a result, Figures 10 and 13 exclusively showcase the
correlation between navigational longitude data and the magnetic field curve. The magnetic
field is an AC signal due to the 50 Hz current carried in the cable, and the amplitude of the
magnetic field curve was plotted.

There were a total of four sets of subsea cable magnetic field data available for analysis.
The first set of them is shown in Figure 10. The nine subsea power cables could be tracked,
and nine points were located, which can be found in Figure 14. Notably, a strong alignment
was observed between this magnetic field data set and the simulation results depicted in
Figure 9. The presence of two peaks situated between cable D and cable F, with maximum
magnetic field values, is especially prominent. Furthermore, the non-monotonic magnetic
field variation between cable C and cable D is attributed to the greater distance between
them. According to the results of the simulation and experiment, the magnetic field of one
cable is affected by other cables, but the positioning of the cable based on the valley value
of the magnetic field is not affected.

The second set of subsea cable magnetic field data is presented in Figure 13a. Notably,
the entire curve demonstrates symmetry. This symmetry indicates that the ship crossed
cables D to I twice, resulting in the localization of two points on each of these cables.
Similarly, the other three sets of subsea cable magnetic field data successfully led to the
localization of 42 points of subsea power cables. The precise positions of each of these
points are identified in Figure 14.

By conducting experiments in the ocean, 51 points of subsea power cables were located.
The purpose of this experiment was to detect cables G–I. The original laying GPS data of
cables G–I were known, but not those for other cables. The located points and the actual
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paths of the cables are shown in Figure 14. Only one point was located on cable A. The
routes of cables B–I were all tracked successfully. Since the original laying GPS data of only
three cables were known, we analyzed the positioning errors of these three cables. The
maximum positioning error was 7.72 m at the H-6 position, and the minimum positioning
error was 0.78 m at the G-2 position. This error may be caused by the fact that cables were
not laid in the designated locations and their positions will have changed due to ocean
currents over time. In conclusion, this series of experiments underscores the feasibility of
route tracking for subsea power cables. While challenges like positional variability exist,
the successful localization of multiple points along these cables showcases the potential
and promise of this approach.
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Figure 13. Three sets of subsea cable magnetic field data: (a) 12 positioning points of 6 cables,
(b) 14 positioning points of 7 cables, and (c) 16 positioning points of 8 cables. Green curve: navigation
longitude; blue curve: magnetic field data.
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Figure 14. Subsea power cable route tracing results, with positioning errors within parentheses.

6. Conclusions

In this paper, an attitude-independent route tracking method with a self-oscillation
OPM for subsea power cables, which is achieved by using scalar checking, was proposed.
The excellent performance of the OPM enables the possibility of subsea cable positioning
in high sea conditions. Additionally, the response of the OPM is extremely fast, so the
signal of the power frequency magnetic field can be detected without any appreciable lag
in response, achieving real-time capability.

Through theoretical analysis, the attitude-independent performance of the OPM and
the subsea cable positioning method using scalar checking were explained in detail. Sub-
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sequently, a laboratory experiment was undertaken to validate the attitude-independent
performance of the OPM. To further support the sea experiment, a simulation was con-
ducted to acquire magnetic field distribution data concerning multiple cables.

In conclusion, the result of the sea experiment confirmed the feasibility of route
tracking based on the OPM using scalar checking. Remarkably, the result matched the
simulation perfectly, affirming the robustness of the proposed method. Leveraging the
advantages of the OPM, this approach proves highly adaptable even in challenging high
sea conditions. This paper provides clear insights into the crucial role of the OPM utilizing
scalar checking in subsea cable detection. Importantly, the inherent advantages of the OPM
make it particularly well-suited for application in high sea conditions. By emphasizing the
significance of the OPM and scalar checking in subsea cable detection, this paper effectively
underscores the method’s substantial potential contribution to this domain.
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