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Abstract: With the development of satellite remote sensing technology, a substantial quantity of
remote sensing data can be obtained every day, but the ability to extract information from these
data remains poor, especially regarding intelligent extraction models for vegetation information in
mountainous areas. Because the features of remote sensing images (such as spectral, textural and
geometric features) change with changes in illumination, viewing angle, scale and spectrum, it is
difficult for a remote sensing intelligent interpretation model with a single data source as input to
meet the requirements of engineering or large-scale vegetation information extraction and updating.
The effective use multi-source, multi-resolution and multi-type data for remote sensing classification
is still a challenge. The objective of this study is to develop a highly intelligent and generalizable
classification model of mountain vegetation utilizing multi-source remote sensing data to achieve
accurate vegetation extraction. Therefore, a multi-channel semantic segmentation model based on
deep learning, FCN-ResNet, is proposed to integrate the features and textures of multi-source, multi-
resolution and multi-temporal remote sensing data, thereby enhancing the differentiation of different
mountain vegetation types by capturing their characteristics and dynamic changes. In addition,
several sets of ablation experiments are designed to investigate the effectiveness of the model. The
method is validated on Mt. Taibai (part of the Qinling-Daba Mountains), and the pixel accuracy (PA)
of vegetation classification reaches 85.8%. The results show that the proposed multi-channel semantic
segmentation model can effectively discriminate different vegetation types and has good intelligence
and generalization ability in different mountainous areas with similar vegetation distributions. The
multi-channel semantic segmentation model can be used for the rapid updating of vegetation type
maps in mountainous areas.

Keywords: vegetation classification; multi-source image; remote sensing; semantic segmentation;
multi-channel model; deep learning

1. Introduction

With the increasing development of sensor-bearing satellites, the amount of remote
sensing data available is growing rapidly [1]. Currently, China has more than 500 opera-
tional satellites in orbit, and the amount of data collected daily has reached the petabyte
level. The types of data are also becoming more diverse, and the acquisition time is growing
faster [2]. The use of high-resolution remote sensing imagery for intelligent interpreta-
tion has become an important means of studying vegetation cover [3,4], its structural
composition [5] and its dynamic changes [6,7].

In recent years, many studies on intelligent vegetation classification methods have been
developed and significant progress has been made. These intelligent classification methods
mainly include traditional machine learning methods and deep learning methods [8].
Traditional machine learning methods, such as support vector machines (SVM) [9–11],
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decision trees [12–14], random forests [15–17] and k-nearest neighbors (KNN) [18], typically
involve the extraction of hand-crafted features from remote sensing data, such as spectral
indices (e.g., NDVI, NDWI), texture features and statistical measures. The extracted features
are then used to train a machine learning model that can classify different vegetation
types. Many studies have focused on exploring and refining machine learning methods
to improve the accuracy and efficiency of vegetation classification [19–24]. Traditional
machine learning methods are often interpretable and require less computational resources,
but they rely heavily on hand-crafted features and may not capture intricate patterns in the
data. Moreover, limited by the performance of traditional machine learning, these methods
cannot be applied to large-scale production practices because of their poor migration and
generalization [25]. Therefore, deep learning methods with a higher degree of automation
and intelligence have been more widely developed [26].

Deep learning methods, especially convolutional neural networks (CNNs), have
gained considerable attention in remote sensing vegetation classification [27–29]. CNNs
can automatically learn hierarchical features from raw remote sensing data, eliminating
the need for manual feature extraction [30]. These models are trained on large datasets
and can effectively capture complex patterns and spatial dependencies in vegetation im-
ages [31]. For example, Flood et al. [32] used the U-NET neural network structure to map
trees and large shrubs in Queensland, Australia, and achieved accuracy of about 90%;
Shi et al. [33] proposed a deep neural network BIT-DNN method, which demonstrated ex-
cellent performance in using hyperspectral image data for plant species classification, land
cover classification, urban scene identification and crop disease identification tasks, and
its superior performance was confirmed by an ablation analysis. However, deep learning
algorithms often require a large amounts of labeled training data, which are often difficult
to obtain for vegetation classification [34]. Some studies have used methods to reduce the
model’s need for labeled data, e.g., Langford et al. [35] used unsupervised methods to
generate labels by combining unsupervised remote sensing clustering methods with CNNs.
However, they still could not solve the problem of insufficient samples for the vegetation
classification task at the root.

Semantic segmentation is a relevant topic in computer vision [36,37], which aims to
classify each pixel in an image and segment it into different semantic categories and sup-
ports pixel-level classification with the properties of fine-grained classification, maintaining
the spatial structure and supporting multi-category classification. Thus, the methods of
semantic segmentation are widely applied to vegetation classification. For example, Ay-
han [38] improved the classification accuracy of underrepresented vegetation categories
(trees, shrubs and grasses) by combining the median frequency weighting strategy with
Deeplabv3+ [39], which effectively solved the problem of sample imbalance; Liu [40] also
used Deeplabv3+ to quantitatively analyze the effect of different remote sensing data
on wetland vegetation classification based on deep learning; Gonzalez-Perez et al. [41]
verified its advantages in vegetation classification using Deeplabv3+ and demonstrated
the superiority of deep learning networks (U-Net [42] and DeepLabv3+) over traditional
machine learning methods (support vector machines and random forests) to accurately
classify land cover types in coastal wetlands, especially in diverse coastal landscapes, using
high-resolution UAV imagery.

However, most of the above methods use a single data source for feature extraction,
and the information provided by a single data source may not be sufficient to accurately
describe and differentiate complex vegetation types. It may provide erroneous or re-
dundant information, leading to errors in the feature extraction process. For example,
multispectral and hyperspectral images, which are commonly used in vegetation classifi-
cation, are susceptible to the influence of incident light sources and weather conditions
and appear to display the phenomena of “same object, different spectrum” and “same
spectrum, different object” [1]. Different data sources have different perceptual mecha-
nisms and resolutions, and the features extracted from a single data source may not be
able to adequately capture the subtle differences and characteristics of geomorphological
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aspects. For example, vegetation types usually have small spectral differences, making
it difficult to achieve high classification accuracy based on the raw spectral information
from high-resolution remote sensing images alone [43]. Meanwhile, different data sources
can provide different types of information, such as spectra, structure, texture, etc. When a
single data source is used for remote sensing vegetation classification, the generalization
of the application to large areas is relatively poor due to factors such as the scale and
viewpoint during remote sensing image acquisition [44–46], whereas multi-source data
can provide information at multiple scales and viewpoints to cope with large scale varia-
tions. In addition, climatic features such as the spectral information of vegetation types
often change with the seasons, making them difficult to discriminate effectively using
data from a single temporal phase, while analyzing data from different temporal phases
can capture the changes and evolutionary processes of vegetation at different growth
stages, obtain dynamic information on vegetation changes over time and improve the
classification accuracy [47]. The current remote sensing intelligent classification methods
are not able to effectively integrate multi-source remote sensing data and cannot fully
explore the geographic knowledge contained in many remote sensing data, which makes
their application unable to meet the requirements of engineering or large-scale vegetation
information extraction and updating.

This study aims to develop a multi-channel semantic segmentation model based on
deep learning using multi-source remote sensing data to achieve highly accurate and gen-
eralizable intelligent vegetation classification. The model will be trained using knowledge
extracted from multiple sources, including multi-temporal and multi-resolution remote
sensing images and other remote sensing information, such as digital elevation models.
With multi-channel inputs, the model will be able to perform data fusion and enhancement,
obtain complementary information from different data sources, improve the effectiveness of
the intelligent classification of vegetation remote sensing and increase the generalizability
of the model to meet the requirements of engineering or large-scale vegetation information
extraction and updating. The experiments of this study will be carried out on Mt. Taibai in
Central China, with a rich variety of vegetation types and landscapes.

2. Data and Method
2.1. Study Area

The study area is located on Mt. Taibai (107◦41′23′′E–107◦51′40′′E, 33◦49′31′′N–
34◦08′11′′N), the main peak of the Qinling-Daba Mountains (Figure 1). The climate of
Mt. Taibai is influenced by the Mongolian cold air masses in winter and the Pacific subtrop-
ical high-pressure belt in summer, resulting in a transitional climate [48]. It has an elevation
of 3767.2 m and a relative height difference of over 3000 m. The vegetation landscape
also shows a clear vertical zonation pattern [49]: Mt. Taibai, with its significant elevation
differences, has unique climatic characteristics. The water and thermal conditions vary in a
regular pattern as the terrain rises, resulting in five distinct climatic zones. These zones are
characterized by specific temperature and precipitation patterns at different altitudes. The
vegetation landscape also shows a clear vertical zonation pattern, known as the vertical
belt distribution, corresponding to the climatic zones. Mt. Taibai is a typical mountain of
Central China with a rich variety of vegetation types and landscapes, making it an ideal
study area for vegetation classification and mapping [50].

In order to evaluate the generalization ability of the model, the initial training of the
model in this study was carried out in the training area and the testing area outside Mt.
Taibai; then, the training results were validated in the validation area (Figure 1).
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Figure 1. The study area.

2.2. Data Source and Preprocessing

The remote sensing data used in this study consist of three types: ZY3 satellite data
and GF2 satellite data with a resolution of 2 m in the winter season; and multi-temporal GF1
satellite data with a resolution of 16 m in the winter and summer seasons. The ZY3, GF2
and GF1 satellites are developed and operated by the China Academy of Space Technology
(https://www.cast.cn/, accessed on 4 January 2024), a subsidiary of the China Aerospace
Science and Technology Corporation (CASC). As mentioned above, the spectral information
of vegetation changes with the seasons. Therefore, the inclusion of multi-temporal data
in the model allows us to capture seasonal variations and to improve the discriminative
features of the vegetation. The digital elevation model (DEM) data used in this study are
derived from the digital surface model (DSM) product, with a resolution of 10 m, which
provides altitudinal information for the vegetation distribution. The main data used in this
study are summarized in Table 1.

Table 1. Remote sensing data used in this study.

Data Type Sensor Time Bands

2 m resolution remote sensing image ZY3 and GF2 winter 4
16 m resolution remote sensing image GF1 winter and summer 4

digital elevation model (DEM) data ZY3 -- 1

To facilitate data input and standardized processing, we cropped the data, and the
2 m resolution image was cropped to 224 × 224 pixel data. To ensure consistency in the
spatial extent of the data, the 16 m resolution remote sensing image was cropped to 1/8 of
the size of the 2 m image, which was 28 × 28 pixel data. In addition, a spatial resampling
technique was used to align the DEM data with the 16 m resolution data, which were
similarly cropped to 28 × 28 pixel data.

The Mt. Taibai vegetation type map with a 1:100,000 scale, obtained by manual visual
interpretation, was used to automatically label the samples and generate labeled data.
This dataset provides hierarchical information on the vegetation classification in the study
area, including the vegetation type group, vegetation type and sub-type and vegetation
formation and sub-formation. These hierarchical levels provide detailed insights into the
different vegetation types present in the study area.

https://www.cast.cn/
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Based on the 1:100,000 scale vegetation map of Mt. Taibai, the input images were
automatically labeled to identify the four dominant vegetation types in the study area:
cultivated vegetation, broadleaf forest, coniferous forest and coniferous and broadleaf
mixed forest. This labeling process was facilitated by the vegetation map mentioned above,
which allowed us to accurately assign labels to the corresponding areas in the imagery.

In total, according to the above datasets, 15,000 samples were selected in the training
area and 7400 samples were selected in the testing area (Figure 1), and 2236 samples were
selected in the validation area. Each of the above groups of samples did not overlap with
the other samples.

2.3. Methods

The deep learning method proposed in this study is based on the FCN-ResNet archi-
tecture. The method combines two important network architectures, a Full Convolutional
Network (FCN) [51] and Residual Network (ResNet) [52], to achieve efficient and accurate
image segmentation tasks. The FCN is a special type of convolutional neural network
used for image segmentation tasks. Unlike traditional convolutional neural networks, the
fully connected layer in the FCN is converted into a fully convolutional layer, allowing
the input to be an image of arbitrary size [51]. This allows FCNs to make dense pixel-level
predictions for the entire image, rather than only classifying the entire image. ResNet is a
deep residual network designed to solve the problem of gradient vanishing and gradient
explosion during deep neural network training. ResNet efficiently trains deeper networks
by introducing residual connections that allow information to skip some layers directly in
the network [52]. Such residual connections retain more low-level feature information and
help the network to learn better feature representations. Compared to other deep network
models, ResNet has the advantage of requiring fewer parameters and less computational
resources while guaranteeing accuracy, making it more suitable for this experiment.

In the FCN-ResNet architecture, ResNet is used as the base network of the FCN to
provide powerful feature extraction and representation capabilities. By using ResNet’s
residual connections, FCN-ResNet is able to efficiently train deep networks and extract
rich spectral and texture features from remote sensing images. In the image segmentation
task, FCN-ResNet performs feature extraction by passing the input image to ResNet, and
then restores the feature map to the same size as the original image through an upsampling
operation. Finally, the upsampled feature map is further processed using a convolutional
layer to obtain the final segmentation result. The advantage is that it is able to combine
the pixel-level prediction of the FCN and the deep feature representation of ResNet to
achieve better performance in image segmentation tasks. It is able to accurately capture
the detailed information in an image and maintain high efficiency in processing remote
sensing images. To make the model more suitable for our task, the following adjustments
and improvements have been made.

(1) The model was modified to have a four-channel structure, extracting features from
the following sources: 2 m resolution winter remote sensing imagery, 16 m resolution
winter imagery, 16 m resolution summer imagery and 16 m resolution DEM imagery.
Since the above four-channel data had different feature distributions, a pre-trained
ResNet-50 model was used to train an ImageNet to extract features from each channel
individually, rather than simply stacking the different data bands.

(2) The model was built with the ability to input images of multiple sizes, depending on
the data source. Since the image size of 16 m resolution was 64 times (8 × 8) the size of
the 2 m resolution image, a scale check was performed and the features were aligned
using resampling or interpolation methods to ensure feature fusion in subsequent
stages after the model extracted features from the input images.

There are four vegetation types in the validation area (based on the 1:100,000 scale veg-
etation map of Mt. Taibai), including cultivated vegetation, coniferous forest, broadleaved
forest and mixed coniferous and broadleaved forest. Due to the poor training results of the
mixed coniferous and broadleaved forest, the other three vegetation types were trained
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for classification in the study area and were classified first, and the remaining ones were
classified as mixed coniferous and broadleaved forest. The final model architecture was
designed as follows (Figure 2). One channel for each input of the 2 m resolution winter
imagery, the 16 m resolution winter imagery, the 16 m resolution summer imagery and the
input of DEM data was passed through a different feature extractor network separately,
instead of the same network. The extracted spectral and texture features of different sizes
from different channels were aligned by interpolation to the same size and concatenated
at different stages. In the classifier, the features obtained from different depth feature
extractors were concatenated by continuous convolutions and then recovered to the size
of 224 × 224 by upsampling. To improve the training speed, the classifier used in this
study was based on FCN-8s [51], which not only ensured the accuracy and quality of the
generated segmentation results compared to others but also avoided excessive memory
overhead during training. After passing through the classifier, the output of the model, a
three-channel heat map, was obtained, and the pixel value of each channel represented the
probability of the pixel belonging to one class. The final vegetation classification map was
produced by performing the argmax operation on the heat map to obtain the vegetation
type of the highest probability of pixels.
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In addition, a series of ablation experiments were performed to validate the effective-
ness of the method, as shown in Table 2. A total of five ablation experiments, along the
multi-channel model, were grouped as follows.

Group 1: consisting of Experiments 1 and 2, both single-channel models, comparing the
use of high-resolution remote sensing imagery with low-resolution remote sensing imagery.

Group 2: including Experiments 3 and 4, adding DEM data based on Experiments
1 and 2, both two-channel models, comparing the performance of DEM data fused with
remote sensing images of different resolutions.

Group 3: including Experiments 5 and 6 (the multi-channel model), a three-channel
model and four-channel model, respectively, comparing the performance before and after
the fusion of multi-resolution data with DEM.

Then, the results of each experimental model were compared with the result of the
multi-channel model again to evaluate the effectiveness of the multi-channel model pro-
posed in this study.

The training process of the model begins with training in the training and testing
areas; then, we validate the accuracy of the model in the validation area. During the model
training process, we adopted the commonly used cross-entropy loss function for semantic
segmentation and employed the Adam optimization method. The initial learning rate was
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set to 10−5, and the batch size for the multi-channel task was set to 4. The training process
consisted of 50 iterations. For the first 20 iterations, the initial learning rate remained
constant, and for the remaining 30 iterations, it gradually decreased until it reached 0.

Table 2. Settings of the ablation experiments.

Experiment

Conditions 2 m Resolution
Winter Imagery

16 m Resolution Winter
Image

16 m Resolution Summer
Image DEM Image

1. Only 2 m winter
√

2. Only 16 m winter
√

3. DEM and 2 m winter
√ √

4. DEM and 16 m winter
√ √

5. 16 m and 2 m
√ √ √

6. Multi-channel model
√ √ √ √

In this study, the neural network was trained by using the above training and testing
datasets. The metrics of the model are evaluated using the pixel accuracy (PA) and mean in-
tersection over union (MIoU), which are commonly used metrics for semantic segmentation
and are calculated as follows:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij

(1)

MIoU =
1

k + 1∑k
i=0

pij

∑k
j=0 pij + ∑k

j=0 pji − pii

(2)

where k in the formula represents the number of categories, pii represents true positives
(TP), pij represents false positives (FP) and pji represents false negatives (FN).

After the model training was completed, classification validation was performed on
the entire model using the validation dataset. The classification results were visualized
and the accuracy was evaluated using a confusion matrix, which counted the pixels for
accuracy evaluation.

3. Results
3.1. Training Results of the Models

By pre-training the ResNet-50 backbone network on ImageNet, the models were trained
faster. After 50 iterations, the models converged and the loss dropped below 0.1. The training
process of the models is represented by lines in Figure 3. As the iterations progressed, the loss
of the models continued to decrease, and the training accuracy tended to stabilize.

(1) Training results of single-channel models: According to the results of Experiments
1 and 2 in Group 1 (Figure 3), the classification result of the 16 m resolution remote
sensing images was better than the result of the 2 m resolution images. This suggested
that although the high-resolution images contained richer textural and structural
features, this information was not fully utilized in the single-channel model.

(2) Training results of two-channel models: The training results of Experiments 3 and 4 in
Group 2 (Figure 3) were very close to each other and higher than the training results
of Group 1, indicating that the DEM data could significantly improve the classification
results, and the results of the two-channel models were better than the results of the
single-channel models.

(3) Training results of the multi-channel models: The training result of Experiment 5
(three-channel images in the model) in Group 3 (Figure 3) was poor, only slightly
higher than that of Experiment 1 (single-channel images with 2 m-resolution) and
significantly lower than the results of Experiments 3 and 4 in Group 2 and Experiment
2 (single-channel images with 16 m resolution) in Group 1. This showed that the clas-
sification model with multi-channel images did not necessarily significantly improve
the classification result. However, the training results of Experiment 6 (multi-channel
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model: three-channel images and one-channel DEM) were significantly better than the
results of other experiments, indicating that the multi-channel model fusing DEM and
images could significantly improve the results of mountain vegetation classification.
Therefore, the multi-channel model, which integrates data from multiple sources for
classification, proves to be effective and greatly enhances the accuracy of mountain
vegetation classification.
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3.2. Classification Results of Mountain Vegetation

(1) Classification results of the models

The training models were applied to classification in the validation area, and the
classification results of the models are shown in Figure 4. Figure 4a is the 1:100,000 scale
vegetation type map generated by manual visual interpretation (used as the ground truth
labels in this study) and Figure 4b is the vegetation type map generated by the multi-
channel segmentation model (Experiment 6). Overall, the classification results were closer
to the ground truth labels, with overall accuracy of 85.8%. The comparison between the
two classifications showed that there were several misclassified areas, mainly along the
boundary between the coniferous forests and the mixed coniferous and broadleaved forests.
Since there is a gradual transition between the coniferous forests and the mixed coniferous
and broadleaved forests, it is difficult to make accurate judgments in the transitional zone.
Additionally, the image features in these transitional areas are not clear enough to correctly
distinguish between the two types. As a result, the classification results of the model have
some errors, leading to confusion between the coniferous forests and the mixed coniferous
and broadleaved forests. There was also a confusion zone between broadleaved forests
and cultivated vegetation in the upper right corner of the validation area (Figure 4a,b).
According to the original image, this area was found to be covered by a significant amount
of shadow (the elevation was about 1000 m), resulting in the image features being similar
to those of cultivated vegetation such as farmland. As a result, the model confused and
misclassified this area. Figure 4c–g show the classification results of the other ablation
experiment models, which had many misclassifications or errors. It is worth mentioning
that there are many horizontal stripes in Figure 4g. This phenomenon is caused by the
image cropping and mosaicking methods. Due to the cropping performed in this study
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without overlap, and the limitations of the method, the predicted values at the edge of
every slice tended to have low confidence and were subject to abrupt changes, resulting in
stripes along the adjacent borders of slices. Moreover, the poor accuracy of Experiment 5
made the stripes more obvious in the results.
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Typical slices of the classification results and the heat maps of the multi-channel model
(Experiment 6) in the validation area are shown in Figures 5 and 6. Figures 5a and 6a are the
false-color satellite images with a 2 m resolution. As shown in the figures, comparing the
classification results (Figures 5c and 6c) and the truth labels (Figures 5b and 6b), it can be
observed that the classification results of the multi-channel model are generally consistent
with the ground truth labels.
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(a) The remote sensing image with 2 m resolution; (b) the ground truth label of the vegetation map;
(c) the classification results of the multi-channel model, where the yellow color represents cultivated
vegetation, green represents broadleaved forest, blue represents coniferous forest and gray represents
the mixed coniferous and broadleaved forest in this experiment; (d–f) are the heat maps of cultivated
vegetation, broadleaved forest and coniferous forest, respectively, where the red color represents high
probability and blue represents low probability.

(2) Classification accuracy of the models

The classification accuracy of the vegetation types was calculated by the statistical
analysis of pixels. Details are shown in Table 3. MIoU is a widely used indictor for accuracy
assessment compared to PA and is strongly affected by the number and distribution of
classification types. Due to the predominance of broadleaved forest and coniferous forest in
the study area, the distribution of vegetation types was uneven, resulting in unsatisfactory
MIoU results. However, the PA of the method was very high, indicating the good accuracy
of the overall classification results. Therefore, the analysis focused on the overall pixel
accuracy (PA). Out of all the models evaluated, the multi-channel model demonstrated the
highest accuracy, achieving an overall accuracy rate of 85.8%. This suggests that combining
DEM data with multi-source spectral remote sensing images yields the best classification
results. In the single-channel model, the accuracy of the model using only 2 m or 16 m
resolution winter imagery (Experiments 1 and 2) was relatively low at only 58–59%. The
accuracy of classification models based on multi-source remote sensing images (Experiment
5) is even lower at 44.5%. This suggests that a single source of image data or multi-source
images are not sufficient for vegetation classification. Incorporating DEM information
into the images can significantly improve the classification accuracy, which increases to
65.8% and 68.8% (Experiments 3 and 4), respectively. Overall, the model that integrates
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multi-source data (Experiment 6, multi-source remote sensing images and DEM) performs
best in classification, confirming the importance of multi-source data fusion. Multi-channel
learning methods have advantages in this type of remote sensing classification task.
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(a) The remote sensing image with 2 m resolution; (b) the ground truth label of the vegetation
map; (c) the classification results of the multi-channel model, where the yellow color represents
cultivated vegetation, green represents broadleaved forest and blue represents coniferous forest in
this experiment; (d–f) are the heat maps of cultivated vegetation, broadleaf forest and coniferous forest,
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Table 3. Classification accuracy of vegetation type mapping in validation area.

Experiments
Correct Pixels Total Pixels Evaluation Indicator

Cultivated
Vegetation

Broadleaved
Forests

Coniferous
Forests Correct Total Total Pixels PA (%) MIoU (%)

1. Only 2 m winter 144,658 2,546,833 7,654,571 10,346,062 17,567,654 58.9 30.5
2. Only 16 m winter 559,270 3,971,499 5,851,712 10,382,481 17,567,654 59.1 36.1
3. DEM and 2 m winter 388,856 3,439,351 7,723,454 11,551,661 17,567,654 65.8 39.5
4. DEM and 16 m winter 459,949 5,153,889 6,475,331 12,089,169 17,567,654 68.8 43.9
5. All 16 m and 2 m 1229 7,099,200 724,230 7,824,659 17,567,654 44.5 16.7
6. Multi-channel model 537,760 7,468,935 7,063,657 15,070,352 17,567,654 85.8 65.7

Since the 1:100,000 scale vegetation type map was generated by manual visual in-
terpretation (used as the ground truth labels in this study), there are also some errors in
the original vegetation type map, which may also lead to a decrease in the accuracy of
our predictions. For example, the boundaries of the ground truth label as the cultivated
vegetation in Figure 7b are not quite correct according to Figure 7a, while the boundaries
and classification results of the multi-channel model in Figure 7c are more consistent with
the real situation and more reasonable. However, when the classification accuracy was
calculated based on the ground truth labels of the 1:100,000 scale vegetation type map, the
obtained classification results were found to be incorrect, which reduced the classification
accuracy. In other words, the actual classification accuracy of the multi-channel model
was higher than that shown in Table 3. Therefore, through multi-channel abstraction and
learning from ResNet50, the multi-channel model can capture and extract key features
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from the data and gradually optimize the model’s weights and parameters during training.
Despite the presence of some errors or noise, the multi-channel deep learning model can
still learn valuable information and patterns from the data, resulting in good overall perfor-
mance and prediction accuracy. As a result, the multi-channel model based on ResNet50
can achieve even better performance in practice.
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Figure 7. Comparison of classification results with ground truth. (a) The remote sensing image
with 2 m resolution; (b) the ground truth label of the vegetation map; (c) the classification results of
the multi-channel model, where the yellow color represents cultivated vegetation, green represents
broadleaved forest and blue represents coniferous forest in this experiment; (d–f) are the heat maps
of cultivated vegetation, broadleaf forest and coniferous forest, respectively, where the red color
represents high probability and blue represents low probability.

4. Discussion

(1) The effect of the labeled data on the classification accuracy

The labeled data used in this study were extracted from the vegetation distribution
maps by manual visual interpretation, and they still contained some errors. These errors
arose from a number of sources, such as the subjective judgment of the interpreters, the
incomplete accuracy of the annotation process and the noise in the data itself, which may
cause the model to learn some incorrect features or perform inaccurate classification during
the training process, thus affecting the classification accuracy of the model.

As we know, deep learning models usually have a certain level of error tolerance due
to their strong nonlinear fitting and generalization capabilities. Even with a certain amount
of error in the labeled data, deep learning models still have the ability to learn key features
and patterns from them and achieve accurate classification. In addition, deep learning
models typically have a large number of parameters and hidden layers that enable them to
learn subtle features in the data. This means that deep learning models can compensate
for some of the errors in the labeled data through a large number of training samples
and an iterative optimization process. By training on large amounts of data, the model
can learn a more robust and generalized representation of the features, improving the
overall classification performance. Therefore, despite some errors in the labeled data, the
multi-channel model proposed in this study can still achieve better results in practical
applications, especially if the model has sufficient capacity and training data.
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(2) Effect of data slicing on classification accuracy

The remote sensing data and DEM used in this study were sliced using Python’s
GDAL(2.2.3) library. Data slicing may result in the possibility of boundaries between each
slice, and often these slices do not overlap each other, which would result in low confidence
values at the boundaries because the information at the slice boundaries may be incomplete
or limited by the choice of slices. In other words, data slicing can lead to less reliable or
accurate classifications by the model at the boundaries.

To solve the problems caused by data slicing, the classification results at the boundaries
can be improved by merging or post-processing in the subsequent processing stage. For
example, pixel-level post-processing techniques such as boundary smoothing or pixel
redistribution may be used to reduce the errors at the boundary. Additionally, adding
overlapping regions or using sliding windows can address the slice boundary problem.
These approaches can improve the classification accuracy at the boundaries.

(3) Effect of DEM on the vegetation classification

According to the classification results of the experiments in this study (Figure 2 and
Table 3), the DEM has a strong influence on the vegetation classification. The distribution of
vegetation in mountainous areas is strongly influenced by the topography and has a clear
vertical zonal pattern, which is known as mountain altitudinal belts [53–57]. Therefore,
the use of a DEM as one of the data sources in the multi-channel model can significantly
improve the classification accuracy. The advantage of the multi-channel model based on
ResNet50 is the ability to combine data from different sources for learning and training to
obtain more robust features and then improve the classification accuracy.

Although the multi-channel model proposed in this study can fuse multi-source
data for deep learning and achieve remarkable results in vegetation classification, it is
not able to fully use the geomorphological knowledge contained in the data or other
vegetation knowledge graphs. Therefore, the model is still deficient in terms of finer
vegetation classification. The use of geoscientific knowledge by geoscientists to improve
the “black-box” nature and the interpretability of deep learning models is a major problem.
Furthermore, remote sensing images typically contain high-dimensional and complex
spatial information such as land cover, terrain and various land features, and their image
characteristics often vary with factors such as the time and the angle of acquisition. All of
these pose significant challenges for deep learning networks based on feature learning.

(4) Comparison with other vegetation classification methods in Mt. Taibai

There have been some similar studies in the study area that have also achieved high
accuracy in vegetation classification. For example, Zhang et al. [49] used the mountain
altitudinal belts of vegetation in Mt. Taibai to construct the topographic constraint factors;
then, combining high-resolution remote sensing images and DSM data, they classified and
mapped the vegetation of Mt. Taibi using the object-oriented classification of vegetation
and finally obtained validation accuracy of 92.9%, which is about 7.1% higher than that of
this study (85.8%). However, there was a great deal of manual work for the construction
of topographic constraint factors and the post-processing of classification. Wu et al. [50]
produced an intelligent technical mapping framework of vegetation types based on the
basic units of geo-objects from HSR-RS images, and the final classification accuracy obtained
by this method was 87.59%, which was close to the accuracy of this study. However, there
were large amounts of auxiliary information, such as three types of image-based features
(i.e., spectrum, shape and texture features), topographic and geomorphological features
(i.e., elevation, slope, slope direction, aspect, degree of hill shade and geomorphological
type) and meteorological factors, soil factors, land cover types, net primary productivity
(NPP) and the vegetation index sequence from the multi-source data, which were overlaid
with the geo-objects. Many tasks needed to be performed before classification. The multi-
channel semantic segmentation model based on deep learning proposed in this study
can be used to automatically study and learn the features and knowledge hidden in the
input data; thus, the efficiency and generalization of the model are higher than those of
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others. Additionally, the accuracy of this model could be improved by post-processing
during classification.

5. Conclusions

In this study, a multi-channel semantic segmentation model based on deep learning
was proposed for mountain vegetation classification, which mainly adopted the FCN-
ResNet architecture and introduced a multi-channel framework for feature extraction and
the multi-level deep fusion of multi-source remote sensing data. The model fuses the
features of multi-resolution and multi-temporal remote sensing images and DEM data,
which enhances the ability of the model to extract different remote sensing information, and
it is able to automatically learn and capture information at multiple scales and levels, thus
making full use of remote sensing data from multiple sources for vegetation classification.
Moreover, the multi-channel semantic segmentation model trained in one location (training
area) was transferred to another location (validation area) for vegetation classification and
achieved overall pixel accuracy (PA) of 85.8% in vegetation classification. The classification
results in the validation area verified the effectiveness and the generalizability of the
model for vegetation classification, meeting the requirements of engineering or large-scale
vegetation information extraction and updating.
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