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Abstract: This paper provides an assessment of a 24 GHz multiple-input multiple-output radar as
a remote sensing tool to retrieve bathymetric maps in coastal areas. The reconstruction procedure
considered here exploits the dispersion relation and has been previously employed to elaborate the
data acquired via X-band marine radar. The estimation capabilities of the sensor are investigated
firstly on synthetic radar data. With this aim, case studies referring to sea waves interacting with a
constant and a spatially varying bathymetry are both considered. Finally, the reconstruction procedure
is tested by processing real data recorded at Bagnoli Bay, Naples, South Italy. The preliminary results
shown here confirm the potential of the radar sensor as a tool for sea wave monitoring.
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1. Introduction

Bathymetry measurements play a significant role in effectively managing the marine
environment because they allow us to understand the underwater landscape, study marine
ecosystems, locate potential hazards, identify areas at risk, and plan marine infrastructures.
Additionally, marine sediment dynamics significantly affects the coastline geomorphology
and, therefore, continuous monitoring of the seabed allows us to update flood and coastal
sea protection schemes [1].

Acoustic sensors, such as multi-beam sonar and single-beam echo sounder, are com-
monly employed to reconstruct the bathymetry. These sensors are typically mounted under
the ship’s hull and can effectively measure depths, at fixed locations or along transects,
from as shallow as a few meters up to several thousand meters with a high spatial resolu-
tion [2]. Despite these systems providing a high-resolution reconstruction of the seabed,
their use in nearshore waters is limited by the possible hazards for navigation, especially
at low tides, and by the high operational costs [3]. As a result, remote sensing tools such
as satellite altimeter, synthetic aperture radar (SAR), X-band marine radar (MR), light
detection and ranging (LiDAR), and optical cameras, are now gaining interest as efficient
and cost-effective alternatives for reconstructing the bathymetry in the open sea as well
as in shallow waters [4,5]. According to [4], remote sensing technologies for bathymetry
reconstruction can be classified into non-imaging and imaging methods.

LiDAR and satellite altimeter belong to the first group of methods. Specifically, LiDAR
retrieves the water depth from the propagation delay of electromagnetic pulses emitted in
the infrared and green wavelength ranges. LiDAR is usually mounted on aerial platforms
and measures water depths in the range 1.5–60 m, based on the water transparency [6–8].
A satellite altimeter measures the distance between the sensor and the sea (or ocean)
surface waves and can indirectly estimate the bathymetry. Specifically, variations in the
sea surface slope are related to changes in water depth, and this allows us to estimate the
bathymetry [9].
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On the other hand, imaging methods exploit the shoaling effect, which is observable
in optical/radar images. In particular, one of the most common way to retrieve bathymetry
from remotely sensed images is the use of dispersion relation, which allows the description
of the angular frequency–wavenumber (ω − k) features of sea gravity waves propagating
at different water depths [10].

SAR and X-band MR are microwave sensors capable of detecting and characterizing
the sea surface depending on the wind speed in the investigated area. Specifically, a
minimum speed of 3 m/s is necessary to form the ripples that are responsible for the
backscattering of microwave signals [11,12]. The bathymetry map can be achieved from
SAR or MR data by partitioning the investigated scene into several subareas [13–15] to
estimate a spatially variable seabed topography. Regarding the SAR-based technique,
prior knowledge of sea wavelength and wave period is required. The wavelength is
retrieved from the wavenumber spectrum of the considered subarea whilst the wave
period is assumed to be known (e.g., via an external sensor). Depending on the sea-state
conditions, the SAR-based technique can estimate depths ranging from about 70 m up to
10 m. However, as shown in [16], the presence of wave breaking and wave reflection in
coastal areas (i.e., depth < 10 m) affects the accuracy of bathymetry estimation.

With regard to X-band MR, the first contribution to the field of local bathymetry
estimation using MR can be attributed to Bell [17]. In this work, the local wave celerity was
determined by analyzing the coherence between consecutive radar images. On the other
hand, one of the most common methods for retrieving the bathymetry map is achieved by
performing a 3D Fourier transform of a raw image time sequence for each subarea. Then,
the radar spectrum is fitted via the theoretical dispersion relation, with the bathymetry and
surface current being the unknown parameters [18,19]. A novel approach, introduced in a
recent study by Chernyshov [20], adopts a 2D continuous wavelet transform. This method
involves the tracking of the spectral peak in the wavenumber domain as waves undergo
shoaling and refraction while approaching the shore.

Like SAR data, the bathymetry estimation via MR depends on the sea state conditions.
However, depth values ranging from 60 m up to 2 m can be retrieved via an MR installed
on a moving vessel [21] and on the shore [13,17–20,22–26].

Furthermore, bathymetric field estimates can be achieved by processing optical satel-
lite [27] or airborne [28] data based on the exploitation of sunlight reflection and the
observation of hydrodynamic processes, respectively. Each of the above-mentioned ap-
proaches has its pros and cons depending on factors such as the water depth, resolution
requirements, and survey goal [29]. Therefore, the combination of the different sensing
techniques is crucial for achieving a more accurate and reliable bathymetry reconstruction
of the investigated area [28,30].

Recently, short-range K-band (SRK-band) radars have been proposed to estimate
the sea state in very nearshore regions [31–34]. These systems have a short-range cov-
erage, which typically extends up to a few hundred meters. Within this context, this
work investigates the capabilities of an SRK-band radar sensor based on frequency mod-
ulated continuous wave (FMCW) multiple-input multiple-output (MIMO) technology
to reconstruct the bathymetry field in very shallow waters, i.e., depths lower than 4 m.
The sensing device considered in this work has recently been proposed to determine the
sea surface currents and directional wave spectra [34] and perform marine target detection
and tracking [35]. The radar signal processing involves two main steps: radar imaging and
bathymetry field reconstruction. In the first step, beamforming is performed to achieve a fo-
cused radar image of the investigated area from the baseband raw radar signals [36]. In the
second step, the temporal sequence of radar images is processed to estimate the seafloor
topography. With this aim, the dispersion relation describing the sea wave spectrum is
exploited [14,22,25,34].

This manuscript deals with a first assessment of the capabilities of the proposed SRK-
band radar for bathymetry estimation, by processing simulated radar images and real
data. It should be stressed that the proposed data processing approach has been already
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assessed [14,22,25,34] for both X- and SRK-band radar. Herein, we demonstrate for the
first time the possibility of reconstructing the seafloor near the shoreline and in partially
enclosed areas (e.g., bays or harbors) using an SRK-band FMCW MIMO radar.

With regard to the numerical simulations, sea waves propagating first on a constant
depth seabed and later on a spatially varying bathymetry are considered. For the constant
sea depth scenario, a synthetic sea wave simulator based on the fast Fourier transform
(FFT) [37,38] and the Joint North Sea Wave Observation Project (JONSWAP) model [39]
for the sea wave spectrum is implemented. As for the variable depth scenario, a hydrody-
namic solver for coastal dynamics is used to describe wave propagation over the reference
bathymetry [40–42]. Once the numerical wave field has been generated, synthetic radar im-
ages are produced by means of the 3D FMCW MIMO radar data simulator presented in [34].
Finally, an experimental testing of the system performance is provided by processing data
measured at the seafront in Bagnoli, Naples, South Italy.

The manuscript is organized as follows. Section 2 presents the numerical sea-wave
models. The radar system and the synthetic data generation and processing are detailed
in Section 3. The numerical and experimental validation is presented in Sections 4 and 5,
respectively. Discussions and conclusions are reported in Section 6.

2. Numerical Sea-Wave Model

The models adopted for generating the synthetic sea wave field (SWF) are described
in this section. Specifically, a SWF over a constant bathymetry is first produced by adopting
the Fourier domain approach [38]. Then, random waves are generated and propagated
over a planar-sloping beach according to the model for coastal dynamics described in [40].
For both the wave models, the JONSWAP sea wave spectrum is assumed [39].

2.1. Wave Spectrum Model

The JONSWAP spectrum is often used in engineering and coastal studies to estimate
the wave conditions and design criteria for offshore structures, coastal protection, and
coastal engineering projects. Such a spectrum provides a convenient way to estimate the
expected wave characteristics based on wave frequency and direction data. The JONSWAP
spectrum is based on the assumption that sea waves can be described as the summation of
many wave components with different frequencies and amplitudes.

The 1D JONSWAP wave model is defined as [39]:

PJS(ω) =
αg2

ω5 exp
[
−1.25

(ωp

ω

)4
]

γbω (1)

bω = exp

[
− 1

2σ2

(
ω

ωp
− 1
)2
]

(2)

σ =

{
0.07, ω ≤ ωp
0.06, ω > ωp

(3)

where α = 0.0076
(

W2
10

gL f

)0.22
is the energy scale factor, ωp = 22

(
g2

W2
10L f

)0.33
is the spectral

peak angular frequency, g = 9.81 m/s2 is the gravitational acceleration, and σ is the peak
shape parameter. Additionally, W10 and L f are the wind speed at a height of 10 m above the
mean sea level (MSL) and the fetch length, respectively. A key parameter in Equation (1) is
the peak-enhancement factor γ, which ranges from 1 to 7, with γ = 3.3 representing the
standard sea wave spectrum.

2.2. Fourier Domain Approach

Synthetic sea images for a constant bathymetry scenario are generated in a very straight-
forward and computationally efficient manner by using the FFT algorithm. According to [38],
the complex Fourier amplitudes of a wave elevation field at time zero are given by:



Remote Sens. 2024, 16, 261 4 of 17

∼
η0(k) =

1√
2
(ξRe + iξ Im)

√
PJS(k) (4)

where ξRe and ξ Im are independent Gaussian random variables with zero mean and unity stan-

dard deviation [38], and k =
(
kx, ky

)
is the wave vector with amplitude k = |k| =

√
kx

2 + ky
2.

The function PJS(k) accounts for the spectral properties of the SWF under the 2D JONSWAP
model [39].

According to the dispersion relation [10], the 2D wavenumber directional spectrum is
obtained from Equation (1) and expressed as:

PJS(k, θ) =
α

2k4 exp

[
−1.25

(
kp

k

)2
]

γbk ·SJS(θ) (5)

bk = exp

− 1
2σ2

(√
k

kp
− 1

)2
 (6)

where kp is the peak wave number, and SJS(θ) is the directional spreading function defined
as [40]:

SJS(θ) =
4

3π
cos4(θ − θp

)
(7)

where θ is the propagation direction, and θp is the direction of the dominant wave (i.e., wind direction).
According to the linear wave theory, sea surface waves undergo a dispersion phe-

nomenon that is governed by the dispersion relation [10].

ω(k) =
√

gktanh(kd) + k·U (8)

where d and U =
(
Ux, Uy

)
are the bathymetry and the sea surface current vector, respec-

tively. Given Equation (8), the time-dependent amplitude of the sea-wave height at time t
is expressed as:

∼
η(k, t) =

∼
η0(k)e

iω(k)t +
∼
η0

*
(−k)e−iω(k)t (9)

Equation (9) conserves the complex conjugate property and, based on it, the wave
elevation is evaluated as a real quantity thanks to an inverse FFT [38], i.e.,

η(r, t) = Re

{
∑
k

∼
η(k, t)e−ikr

}
(10)

in which r = (x, y) is a point in the plane z = 0 that is assumed to be coincident with the MSL.

2.3. Wave Resolving Model

Wave propagation over non-planar bathymetries is obtained by using the depth semi-
averaged scheme described in [41,42]. This model consists of a subset of depth averaged
quantities (i.e., the total water depth h = η + d, the depth-averaged velocity V, and the
generalized mass flux M) and of a Poisson equation for the variable Y that is the integral
of the vertical component of the local velocity field from a certain quote over the depth.
Succinctly, the subset of depth-averaged quantities is written as:

∂h
∂t

+∇·(Vh) = 0 (11)

∂M
∂t

+∇·F(h, V, Y) = S(h, V, Y) (12)

where ∇ is the nabla operator in two dimensions, F is the flux tensor, and S is the source
term (more details can be found in [41]). Finally, the Poisson equation for Y is:

∆Y = ∇·(M/h) (13)
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where ∆ is the Laplace operator in three dimensions. The subset of depth-averaged equations
is represented via the finite volume method, and the fluxes across volumes are modeled
through the MUSCL–Hancock scheme described in [43]. Conversely, the Poisson equation is
discretized by adopting second-order finite differences. The overall system is integrated in
time via a fourth-order Adams–Bashforth–Moulton predictor/corrector scheme. We direct the
reader to [41] for more details about the model and its numerical implementation.

3. Sensor and Data Processing

This section describes the SRK-band radar platform used for bathymetry estimation, as
well as the procedure to generate synthetic raw radar images from sea images, by taking into
account the tilt modulation and shadowing phenomenon. Moreover, the data-processing
pipeline for bathymetry retrieval is also described.

3.1. Radar Platform and Signal Model

SRK-band radar is a compact, lightweight, and low power 24 GHz FMCW MIMO
system developed by Inras Gmbh for automotive applications [35]. The main features of
the radar system, which operates within the frequency range of 24–24.25 GHz, are widely
detailed in [34,35], and herein are briefly summarized. Specifically, Figure 1 displays the
arrangement of antennas, which consists of two transmitting (Tx) and eight receiving (Rx).
These antennas comprise linearly polarized patch arrays, each containing eight radiating
elements, exhibiting a narrow vertical beam width (±6.4◦) and a wide horizontal beam
width (±75◦). The 2 × 8 MIMO array is equivalent to a monostatic virtual array composed
of 16 antennas (channels), where an overlap is present between the eighth and ninth
elements {n = 0, . . . 15, n ̸= 8} [35].
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As for the resolution, the SRK-band radar has a fine range resolution (∆r = 0.6 m) and
an angular resolution that varies with the target’s direction from the boresight. In other
words, the best angular resolution (c.a. 7.6◦) is achieved at the boresight, whereas, as
the target moves away from the boresight, the angular resolution progressively worsens,
becoming approximately 30◦ at the edge of the azimuth field of view (FoV).

Equation (14) reports the transmitted signal that is a chirp with duration Tc and
bandwidth Bw = fmax − fmin, i.e.,

x
(
t̂
)
=

∼
Atcos(2π fmin t̂ + πεt̂2) (14)

where
∼
At is the amplitude, t̂ is the fast time, and ε = Bw/Tc is the chirp rate.

The received signal over channel n corresponds to a time-delayed version of (14) and
is demodulated at baseband. By performing a filtering of the double frequency terms, the
intermediate frequency (IF) signal can be written as:

yn
(
t̂
)
≈

∼
Arcos

(
2π f IF t̂ + 2π fminτn

)
(15)
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where τn is the time delay over channel n, and
∼
Ar is an amplitude factor.

The raw data are represented by the baseband signals yn
(
t̂
)

with n = 0, . . . 15, n ̸= 8
for every frame m = 1, . . . , M.

The readers can find more detailed information in [34,35] to delve deeper into the
radar platform and signal model.

3.2. Radar Data Simulation (Forward Model)

Synthetic radar data are obtained by exploiting a 3D radar signal simulator applied
to the SWF. Originally developed in [34], this simulator accounts for the main physical
phenomena involved in the radar imaging process, such as shadowing and tilt modulation,
and it is briefly described here for the reader’s convenience.

The sea surface scattering is described using a facet model and the radar signal is
evaluated as a summation of the contributions related to each facet p inside the radar
FoV. In addition, the presence on the sea surface of long waves, which modulate the radar
signal, and capillary waves, which are responsible for the main backscattering contribution
(resonant Bragg scattering), is taken into account by exploiting a two-scale model [44–46].
It is worth noticing that in comparison to the X-band radar, the K-band Bragg waves
undergo significant modulation at low wind conditions [47].

For the sake of simplicity, focusing on a single Tx–Rx antenna pair related to a generic
radar channel n, Figure 2 shows the tilt modulation and shadowing phenomenon that occur
in the vertical plane. The tilt modulation accounts for the slope of the observed face, which
depends on the angle βp between the incidence direction ŝp and the normal n̂p to the facet
p defined by

cosβp = −ŝp·n̂p (16)
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The shadowing phenomenon occurs when the radar antenna does not receive any
signal from the shadowed facet of the sea surface, i.e., when the following condition holds:

∃ (ρ,ψ) : ψp > ψ, ρ < ρp (17)

where ρp is the projection of the slant range rp on the plane at the MSL, and ψp is the
grazing angle defined by the propagation direction ŝp and the horizontal direction ρ̂.

The radar signal scattered by the sea surface is given by the superposition of the echoes
from every illuminated facet p, i.e.,

yn
(
t̂
)
≈ ∑

pϵΓ
µp

√
σ0p Ap cos

(
2π f IFp t̂ + 2π fminτnp + ζp

)
(18)

In Equation (18), Γ is the set of illuminated facets, µp = 1
r2

p
is the wave attenuation in

free-space, Ap is the area of the p-th facet, σ0p and ζp are the normalized radar cross-section
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(NRCS) and phase shift due to the backscattering of the facet. To this point, a raw data
frame yn

(
t̂
)

is achieved at any slow time t = t1, t2, . . . , tM.

3.3. Data-Processing Approach (Inverse Model)

The strategy adopted to process the data frame sequence has been already presented and
discussed in detail in [34] and involves two phases: radar imaging and bathymetry retrieval.

Specifically, beamforming based on a 2D FFT (see [35] for more details) is performed in
the first step to obtain a time sequence of focused intensity images at polar coordinates, i.e.,
I(ρ, Θ, t). The intensity images are subsequently linearly interpolated over a Cartesian grid,
thus obtaining the image sequence I(x, y, t), which is given as the input to the second block
of the data processing chain in Figure 3. To this point, the bathymetry field is reconstructed
by partitioning each radar image into Ns partially overlapping subareas. It is important
to note that in each subarea, the spatial homogeneity and temporary stationarity of the
sea-state parameters and bathymetric conditions are assumed [21–25].
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The bathymetry is retrieved by exploiting the normalized scalar product (NSP) tech-
nique, which maximizes the scalar product between the 3D image spectrum in each sub-area{

F(3)
j (k, ω)

}
j=1,...,Ns

and a characteristic function G(·) based on the theoretical dispersion

relation (see Equation (8)). It is important to highlight that different values of sea surface
current and bathymetry can lead to changes in the dispersion relation as well as the radar
image spectrum [10].

Based on this effect, the NSP procedure is able to jointly retrieve both parameters [22].
However, since the purpose of this study is bathymetry estimation, the sea surface current
components are assumed to be negligible, as in a number of previous works [14,18,20,25,26],
and we assume this a priori information in the reconstruction. Accordingly, the local
bathymetry value ďj is found as

ďj = argmax
d

〈∣∣∣F(3)
j (k, ω)

∣∣∣, G(k, ω, d)
〉

√
PFj

(19)

where G(·) is the characteristic function based on Equation (8), ⟨ ·, · ⟩ is the scalar product
of the functions

∣∣∣F(3)
j

∣∣∣ and G, and PFj is the spectrum power.
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4. Numerical Validation

In this section, the data processing approach described in Section 3 is assessed by
considering SWFs that propagate on constant and variable bathymetry.

4.1. SWFs with Constant Bathymetry

Three SWFs (i.e., SWF1, SWF2, and SWF3) are generated by using custom codes
developed in the MATLAB 2019 programming environment. These wave models are
characterized by bathymetry values equal to 1.5 m, 1 m, and 0.8 m, respectively.

The 2D JONSWAP spectrum associated with each SWF is specified via various spectral
parameters. Specifically, ωp, kp, and L f are assigned different values, as seen in Table 1,
while θp = 0◦, W10 = 15 m/s, and γ = 3.3. According to the above parameters, the
significant wave height Hs of the generated SWFs varies within the range of 0.71–1.21 m.
According to the Douglas scale [48], this range corresponds to a rough sea condition.
A temporal sequence of M = 256 raw radar images is generated with a uniform spacing
∆x = ∆y = 0.5 m and time interval ∆t = 0.5 s between two consecutive images, leading to a
total observation time equal to Tw = 128 s.

Table 1. Main characteristic of SWFs.

d[m] ωp
[
rad·s−1] kp

[
rad·m−1] Hs[m] Lf[km]

SWF1 1.5 1.54 0.24 1.21 20
SWF2 1.0 1.82 0.33 0.86 12
SWF3 0.8 2.08 0.44 0.71 8

With regard to the radar data simulation, the electrical and geometrical radar parame-
ters are listed in Table 2. A range coverage from ρmin = 34 m to ρmax = 149 m is achieved by
considering the antenna located at a quota H = 10 m above the MSL and tilted about 10◦ in
the vertical plane. It is assumed that the radar boresight points in the arrival direction θp
of the sea wave. As demonstrated in [34] regarding the retrieval of surface currents, this
condition yields a large region of FoV in which reliable reconstructions can be achieved.
Of course, the reconstruction procedure works also when the radar boresight does not
point in the direction of the incoming SWF, but a smaller angular region where reliable
reconstructions are achieved (see [34]).

Table 2. Parameters defining the radar configuration.

Parameter Description Value Unit

fstart Min. frequency 24.00 [GHz]
fstop Max. frequency 24.25 [GHz]
Tc Chirp duration 200 [µs]

PRF Pulse repetition frequency 2 [Hz]
Nt No. baseband samples 1024 -
fs Baseband sampling frequency 5 [MHz]

Tw Observation time window 128 [s]
AzFov Azimuthal FoV 150 [◦]

H Radar height (above MSL) 10 m
ρmin Min. range (above MSL) 34 m

ρmaxx Max. range (above MSL) 149 m

The radar images are produced via spatial domain beamforming on a polar grid,
taking into account the specified range interval and azimuth FoV (±75◦). Subsequently, a
linear interpolation on a Cartesian grid is performed, with spatial discretization steps equal
to ∆x = ∆y = 0.5 m. A snapshot of the SWF1 elevation and its corresponding radar image at
t = 64 s are shown in Figures 4a and 4b, respectively.
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To this point, the estimation procedure described in Section 3.3 and displayed in Figure 3
is applied to the whole temporal image sequence. Specifically, the local estimation of
bathymetry involves partitioning radar images into Ns subareas with a size of 40 m × 40 m,
with a 10 m overlap in both the x and y directions. The accuracy of the bathymetric recon-
struction is assessed by evaluating the mean relative percentage error (MRPE).

MRPE =
1

Ns
∑Ns

j=1

∣∣∣ďj − dj
true
∣∣∣

dj
true × 100 (20)

An additional figure of merit considered here is the signal-to-noise ratio (SNR), which
measures the strength of the desired signal compared to the level of noise in the 3D radar
spectrum, i.e.,

SNR = 10log10
Ps

Pn
(21)

In the above expression, Ps is the power of the radar spectrum in the dispersion shell, and
Pn is the noise power evaluated over the complementary spectral region. More specifically,
it has been found out that a low SNR is correlated with the spatial regions in the radar FoV
where the estimates are less reliable. Therefore, a threshold value for the minimum acceptable
SNR is introduced to define a reliability region for the retrieved bathymetry map.

The latter concept is clearly understood by analyzing the results shown in Figure 5.
Here, Figure 5a,b display the SNR map and the retrieved bathymetry map referred to
SWF1, respectively. As can be observed in Figure 5a, the SNR values decrease significantly
far from the boresight. The decay of the radar spectrum energy away from the arrival
direction of the sea wave and the reduced angular resolution makes the data less reliable,
as previously pointed out in [34]. Accordingly, we assume that the spatial region where the
estimates can be considered reliable is the one where SNR ≥ 3 dB. From this point on, it is
implicitly assumed that the bathymetry results are obtained by adopting the SNR ≥ 3 dB
criterion (see Figure 5b). The estimated bathymetry maps relevant to the SWF2 and SWF3
are illustrated in Figures 5c and 5d, respectively.

Table 3 provides a summary of the MRPE values obtained for the considered SWFs,
revealing that successful reconstructions are achieved in all cases.

4.2. Wave Propagation over Planar Sloping Beach

As shown in Figure 6a, we consider a planar sloping beach with slope tan(ϑ) = −0.0175
in the y direction, where ϑ is the angle between the seabed and the y-axis. The numerical
domain ranges between y = 0 and y = 200 m, and the still water depth increases from 0.5 m up
to 4 m, respectively. Random waves are generated along the boundary at y = 200 m (inflow
boundary) using a JONSWAP spectrum. Then, waves propagate over the bathymetry and
leave the domain across an open boundary at y = 0 m. Three different SWFs (i.e., SWFPSB1,
SWFPSB2, and SWFPSB3 in Table 4), characterized by their peak frequency and significant
wave height, propagate along a sloping beach. The numerical domain is discretized through
a Cartesian grid with spatial steps ∆x = ∆y = 0.1 m in the horizontal plane. Conversely,
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a stretched grid is adopted over the water depth going from ∆z = 0.1 m at z = 0 m up to
∆z = 0.4 m at z = −3 m. The simulation starts at t = 0 s, with a time discretization step equal to
0.005 s, and the wave evolution is saved any ∆t = 0.5 s for t > 60 s. The latter time interval is
needed to allow waves to propagate all over the numerical domain. After that, 256 snapshots
of the wave evolution are recorded.
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Table 3. MRPE values for estimated bathymetry with the SNR ≥ 3 dB criterion.

MRPE3dB

SWF1 3.8
SWF2 7.2
SWF3 8.0
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Table 4. Main characteristic of SWFPSB.

ωp
[
rad·s−1] Hs[m]

SWFPSB1 1.3 0.25
SWFPSB2 1.7 0.35
SWFPSB3 2.1 0.45

Figure 6a shows a snapshot of the generated sea-wave elevation at t = 64 s. As can
be observed, long-crested waves propagate over a seabed with linear bathymetry ranging
from 4 m at the inflow up to 0.5 m at the outflow. The radar image corresponding to
the sea-wave elevation snapshot is depicted in Figure 6b. The radar settings and data-
processing parameters to obtain the radar image from the synthetic wave field are those
previously reported in Table 2. As for the radar data processing, the bathymetry is retrieved
by processing a time sequence of 256 radar images with a sub-area size equal to 40 × 40 m
and a 10 m overlap along both the x and y direction.

Figure 7a–c show the estimated bathymetry for each considered case based on the
SNR ≥ 3 dB criterion. As can be observed, the spatial variability of the bathymetry is quite
well reconstructed, and the good agreement is also confirmed by the scatterplots of the
depth values reported in Figure 8a–c. Furthermore, a statistical analysis is conducted, and
the results in terms of the MPRE and correlation coefficient R are presented in Table 5.
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Table 5. MRPE and R values for estimated bathymetry using the SNR ≥ 3 dB criterion.

MRPE3dB R3dB

SWFPSB1 7.8 0.90
SWFPSB2 5.6 0.91
SWFPSB3 8.5 0.94

5. Experimental Testing

This section describes a first test of the radar system for bathymetry reconstruction
in the marine environment. An experiment was carried out at Bagnoli Bay, South Italy,
on 26 July 2023 at 11:30 a.m. local time. Figure 9 depicts a satellite image of the surveyed
area taken from Google Earth Pro, with the radar location highlighted in an inset overlaid
on a radar image. The tags A1 and A2 in Figure 9 show the location of two anemometric
stations within the bay and close to the measurement location, from which information
about the wind speed and direction was retrieved [49].
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Bagnoli Bay is the subject of many studies by researchers, since it belongs to the
Campi Flegrei volcanic area and it is an important underwater archeological park [50,51].
Considering this, a digital terrain model (DTM) of the seabed was retrieved to monitor
the “Bradyseism” phenomenon [50] and retrieve the main archaeological features of the
Bay [51]. However, the DTM shows a minimum depth of about 5 m reached at a distance of
about 300 m from the coastline. This limitation arises because the acoustic sensors installed
under the ship’s hull can be endangered as the ship approaches shallow waters.

The geographical coordinates of the radar were determined as 40◦48′58.99′′N, 14◦ 9′37.29′′E
by using the GNSS receiver of a smartphone. Additionally, the direction of the radar antenna
boresight was established as 215◦ SW thanks to the magnetic compass of a smartphone. To en-
sure protection against water damage, the radar unit was housed within a waterproof case and
securely positioned on a tripod. As shown in Figure 10a, the system was controlled by a PC
and located on a rock at a height of about 10 m above the MSL. The radar data were gathered
on a cloudy day and, based on the anemometric information, with a fresh breeze (Beaufort
scale [52]) from the W direction and a speed equal to 10 m/s that induced a moderate sea
(Douglas scale [48]). Consequently, considering this information along with the image depicted
in Figure 10a, it can be inferred that the sea surface during radar acquisition exhibited rough
conditions. The radar setup configuration is outlined in Table 2, save for the values of ρmin and
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ρmax, both set at 20 m and 210 m, respectively. Additionally, the Cartesian grid interpolation of
the radar images is performed with a pixel spacing ∆x = ∆y = 0.5 m.
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Figure 10. (a) SRK-band radar system installation. (b) Cross-section of normalized 3D radar data
spectrum (color scale [0,1]).

The radar image sequence is partitioned into subareas of the size 40 m × 40 m and with
an overlap of 10 m along both the x and y directions. Figure 10b illustrates a cross-section
of the 3D radar spectrum within a specific subarea located at coordinates x = 0 m and
y = 98 m, where the NSP strategy is employed to estimate the bathymetry value.

To this point, Figure 11a shows the bathymetry field of the entire investigated area and,
since there are no external reference data available for the bathymetry as well as the wave
amplitude in this area, it is not possible to verify the accuracy of the estimation. However, as
suggested via numerical simulations, the accuracy of the estimations is expected to grow in
the direction of the incoming waves, which differs by a few degrees from the radar boresight,
as seen from the data. The SNR ≥ 3 dB criterion is adopted to delimit the spatial region and
confirms that the estimations are more reliable in the neighborhood of the arrival direction
of the sea waves (see the black curve in Figure 11a). Finally, the dependable bathymetric
estimations have been georeferenced and are shown in Figure 11b, confirming the smoother
behavior of the bathymetry field with depth values falling within the approximate range
of 1–2.5 m. Moreover, for a qualitative analysis of the reconstruction performance, the
reference bathymetry line at depth 2 m is overlaid on Figure 11b. This isobath is extracted
from the nautical chart available on the website [53], which is derived from the official
publications of the Hydrographic Institute—Italian Navy. It is observed that the estimated
bathymetry values are in good agreement with the contour line.

It is important to emphasize that, even in this scenario, the sea surface current compo-
nents are neglected in the dispersion relation, and this may lead to bias in the bathymetry
estimate [54].
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6. Discussion and Conclusions

An SRK-band radar based on an FMCW MIMO system has been proposed for the
reconstruction of bathymetry in nearshore areas. The system capabilities have been assessed
first on simulated data under different sea state conditions in terms of significant wave
height ranging from 0.25 m to 1.21 m. To this end, constant and variable seabed scenarios
have been simulated via the Fourier domain approach and an ad hoc developed wave-
resolving model, respectively. After, radar images have been generated with the aid of a 3D
radar simulator, taking into account the tilt modulation and shadowing phenomenon. The
numerical tests have confirmed that the radar provides reliable estimates with errors lower
than 8.5% in an angular interval where SNR ≥ 3 dB, and a correlation coefficient greater than
0.90 for the wave fields propagating over a planar slope bathymetry. A preliminary field
trial carried out at the seafront of Bagnoli Bay has confirmed that the radar prototype and
a related signal processing pipeline can reconstruct the bathymetry field in the nearshore
area, providing results in agreement with the limited available data.
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However, it should be stressed that the herein presented results were achieved with the
use of a linear dispersion relation in shallow waters, which may introduce some estimation
errors. In fact, the linear dispersion relation in shallower area may become not very accurate
due to the presence of wave breaking leading to an error exceeding 30% for the estimated
bathymetry [55,56].

Furthermore, the sea state homogeneity assumption within each subarea contradicts
the inherent characteristics of the shoaling wave field, particularly in the presence of abrupt
bathymetric variations [14,20].

Therefore, future activities will be focused on overcoming the above limitations.
As another future activity, we will consider a multi-sensor approach based on the

joint exploitation of sensors such as wave buoys, marine drone-mounted echo sounders,
an acoustic Doppler current profile, and an anemometric station. This comprehensive
setup will be useful to calibrate and validate bathymetry measurements conducted via
SRK-band radar and determine the SRK-band modulation transfer function necessary for
the subsequent estimation of the significant wave height, period, and wavelength.
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