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Abstract: Visible-infrared person re-identification (VI-ReID) aims at matching pedestrian images with
the same identity between different modalities. Existing methods ignore the problems of detailed
information loss and the difficulty in capturing global features during the feature extraction process.
To solve these issues, we propose a Transformer-based Feature Compensation Network (TFCNet).
Firstly, we design a Hierarchical Feature Aggregation (HFA) module, which recursively aggregates the
hierarchical features to help the model preserve detailed information. Secondly, we design the Global
Feature Compensation (GFC) module, which exploits Transformer’s ability to capture long-range
dependencies in sequences to extract global features. Extensive results show that the rank-1/mAP of
our method on the SYSU-MM01 and RegDB datasets reaches 60.87%/58.87% and 91.02%/75.06%,
respectively, which is better than most existing excellent methods. Meanwhile, to demonstrate our
method‘s transferability, we also conduct related experiments on two aerial photography datasets.

Keywords: person re-identification; aerial photography; remote sensing; transformer encoder;
semantic information

1. Introduction

Given a query image of a person taken by an infrared camera at night, visible-infrared
person re-identification (VI-ReID) aims to match visible images of that person from a
gallery set collected by non-overlapping cameras [1–3]. Due to its wide application in
public security and other fields, it has attracted much attention.

The challenges faced by VI-ReID include intra-modality differences (such as occlusion,
viewpoint changes, and pose changes) and inter-modality differences. Existing research
has proposed many excellent models to solve these problems. However, these studies [4–6]
ignore the problem that deep features focus more on semantic information and neglect
detailed information. For VI-ReID, it is important to extract representations with sufficient
semantic information. However, the role of detailed information cannot be ignored. More-
over, these works [4–6] also do not sufficiently consider the drawbacks of CNNs, which
is the difficulty of capturing global representations caused by the limited receptive fields.
This motivates us to investigate the feature extraction process, enriching the deep feature
with detailed information to improve its discernment and diversity.

In response to the above problems, we design a Transformer-based Feature Com-
pensation Network (TFCNet) for VI-ReID. Our network mainly includes a Hierarchical
Feature Aggregation (HFA) module and a Global Feature Compensation (GFC) module.
HFA recursively aggregates the hierarchical features of the CNN backbone, where the
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Transformer block is used to help the model preserve semantic and detailed information.
This not only alleviates the problem of detailed information loss but also facilitates network
extraction of richer semantic information. GFC leverages Transformer’s powerful ability to
model long-range dependencies on spatial and sequence data to compensate for the CNN’s
issue with capturing global representations. With the help of these two modules, the final
extracted features are more diverse and discriminative.

In addition, we find that existing studies on Person Re-ID predominantly focus on the
utilization of stationary camera systems. If we change the position or height of the cameras,
what will the effect of our method be? To demonstrate our method’s transferability, we
conducted some experiments on the PRAI-1581 dataset [7]. Meanwhile, in the process
of investigating remote sensing datasets, we discovered more research objects, such as
houses, farmland, and golf courses. We also conducted visualization experiments on the
Matiwan Village dataset [8] to demonstrate the effectiveness of our method for different
retrieval objectives.

The major contributions are summarized below:

• We design a Transformer-based Feature Compensation Network for VI-ReID to im-
prove performance by learning detailed information and creating global compensation
for features.

• We propose a Hierarchical Feature Aggregation module, which recursively aggregates
the hierarchical features. It also allows the model to extract richer semantic information
while alleviating detailed information loss.

• We propose a Global Feature Compensation module, which takes advantage of the
respective strengths of CNN and Transformer, adding diversity to the final extracted
features and making them more discriminative.

• Experimental findings from two datasets dedicated to RGB-IR Re-ID demonstrate that
our TFCNet is superior to most advanced methods, which demonstrates our network’s
effectiveness. Moreover, we also conduct experiments on two aerial photography
datasets to further demonstrate the transferability of our method.

2. Related Work
2.1. Single-Modality Person Re-ID

Single-modality Person Re-ID (Re-ID) is a special branch of image retrieval whose
purpose is to match other images of that person from the gallery collected by the disjoint
cameras [9–11]. Because of its wide application in public safety and other fields, it has
received much attention [12–17].

The challenge of Re-ID is how to mitigate intra-modality issues [18–20]. There are
generally two main categories into which existing methods can be roughly classified.
The first category attempts to learn a similarity measure for predicting whether two images
contain the same person [21–24]. The second category focuses on learning discriminative
feature representations [25–27]. The above methods have reached human-level performance
on datasets.

2.2. RGB-IR Person Re-ID

Re-ID tasks are mainly based on visible scenes [28–30]. However, visible cameras
will "fail" in low-light environments (e.g., at night), making it difficult to capture clear
appearance details, thus limiting the applicability of Re-ID in practice. To make up for this
shortcoming, infrared cameras are applied to surveillance systems.

Beyond the challenges of Re-ID, VI-ReID also faces the problem of inter-modality
differences caused by different imaging principles. Therefore, traditional Re-ID models with
better performance are not suitable for VI-ReID. Two typical approaches have been explored.
The former methods try to align the feature distributions of different modalities in the
representation space. For example, Wu et al. [31] studied effective embedding features using
a deep zero-padding method. Ye et al. [32] achieved cross-modality matching through joint
optimization of modality-specific and modality-shared matrix. Ye et al. [33] learned shared
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properties through a dual-constrained top-ranking loss. The latter methods use Generative
Adversarial Network-based (GAN) approaches. For example, Wan et al. [34] proposed
AlignGAN to mitigate cross-modality variations in the pixel space. Wang et al. [35] trained
an image-level sub-network to convert infrared images to their visible counterparts, and
vice versa. Dai et al. [36] designed cmGAN to cope with the lack of discriminatory information.

None of the above methods takes into account the lack of detailed information regard-
ing deep features and the difficulty that CNN has in capturing global representations during
feature extraction. Therefore, we propose a Transformer-based Feature Compensation Net-
work that takes these issues into consideration and significantly improves performance.
More details are discussed in subsequent subsections.

2.3. Research on the Classification of Remote Sensing Datasets

In the field of remote sensing, high-spatial-resolution images are usually collected
by satellites and aircraft. Given the rapid advancement of unmanned aerial systems,
the utilization of small drones for capturing high-spatial-resolution images has gained
significant popularity. Compared with traditional satellites and aircraft, small unmanned
aircraft systems have the following advantages in image collection. Firstly, drones can get
closer to the target area and capture more details. Secondly, drones can flexibly adjust the
shooting angle and provide more comprehensive data. Finally, the deployment of drones is
relatively simple, and the image collection efficiency is high.

From a conceptual standpoint, Lippitt et al. [37] investigated the influence of small
UAV platforms on passive optical remote sensing. Zhang et al. [38] discussed the ap-
plication of unmanned aerial systems in construction and civil engineering problems.
Zhang et al. [7] proposed the first large-scale person Re-ID dataset captured by drones.
Bouhlel et al. [39] introduced a deep feature network at the part level to incorporate and
encode significant person characteristics using part-level deep features for efficient person
retrieval. Cen et al. [8] proposed an aerial hyperspectral remote sensing image classification
dataset. Mei et al. [40] proposed a spectral–spatial attention network that fully utilizes
spatial and spectral information.

2.4. Transformer

Vaswani et al. [41] first proposed the Transformer method to solve machine translation
tasks in natural language processing. Transformer abandons the sequential structure of
RNN and adopts the self-attention mechanism so that it can be trained in parallel and make
the most of global information. The essence of the self-attention mechanism is derived from
the human visual attention mechanism, and its purpose is to assign attention weights to
the input, i.e., to decide which part of the input needs to be attended to and allocate limited
information processing resources to it.

Later, Vision Transformer was proposed by Dosovitskiy et al. [42], which is the first
Transformer-based image classification task model. Inspired by ViT, our network utilizes
the powerful ability of the Transformer encoder to model the long-range dependence on
spatial and sequence data, which not only alleviates the detailed information loss but also
compensates for the drawbacks of CNNs.

3. Proposed Method

We detail the proposed Transformer-based Feature Compensation Network (TFCNet)
in this subsection, and the architecture is shown in Figure 1.
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Figure 1. The structure of TFCNet, which contains a Hierarchical Feature Aggregation (HFA)
module and a Global Feature Compensation (GFC) module. Meanwhile, the network applies ID loss,
heterogeneous-center loss, and heterogeneous-center hard triplet loss. The blue and gray represent
visible and infrared modalities, respectively. These two streams do not share parameters, and neither
do the HFA and GFC modules of the two streams. Yellow and orange Transformer blocks have
different heads and depths.

3.1. Overview of Network Architecture

Visible and infrared images 288 × 144 pixels in size are respectively fed into two
ResNet50 networks with unshared parameters. The network extracts hierarchical features
from stage 1∼stage 4. To optimize the utilization of these hierarchical features, we add
Transformer encoders after stage 1∼stage 3. The Transformer encoder integrates semantic
and detailed information in previous and current stages from a global perspective and gen-
erates global priors for the next stage. In this process, we utilize concatenation operations to
ensure that the information is independent of different levels before interacting. After pro-
cessing by three Transformer encoders, the features contain rich and detailed semantic
information. Meanwhile, considering the issue CNN has with capturing global represen-
tations, we introduce the Transformer encoder in stage 4 as well. The features extracted
by stage 4 and the Transformers are fused, and the fused features are more discriminative.
We divide the fused features of each modality into p horizontal bars to obtain local feature
representations. After projecting these local features into the common feature subspace,
we apply ID loss, heterogeneous-center loss, and heterogeneous-center hard triplet loss
to them.

3.2. Transformer Encoder Revisited

The Transformer encoder is stacked by L of the same layers, each of which has two
sub-layers, namely, multi-head self-attention (MHSA) and feed-forward neural network
(FFN). There will also be a residual connection and layer normalization in the transmission
process of each sub-layer to promote gradient propagation and model convergence (see
Figure 2a for details).
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Figure 2. (a) The schematic diagram of the Transformer encoder. (b) The flow chart for the multi-
head self-attention mechanism.

First, the input image X ∈ RC×H×W undergoes patch embedding (patch size is p),
and then it is summed with the positional embedding elements to obtain Xembedding ∈ RN×dim,
where C, H, and W represent the number of channels, height, and width of the image,
respectively. N = HW

/
p2 is the number of patches, and dim = C × p × p.

Xembedding = Embedding(X) + PositionalEncoding (1)

A linear mapping is performed on Xembedding to learn the expression of multiple
meanings; that is, we assign three weights WQ, WK, WV ∈ Rdim×dim. After the linear
mapping, three matrices Q, K, V ∈ RN×dim are formed:

Q = XembeddingWQ, K = XembeddingWK, V = XembeddingWV , (2)

where Q, K, and V denote the packed queries, keys, and values, respectively.
Compared with the simple attention mechanism, MHSA can compute multiple self-

attentions in parallel to find more correlation relationships. Each matrix is divided into h
parts to form h heads, namely Qi, Ki, Vi ∈ RN× dim

h (i = 1, . . . , h). The attention results of
each head are calculated separately, and the results of all heads are concatenated and linearly
transformed as output (as shown in Figure 2b). Among them, the attention mechanism
uses the dot product, and the scale is processed after the dot product to avoid entering the
saturation area of softmax due to the excessive dot product result:

MHSA(Q, K, V) = Concat(head1, . . . , headh), (3)

where headi = so f t max(QiKi
T

√
d
)Vi. d = dim

h represents the number of heads and
√

d makes
the softmax normalized result more stable so that a balanced gradient can be obtained
during back-propagation.



Remote Sens. 2024, 16, 268 6 of 21

To improve the nonlinearity, we apply FFN after MHSA. FFN will perform the same
calculation for each position in the sequence, which uses a structure of two linear transfor-
mations plus ReLU activation:

FFN(s) = W2σ(W1s), (4)

where s represents the sum of MHSA and Xembedding, W1 and W2 are the parameters of two
linear transformations, and σ is the activation function.

3.3. Hierarchical Feature Aggregation Module

Our backbone will extract hierarchical features with different scales and information
from stage 1∼stage 4. It should be noted that shallow features (low-level features) have
more details and less semantic information, and deep features (high-level features) have
more semantics and less detailed information. Existing methods generally use the extracted
deep features directly, but due to the limitations of deep features, this creates negative
effects for VI-ReID. To address the deficiency of details within the high-level hierarchical
features, we propose hierarchical feature aggregation, which adds Transformer encoders
after stage 1∼stage 3.

First, input the output feature of stage 1 into Tran f ormer1 to obtain feature T1; then,
fuse T1 and the output feature of stage 2 and input them into Tran f ormer2 to obtain
feature T2. Repeat operations similar to the above, and Tran f ormer3 outputs feature T3.
The Transformer encoder in the above process will help the model integrate the semantic
and detailed information of the previous and current stages from a global perspective
and generate a global prior for the next stage. In this way, the final high-level feature
contains not only rich semantic information, but also more detailed information. It should
also be noted that when we fuse features, we choose the concatenation operation, which
can ensure that information is independent of different levels before interacting.

The details of shallow features are transferred to deep features through Transformer.
The output of the HFA module can be expressed as:

T1 = S(Tran f ormer1(x1)), (5)

T2 = S(Tran f ormer2(Concat(T1, x2))), (6)

T3 = S(Tran f ormer3(Concat(T2, x3))), (7)

where x1 ∈ R H
4 ×W

4 ×C, x2 ∈ R H
8 ×W

8 ×2C, and x3 ∈ R H
16×

W
16×4C represent the output fea-

tures of stage 1, stage 2, and stage 3, respectively. T1 ∈ R H
8 ×W

8 ×2C, T2 ∈ R H
16×

W
16×4C,

and T3 ∈ R H
16×

W
16×8C represent the output features of Tran f ormer1, Tran f ormer2, and

Tran f ormer3, respectively. S(·) is a function used to resize tensors. The principle is to
use the interpolation method to perform up-/down-sampling operations on the input
tensor array. In other words, we scientifically and reasonably change the size of the array
to keep the data as complete as possible. Adding this function is also convenient for
concatenation operations.

3.4. Global Feature Compensation Module

As a result of the constrained receptive field of CNNs, it can extract local features
well, but extracting discriminative representations in the global view of a person is still
difficult. Meanwhile, the Transformer encoder demonstrates a powerful ability to model
long-range dependencies on spatial and sequence data. Considering the above, we in-
troduce the GFC module, effectively integrating the strengths of both CNN and Trans-
former. Transformer is used to globally compensate for the features extracted by CNN to
improve discrimination.
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We add the encoder Tran f ormer4 in stage 4. To create a lightweight network, Tran f ormer4
is more concise than the previous Tran f ormer1 ∼ Tran f ormer3. The output of the GFC
module can be expressed as:

T4 = S(Tran f ormer4(x3)), (8)

where S(·) adjusts the output feature size of Tran f ormer4 to be the same as x4, which is
convenient for element-wise addition in Equation (9). x4 ∈ R H

16×
W
16×8C is the output feature

of stage 4.
The final output of the backbone network with Transformer blocks is expressed as:

X f in = x4 + T3 + T4. (9)

3.5. Fine-Grained Feature Learning

We divide X f in(rgb) and X f in(ir) into p non-overlapping horizontal bars, respectively,
and then use global average pooling to obtain fine-grained features. Next, to mitigate the
cross-modality discrepancy, we align the fine-grained features of the two modalities by
projecting them into a shared space.

3.6. Loss Function

We choose three losses for the proposed network, namely, ID loss, heterogeneous-
center loss, and heterogeneous-center hard triplet loss. Under the supervision of multiple
losses, intra-class cross-modality discrepancies are reduced and inter-class intra-modal
discrepancies are enlarged.

(1) ID loss: This regards the person Re-ID as an image classification problem and treats
various images of the same pedestrian as a category. The calculation formula is:

LID = − 1
K

K

∑
k=1

logp(yk|xk), (10)

where K = MN means the total number of pedestrian images, M is the total number of
identities, and N is the number of images randomly selected for each identity. xk is the
pedestrian feature of the k-th image, which corresponds to an identity label yk ∈ {1, . . . , M}.
p(yk|xk) is the probability that xk is correctly classified as identity label yk after softmax.

(2) Heterogeneous-center loss: Considering that it is difficult to constrain the distribu-
tion between different modal features of the same pedestrian, Zhu et al. [43] proposed this
loss, which mitigates intra-class cross-modality discrepancies by constraining the feature
centers of the two modalities. The formula is expressed as:

LHC =
M

∑
i=1

D(ci
v, ci

t), (11)

where D(ci
v, ci

t) means the Euclidean distance between ci
v and ci

t. ci
v = 1

N

N
∑

j=1
xi

v,j,

ci
t = 1

N

N
∑

j=1
xi

t,j denote the centers of all visible and infrared features of identity i. N

means the number of RGB/IR images randomly selected for each identity, and xi
v,j/xi

t,j
means the j-th RGB/IR feature of identity i.

(3) First recall the triplet loss, which was initially proposed in [44] and is commonly
used in face recognition tasks. On one hand, it reduces the feature distance of the same ID
to alleviate the intra-class discrepancy. On the other hand, it expands the feature distance
of different IDs to amplify the inter-class discrepancy. The formula is expressed as:

Ltri =
M

∑
i=1

ξ + D(xa
i , xp

i )− D(xa
i , xn

j )
j ̸=i


+

, (12)
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where ξ represents the marginal parameter and [d]+ = max(0; d). Variables a, p, and n
represent the anchor, positive, and negative samples, respectively; a and p have the same
ID, while a and n have different IDs.

Three samples of the triplet loss are randomly selected, so the selected sample combi-
nation may be very simple; that is, very similar positive samples and very different negative
samples. To ease the above limitations, in Ref. [45], batch hard triplet loss is proposed,
which applies a batch hard sample mining strategy to triplet loss. The specific method is to
randomly select p identities and k images for each identity, forming a small batch of size pk.
For an anchor sample xa

i with an identity label yi ∈ {1, . . . , p}, the sample farthest from
the anchor sample in class yi is selected as a positive sample, and the sample closest to the
anchor sample in the other p − 1 classes is selected as a negative sample. The formula is
expressed as:

Lhtri =
p

∑
i=1

k

∑
j=1

ξ + max
r=1,...,k

D(xa
i,j, xp

i,r)− min
m=1,...,k
l=1,...,p
l ̸=i

D(xa
i,j, xn

l,m)


+

, (13)

where xi,j represents the j-th image feature of identity i.
Heterogeneous-center hard triple loss: We use this loss to amplify inter-class discrep-

ancies within the same modality. The function is expressed as:

Lhc−htri =
M

∑
i=1

[
ξ + D(ci

v, ci
t)− min

j ̸=i
D(ci

v, cj
v)

]
+

+
M

∑
i=1

[
ξ + D(ci

t, ci
v)− min

j ̸=i
D(ci

t, cj
t)

]
+

.

(14)

The loss consists of two parts, taking into account inter-class discrepancies of the two
modalities. We regard centers with different modalities as positive sample pairs and centers
with the same modality as negative sample pairs.

The total loss is defined as:

Ltotal = LID + αLHC + βLhc−htri, (15)

where α and β are hyperparameters. We set the value of α to 0.5 [43].

4. Experiment
4.1. Experiment Setting

Datasets. SYSU-MM01 [31] is a popular cross-modality Person re-ID dataset with
303,420 images captured by 6 cameras. The training and test set include 34,167 and
4104 images, respectively. The dataset consists of two test modes: all search and indoor
search. The all-search mode employs all available images, while the indoor-search mode
exclusively utilizes images captured by the first, second, third, and sixth cameras.

RegDB [46] contains 412 pedestrian identities, of which 254 are female and 158 are
male. Of the 412 persons, 156 were taken from the front and 256 from the back. As the
images were acquired during dynamic movements, the set of 10 images for each individual
exhibits variations in body pose, capture distance, and lighting conditions. However,
in 10 images of the same person, the camera’s weather conditions, viewing angles, and
shooting perspectives (front and back view) are all the same. The image resolution of the
visible image in the dataset is 800 × 600 pixels, and the image resolution of the infrared
image is 640 × 480 pixels.

PRAI-1581 [7] is captured using two DJI consumer drones positioned at an altitude
ranging from 20 to 60 m above the ground. The drones collected approximately 120 videos
by hovering, cruising, and rotating. A total of 39,461 images of 1581 individuals were col-
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lected by sampling the video at a rate of one frame per second. Image annotation is divided
into three steps. First, pedestrian boxes are marked manually. Second, the same pedes-
trians in different videos are manually searched, grouped, and numbered. Finally, based
on the generated annotation files containing pedestrian locations and numbers, person
instances are cropped to form the final dataset. The dataset is partitioned into two distinct
subsets: a training set and a test set. The training set comprises 19,523 images featuring
782 individuals, while the test set encompasses 19,938 images depicting 799 individuals.
The size of each image in the dataset is 4000 × 2000 pixels, and the resolution of the person
is 30–150 pixels.

The Matiwan Village dataset [8] was collected by the full-spectrum multi-modal
imaging spectrometer of the Gaofen Special Aviation System at a distance of 2000 m from
the ground. Its spectral range is 400–1000 nm, the number of bands is 250, the image
size is 3750 × 1580 pixels, and the spatial resolution is 0.5 m. It includes 19 categories of
features, such as rice stubble, grassland, and elm trees. The preprocessing of the dataset
is divided into four steps. First, the images are corrected for radiation through the ENVI
platform. Second, the obtained positioning, orientation data, and collinear equations are
used to calculate the coordinates of the corresponding ground points of the pixels to achieve
geometric correction. Third, the image registration workflow tool is used to perform image
registration. Finally, the processed images are stitched and cropped.

Evaluation Metrics. The Cumulative Matching Characteristic (CMC) and mean Av-
erage Precision (mAP) are chosen as the evaluation metrics. CMC is currently the most
popular performance evaluation method in Person Re-ID. The rank-k accuracy of CMC
represents the matching probability of the real identity label appearing in the first n bits of
the result list. mAP is also currently the most commonly used indicator for evaluating the
quality of the detection model, which measures the average of the retrieval performance of
all classes.

Implementation Details. All experiments were performed using one NVIDIA 3090 GPU.
For the SYSU-MM01 and RegDB datasets, the input sample was first adjusted to
288 × 144 pixels, and then data enhancement (such as random cropping and random
horizontal flip) was performed on it. For the PRAI-1581 dataset, the input image was
first resized to 384 × 192 pixels; data augmentation was performed by random horizontal
flipping; and finally each channel of the processed image was normalized. For the Matiwan
Village dataset, we cropped the original image based on the feature category annotation
map provided by the dataset. The resolution of the cropped image block is 92 × 92 pixels.

4.2. Ablation Experiment

In this subsection, we report on some experiments to evaluate our model.
Analysis of each component: Our method consists of four components: a baseline

network, HFA, GFC, and heterogeneous-center hard triplet loss. We chose TSLFN [45] as
the baseline, which is a two-stream network supervised jointly with cross-entropy loss and
heterogeneous-center loss. The baseline is denoted as “B”, while HFA is denoted as “A”,
GFC is indicated as “C”, and the heterogeneous-center hard triplet loss is denoted as “L”.

Table 1 shows the experimental results. The rank-1 and mAP of the baseline network
are 54.85% and 55.88%, respectively. Adding the HFA module alone, rank-1 and mAP
increased by 3.95% and 2.22%, respectively. Adding the GFC module alone, the rank-1 and
mAP increased by 3.9% and 1.55%, respectively. This phenomenon proves the effectiveness
of enriching deep features with detailed information and globally compensating for features.
After combining the two modules, noteworthy enhancements in the network’s performance
were observed, underscoring the mutually reinforcing nature of the HFA and GFC modules.
Finally, we added the HCHT to the previous ones. The values of rank-1 and mAP reached
60.23% and 58.48%, respectively.

Parameter analysis of HFA: To analyze the validity of the HFA module, we performed
comparative experiments on different combinations of aggregating hierarchical features.
Meanwhile, we also analyzed the number of layers of each Transformer (the results are
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shown in Table 2). In {n1, n2, . . . , nn}, ni(i = 1, 2, 3, 4) represents the number of Transformer
layers added after the i-th stage. ni = 0 means that the hierarchical features of the i-th stage
do not participate in the aggregation process. According to the setting in ViT [42], we fixed
the total layers of all Transformer blocks in HFA at 12 and the heads of each Transformer
encoder at 16.

Table 1. Experimental results for different components on the SYSU-MM01 dataset (all-search mode).
Showing the values of rank-r and mAP (%).

Method Rank-1 Rank-10 Rank-20 mAP

B 54.85 89.65 97.42 55.88
B+A 58.80 93.32 97.77 58.10
B+C 58.75 92.96 97.57 57.43

B+A+C 59.29 93.77 98.04 57.76
B+A+C+L 60.87 93.58 98.37 58.87

The bold represents the best performance.

Table 2. Ablation experiments of parameters of HFA on the SYSU-MM01 dataset (all-search mode).
Showing the values of rank-r and mAP (%).

Index Method Rank-1 Rank-10 Rank-20 mAP

1 {3,3,3,3} 32.78 76.26 86.87 33.94
2 {0,4,4,4} 43.02 84.05 91.16 42.53
3 {4,4,4,0} 57.61 93.00 97.68 57.00
4 {3,4,5,0} 57.30 92.96 97.54 56.61
5 {3,3,6,0} 57.64 93.10 97.91 57.16
6 {3,2,7,0} 58.31 93.31 97.81 57.35
7 {3,1,8,0} 58.80 93.32 97.77 58.10
8 {2,1,9,0} 57.99 93.21 97.82 57.33

The bold represents the best performance.

The experimental results of the first three groups show that it is not wise to let the
hierarchical features of the four stages participate in the aggregation process. We infer that
blindly integrating all the features will make the information too messy and overlapping,
resulting in a burden to the network. Comparing the experimental results of the second and
third group, we find that the effect of aggregating the hierarchical features from stage 2 to
stage 4 is not ideal. The reason may be that, in the process of stage 1 to stage 4, the features
extracted by the network contain less and less detailed information but more and more
semantic information. This leads to shallow features with more details and less semantic
information and to deep features with fewer details and more semantic information. If we
choose to aggregate hierarchical features at a high level, the semantic information is enough,
but the detailed information is mostly lost. Thus, we deduce that the low performance is
caused by the loss of detailed information.

Comparing the experimental results of the third to seventh group, we find a very
interesting phenomenon. When Tran f ormer2 has fewer layers and Tran f ormer3 has more
layers, the performance is better. The optimal values of rank-1 and mAP reached 58.80%
and 58.10%, respectively. The reason may be that semantic information is more advanced
and complex than detailed information, so more layers are needed to process it. Compar-
ing the experimental results of the last two groups, we find that blindly increasing the
number of layers of Tran f ormer3 will lead to performance degradation. We infer that the
accuracy tends to converge as the depth of the Transformer increases. Finally, the per-
formance is best when the depths of Tran f ormer1, Tran f ormer2, and Tran f ormer3 are 3, 1,
and 8, respectively.

Parameter analysis of GFC: To analyze the validity of the GFC module, we performed
comparative experiments on the settings of Tran f ormer4. Considering the burden of the
entire network, we chose a Transformer with a relatively simple setting. Experimental
results are detailed in Table 3. When the number of heads is 4 and the depth is 1, rank-1
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and mAP are optimal, 58.75% and 57.43%, respectively. Observing the overall results in
Table 3, there is a rule that, as the number of heads increases, the performance constantly
improves. This phenomenon shows that the more heads the Transformer has, the stronger
its ability to process features, and the more discriminative global features it can extract. We
notice that when the number of heads is 4 and 8, their results are very close. In response
to this phenomenon, we deduce that the accuracy tends to converge as the number of
heads increases.

Table 3. Experimental results of different settings of GFC on the SYSU-MM01 dataset (all-search
mode). Showing the values of rank-r and mAP (%).

Heads Depth Rank-1 Rank-10 Rank-20 mAP

1 1 56.85 92.02 97.24 55.59
1 2 57.25 93.05 97.94 56.49
2 1 57.19 93.10 97.82 56.58
2 2 58.15 93.16 97.92 56.89
4 1 58.75 92.96 97.57 57.43
4 2 56.93 92.42 97.47 55.63
8 1 58.74 92.92 97.65 57.50
8 2 56.93 92.19 97.24 55.39

The bold represents the best performance.

Analysis of parameters β and ξ: In this part, we explore the influence of β and ξ in the
loss function. This experiment was performed on a network with HFA and GFC modules
added. First, we kept the value of ξ at 0.7 and increased the value of β from 0.1 to 0.9.
Figure 3a shows that, when β = 0.5, the result reaches the best level. Secondly, we changed
ξ regularly from 0.1 to 0.9. Figure 3b shows that, when ξ = 0.7, the performance is optimal,
and the rank-1 and mAP reach 91.02% and 75.06%, respectively. When the value of ξ is
too large, the performance drops significantly. We infer that this is due to the network’s
difficulty in balancing the distances between different identities.

Figure 3. Experimental results of β in Equation (15) and ξ in Equation (14) on the RegDB dataset
(visible to thermal mode). Showing the values of rank-1 and mAP (%).

Comparison of different backbones: The proposed TFCNet uses ResNet50 as the
backbone and embeds multiple Transformer blocks in it. Considering that this structure
may be costly, we adjusted it to use Transformer as the backbone. The results are shown
in Tables 4 and 5. We find that using Transformer as the backbone actually degrades the
model’s performance. The reason may be that the four stages of ResNet50 are crucial for the
extraction of semantic information, and it is not recommended to replace them with a series
of simple convolution blocks. Specifically, our method uses the lost detail information
to assist the semantic information in improving performance. In this process, semantic
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information dominates, and detailed information only plays a supporting role. However,
in a network with Transformer as the backbone, the extraction of semantic information
only relies on a series of simple convolution blocks, which may result in poor quality and
small quantity of semantic information, thus reducing performance.

Table 4. Comparison of different backbones on the SYSU-MM01 dataset. Showing the values of
rank-r and mAP (%).

Backbone
All-Search Indoor-Search

R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

ResNet50 60.87 93.58 98.37 58.87 63.59 95.67 98.68 70.28
Transformer 53.85 92.24 96.84 52.85 59.83 93.39 97.83 67.78

The bold represents the best performance.

Table 5. Comparison of different backbones on the REGDB dataset under both settings. Showing the
values of rank-r and mAP (%).

Backbone
Visible → Infrared Infrared → Visible

R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

ResNet50 91.02 98.25 99.37 75.06 90.39 97.82 98.69 74.68
Transformer 74.17 90.49 94.37 68.69 70.97 89.42 94.03 66.72

The bold represents the best performance.

4.3. Analysis of the HFA Module

Comparison of feature aggregation methods: Skip connection is the most common
method for aggregating multiple features at the same time. From Figure 4b, we can see
that this method is simple and crude, directly concatenating shallow-level, middle-level,
and deep-level features. We replace hierarchical feature aggregation with skip connection
aggregation in our model. By observing the results in Table 6, we find that, whether we use
skip connection aggregation or hierarchical feature aggregation, the model performance is
significantly improved. However, the hierarchical feature aggregation is obviously better,
being 2.48 points higher than the skip connection aggregation. This is due to the fact
that simple aggregation operations of shallow and deep features will limit performance.
To ensure the accuracy and fairness of the comparison, the three methods in Table 6 all use
the same losses, namely ID loss and HC loss.

Figure 4. Different feature aggregation methods. (a) No feature aggregation is used. (b) Skip
connection (the most common aggregation method). (c) Transformer-based hierarchical feature
aggregation method.
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Table 6. Experimental results of different feature aggregation methods on the SYSU-MM01 dataset
(all-search mode). Showing the values of rank-r and mAP (%).

Method Rank-1 Rank-10 Rank-20 mAP

(a) 54.85 89.65 97.42 55.88
(b) 56.32 92.37 97.29 55.94
(c) 58.80 93.32 97.77 58.10

The bold represents the best performance.

Analysis of the effectiveness of each Transformer: We compare four sets of experiments
to confirm its effectiveness: without adding a Transformer encoder, adding a Transformer
encoder after stage 1, adding it after stage 1∼stage 2, and adding it after stage 1∼stage
3. The results are shown in Table 7. We find that the rank-1/mAP of these four sets
of experiments shows an upward trend, which affirms the idea of enriching features
with detailed information to improve performance. Meanwhile, we calculate the rank-
1/mAP increments between the four experiments, which are 3.04%/0.84%, 0.67%/0.72%,
and 0.24%/0.66%, respectively. The results show that the increment between the second
and first set of experiments is the largest. Because shallow features have more detailed
information, Transformer extracts and transfers them to deep features, which can greatly
improve model performance. Comparing the third and fourth group of experiments,
although their results are improving, the increments are not obvious. This is because, as
the number of convolutions increases, the features contain fewer and fewer details.

Table 7. Analysis of the effectiveness of each Transformer in HFA on the SYSU-MM01 dataset
(all-search mode). Showing the values of rank-r and mAP (%).

Method Rank-1 Rank-10 Rank-20 mAP

B 54.85 89.65 97.42 55.88
B+{3,0,0,0} 57.89 93.11 97.56 56.72
B+{3,1,0,0} 58.56 92.64 97.48 57.44
B+{3,1,8,0} 58.80 93.32 97.77 58.10

The bold represents the best performance.

4.4. Visualization Analysis

Heatmap visualization: To more intuitively demonstrate the effectiveness of each
Transformer in HFA, we conducted a heatmap visualization experiment. The experiment
follows the settings in the previous section, and the results are shown in Figure 5. By ob-
serving the heatmaps of the baseline, we find that the high response is concentrated in
the background area. However, after gradually adding Transformer encoders, the prob-
lem is alleviated. As can be seen from the last three columns of Figure 5, high responses
are increasingly concentrated in body parts. This illustrates the effectiveness of detailed
information for pedestrian learning.

Feature distribution: To prove the effectiveness of enriching deep features with de-
tailed information and global compensation for features during feature extraction, we con-
ducted distribution visualization experiments on visible features. According to Figure 6a,
we can clearly see that the baseline network has serious problems of overlapping distribu-
tion of different identity features and scattered distribution of the same identity features.
However, our network alleviates these problems very well.
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Figure 5. Heatmap visualization of each Transformer encoder in the HFA module on the SYSU-MM01
dataset. Red shows a high response, and blue shows a low response.

Figure 6. Feature distribution visualization of visible features. Different colors represent different
identities. The red circle represents the problem of overlapping distribution of different identity
features and the scattered distribution of the same identity features.
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4.5. Comparison with State-of-the-Art Methods

Within this subsection, we conduct a comparative analysis of the proposed approach
against state-of-the-art methods on the SYSU-MM01 and RegDB datasets. All methods
use the ResNet-50 network as the backbone. The comparison methods are split into two
categories, namely modality transformation-based methods and feature learning-based
methods. D2RL [35], AlignGAN [34], Hi-CMD [3], and XIV [4] reduce cross-modality
discrepancy through image generation techniques. For example, AlignGAN [34] converts
visible images into corresponding infrared images through CycleGAN to solve the issue of
cross-modality discrepancies. DDAG [1], AGW [2], DLS [6], NFS [5], PIC [47], and DFLN-
ViT [48] reduce cross-modality discrepancy by extracting discriminative modality-shared
features. For example, DFLN-ViT [48] considers potential correlations between different
locations and channels.

SYSU-MM01 dataset: Table 8 shows the comparison results, and our proposed
method reaches the optimum. Specifically, our rank-1/mAP achieves 60.87%/58.87%
and 63.59%/70.28% for the two search modes, respectively. Comparing with the modality
transformation-based method [4], the rank-1/mAP of TFCNet is 10.95%/8.14% higher than
it is in the all-search mode. This shows that our method can achieve good results with-
out the additional cost of image generation. Comparing with the feature learning-based
method [48], the rank-1/mAP of TFCNet is 3.22%/2.91% and 3.01%/3% higher than it is in
the two settings, respectively. This shows the effectiveness of enriching deep features with
detailed information and global compensation for local features with Transformer.

Table 8. Comparison with the state-of-art methods on the SYSU-MM01 dataset. Showing the values
of rank-r and mAP (%).

Methods Publication
All-Search Indoor-Search

R-1 mAP R-1 mAP

Zero-Pad [31] ICCV17 14.80 15.95 20.58 26.92
HCML [32] AAAI18 14.32 16.16 24.52 30.08
BDTR [33] IJCAI18 17.01 19.66 - -

cmGAN [36] IJCAI18 26.97 27.80 31.63 42.19
D2RL [35] CVPR19 28.90 29.20 - -

AlignGAN [34] ICCV19 42.40 40.70 45.90 54.30
Hi-CMD [3] CVPR20 34.94 35.94 - -

XIV [4] AAAI20 49.92 50.73 - -
DDAG [1] ECCV20 54.75 53.02 61.02 67.98
AGW [2] TPAMI21 47.50 47.65 54.17 62.97
DLS [6] TMM21 48.80 49.00 - -
NFS [5] CVPR21 56.91 55.45 62.79 69.79
PIC [47] TIP22 57.50 55.10 60.40 67.70

DFLN-ViT [48] TMM22 57.65 55.96 60.58 67.28

TFCNet - 60.87 58.87 63.59 70.28
The bold represents the best performance.

RegDB dataset: Table 9 shows the comparison results. The rank-1/mAP of our
TFCNet reaches 91.02%/75.06% and 90.39%/74.68% under the two settings, respectively.
Compared with the modality transformation-based method [3], the rank-1/mAP of TFCNet
is 20.09%/9.02% higher than it is in visible-to-infrared mode. Comparing with the feature
learning-based method [48], the rank-1 of TFCNet outperforms it by 1.99% and 1.56% in
two settings, respectively. The rank-1 of our method is the highest. Although the value
of mAP is not optimal, it is not much different from the value of the optimal method.
The effectiveness of the designed network can also be demonstrated on this dataset.
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Table 9. Comparison with state-of-art methods on the RegDB dataset under both settings. Showing
the values of rank-r and mAP (%).

Methods Publication
All-Search Indoor-Search

R-1 mAP R-1 mAP

Zero-Pad [31] ICCV17 17.74 18.90 16.63 17.82
HCML [32] AAAI18 24.44 20.08 21.70 22.24
BDTR [33] IJCAI18 33.47 31.83 - -
D2RL [35] CVPR19 43.40 44.10 - -

AlignGAN [34] ICCV19 57.90 53.60 56.30 53.40
Hi-CMD [3] CVPR20 70.93 66.04 - -

XIV [4] AAAI20 62.21 60.18 - -
DDAG [1] ECCV20 69.34 63.46 68.06 61.80
AGW [2] TPAMI21 70.05 66.37 - -
DLS [6] TMM21 71.10 68.10 - -
NFS [5] CVPR21 80.54 72.10 77.95 69.79
PIC [47] TIP22 83.60 79.60 79.50 77.40

DFLN-ViT [48] TMM22 89.03 76.24 88.83 74.93

TFCNet - 91.02 75.06 90.39 74.68
The bold represents the best performance.

It should be noted that the results of DFLN-ViT [48] in Tables 8 and 9 are inconsistent
with the original paper. This is because we reproduced it on an NVIDIA 3090 GPU and
filled the tables with the results of the reproduction.

4.6. Migration Experiments on Remote Sensing Datasets

From Figure 7, we can see that aerial pictures have a smaller field of view and less
valuable information than those taken by traditional fixed cameras, which requires the
network to have a higher degree of control over detailed information. Since our proposed
HFA module involves detailed information, we only show the heatmap visualization of
each Transformer encoder in the HFA model when conducting migration experiments on
remote sensing datasets. Meanwhile, considering that the PRAI-1581 and Matiwan Village
datasets are in the RGB modality, we only retain the visible branch of TFCNet.

Figure 7. (a) Picture samples from the SYSU-MM01 and RegDB datasets. (b) Picture samples from
the PRAI-1581 dataset. (c) Matiwan Village dataset.

PRAI-1581 dataset: The experimental results of our method on the PRAI-1581 dataset
are shown in Table 10, where rank-1/mAP reached 45.25%/56.40%. The results are
8.55%/10.3%, 6.8%/8.33%, and 3.15%/2% higher than SVDNet [49], PCB+RPP [50], and
OSNET [51] respectively, which proves that our method has good transferability and
effectiveness.
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Table 10. Comparison with other methods on the PRAI-1581 dataset. Showing the values of rank-r
and mAP (%).

Method Publication mAP Rank-1

SVDNet [49] ICCV17 36.70 46.10
PCB+RPP [50] ECCV18 38.45 48.07

OSNET [51] ICCV19 42.10 54.40
Ours - 45.25 56.40

The bold represents the best performance.

Due to the limitations of aerial images, more attention needs to be paid to detailed
information. The HFA module of our method solves the problem of detailed information
loss in the feature extraction process. Therefore, to prove the effectiveness of the HFA
module on aerial images, we conducted heatmap visualization experiments for each Trans-
former encoder. The outcomes are depicted in Figure 8. We find that, as the number of
Transformer encoders increases, the high response becomes more and more concentrated
in the body parts.

Figure 8. Heatmap visualization of each Transformer encoder in the HFA module on the PRAI-1581
dataset. Red shows a high response, and blue shows a low response.

We randomly seleced four images from the dataset, and the Top-10 retrieval results
are shown in Figure 9. As can be seen, only a few images match correctly. These erroneous
images are very similar to the query image and can be mainly attributed to the similar
appearance of different pedestrians caused by the aerial photography angle and altitude.

Matiwan Village dataset: Figure 7c is the overall aerial picture of Matiwan Village,
which contains 19 categories of features. We selected four of them (willow trees, water
bodies, grasslands, and houses) for study. To showcase the efficacy of the HFA module
across these categories, we conducted heatmap visualization experiments for each Trans-
former encoder. The specific results are shown in Figure 10. We found that, as the number
of Transformer encoders increases, high responses are increasingly concentrated in areas
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that need to be recognized. This proves that our method is good at identifying pedestrians
and can be transferred to other targets.

Figure 9. Top-10 search results for four randomly selected images from the PRAI-1581 dataset. Green
represents correct matching, and red represents incorrect matching (best viewed in color).

Figure 10. Heatmap visualization of each Transformer encoder in the HFA module on the Matiwan
Village dataset. The red box represents the target that needs to be identified. Red shows a high
response, and blue shows a low response.

4.7. Advantages of Cosine Similarity Image Matching Algorithm

The image matching algorithm selected in our method is the cosine similarity matching
algorithm, which has the following four advantages:
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• Direction invariance: Cosine similarity is invariant to changes in image direction
and can cope well with the problem of object/pedestrian direction differences in
remote sensing images/pedestrian images.

• Scale invariance: Cosine similarity has certain invariance to changes in image scale
and can cope well with the problem of object/pedestrian scale differences in remote
sensing images/pedestrian images.

• Intuitive interpretability: The cosine similarity value range spans from −1 to 1, where
1 means completely similar and −1 means completely different. This representation
enables a visual representation of the matching results.

• Efficient calculation: The calculation of cosine similarity only involves the dot product
and module length calculation between feature vectors. This efficient calculation can
speed up the image matching process and improve efficiency.

5. Conclusions

This paper aimed to design a network for VI-ReID. The proposed network mainly
consists of a Hierarchical Feature Aggregation (HFA) module and a Global Feature Com-
pensation (GFC) module. HFA recursively aggregates the hierarchical features of the CNN
backbone to help the model preserve detailed information. GFC exploits the Transformer’s
ability to model long-range dependencies on spatial and sequential data to compensate
for the CNN’s issue with capturing global representations. Moreover, we jointly apply
ID loss, heterogeneous-center loss, and heterogeneous-center hard triplet loss to train the
feature extraction process. The achieved results on two cross-modality datasets, namely
SYSU-MM01 and RegDB, exhibit accuracies of 60.87% and 91.02%, respectively, indicating
that our method outperforms most state-of the-art methods. Moreover, experimental results
on two aerial photography datasets also prove that our method has good transferability.
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