
Citation: Wang, G.; Meng, D.; Chen,

R.; Yang, G.; Wang, L.; Jin, H.; Ge, X.;

Feng, H. Automatic Rice

Early-Season Mapping Based on

Simple Non-Iterative Clustering and

Multi-Source Remote Sensing Images.

Remote Sens. 2024, 16, 277. https://

doi.org/10.3390/rs16020277

Academic Editor: Won-Ho Nam

Received: 12 November 2023

Revised: 25 December 2023

Accepted: 5 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Automatic Rice Early-Season Mapping Based on Simple
Non-Iterative Clustering and Multi-Source Remote
Sensing Images
Gengze Wang 1,2, Di Meng 3, Riqiang Chen 1,2, Guijun Yang 1,2, Laigang Wang 4, Hailiang Jin 3, Xiaosan Ge 3

and Haikuan Feng 1,2,5,*

1 Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs,
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

2 National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
4 Institute of Agricultural Information Technology, Henan Academy of Agricultural Sciences,

Zhengzhou 450002, China
5 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
* Correspondence: fenghk@nercita.org.cn

Abstract: Timely and accurate rice spatial distribution maps play a vital role in food security and
social stability. Early-season rice mapping is of great significance for yield estimation, crop insurance,
and national food policymaking. Taking Tongjiang City in Heilongjiang Province with strong spatial
heterogeneity as study area, a hierarchical K-Means binary automatic rice classification method
based on phenological feature optimization (PFO-HKMAR) is proposed, using Google Earth Engine
platform and Sentinel-1/2, and Landsat 7/8 data. First, a SAR backscattering intensity time series
is reconstructed and used to construct and optimize polarization characteristics. A new SAR index
named VH-sum is built, which is defined as the summation of VH backscattering intensity for specific
time periods based on the temporal changes in VH polarization characteristics of different land cover
types. Then comes feature selection, optimization, and reconstruction of optical data. Finally, the
PFO-HKMAR classification method is established based on Simple Non-Iterative Clustering. PFO-
HKMAR can achieve early-season rice mapping one month before harvest, with overall accuracy,
Kappa, and F1 score reaching 0.9114, 0.8240 and 0.9120, respectively (F1 score is greater than 0.9).
Compared with the two crop distribution datasets in Northeast China and ARM-SARFS, overall
accuracy, Kappa, and F1 scores of PFO-HKMAR are improved by 0.0507–0.1957, 0.1029–0.3945, and
0.0611–0.1791, respectively. The results show that PFO-HKMAR can be promoted in Northeast
China to enable early-season rice mapping, and provide valuable and timely information to different
stakeholders and decision makers.

Keywords: early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple
Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries–Matusita (JM) distance

1. Introduction

Rice is one of the most important staple food crops in the world [1], accounting for
15% of the major food crop planting area and feeding half of the world’s population. It
solves the world’s hunger problem and is the basis for human survival, social stability, and
economic development [2,3].

The traditional rice planting area statistical method is time-consuming and labor-
intensive, which is easily affected by subjective factors. It can only summarize the total
amount rice planting area, rather than a near-real-time rice spatial distribution map in a
large area [4]. Early-season rice mapping refers to rice identification in the early growth
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stages or before harvest. Near-real-time rice area and its spatial distribution is a prerequisite
for rice yield estimation [5], which is of great significance to insurance companies and bulk
crop commodity markets [6–8]. In recent years, remote sensing technology has been widely
used in crop mapping [9].

Medium-resolution Landsat and Sentinel-2 data are the main optical data sources for
rice mapping [10–13]. There have been a lot of studies on rice mapping technology based
on optical data, mainly including supervised classification based on rice labels and decision
tree classification based on phenology [14]. Supervised classification analyzes the temporal
changes in different spectral indices [15], synthesizes the spectral indices according to
phenological period or month, and then trains the classification model based on a large
number of samples [16,17]. Methods based on phenology often use temporal variation
characteristics of spectra in a unique phenological stage, such as the transplanting stage.
They selected vegetation index (Normalized difference vegetation index (NDVI), Enhanced
vegetation index (EVI), etc.), water index (Normalized difference water index (NDWI),
Modified normalized difference water index (MNDWI), Land surface water index (LSWI),
etc.), and spectral time series dynamics (mean, standard deviation, max, min, etc.) to
distinguish rice and other land cover types with the threshold method [18]. The prominent
shortcoming of these methods is that optical images are susceptible to cloud contamination,
and it is difficult to synthesize ideal images over a long period. The accuracy of the results
depends on the quantity and quality of images during the key phenological stages.

Microwave signals from synthetic aperture radar (SAR) can penetrate clouds and
are less affected by weather [19,20]. Therefore, SAR data can obtain regular time-series
information during the rice growth season. In addition, SAR is very sensitive to canopy
structure and complex dielectric constant. Compared with other crops, rice has unique
flooding characteristics during the growth stage, which has been proven to be an effective
way for rice monitoring [21]. A time series curve similarity matching method was proposed
based on the temporal changes in SAR backscattering intensity during the rice growth
period [22], as well as a threshold-based decision tree method relying on its “V”-shaped
characteristics before and after the rice transplanting period [23]. These methods have
achieved some effective results in some areas [22,23]. However, differences in planting
dates, planting patterns, and varieties affect rice radar backscatter intensity during the
same period. SAR’s sensitivity to soil moisture leads to similar radar backscatter intensity
in low-lying drylands, wetlands, and rice. Insufficient time resolution and speckle noise
caused by signal fading of Sentinel-1 have become important factors limiting the use of
SAR in rice mapping [24].

Meanwhile, the combination of SAR and optical images can improve the accuracy
of rice mapping [25]. Instead of a single SAR data source, a combination of optical and
SAR is usually applied to traditional machine learning algorithms for crop extraction [22].
Rice mapping based on machine learning of multi-source data often selects percentiles (5%,
25%, 50%, 75%, 95%) during the entire rice growth period or statistics (median, standard
deviation, etc.) for each rice phenological stage or monthly synthetic data as features to train
classification models [15]. Spectral indices have been widely used in this process. However,
the mostly used SAR polarization characteristics are VH, VV, or VH+VV, especially the
monthly median synthesized values or the polarization characteristics of the optimal
phenological period selected by Jeffries–Matusita (JM) distance [26]. This cannot reflect
the changing information of SAR backscattering intensity during the entire rice growth
period. At present, there are few studies on the SAR index derived from the calculation of
SAR polarization characteristics [27]. A new SAR index needs to be developed, that can
reflect the dynamic characteristics of SAR backscattering intensity during the rice growth
period [28]. In addition, the traditional pixel-based classification method has a “salt and
pepper” phenomenon [29]. Previous studies have shown that the combination of Simple
Non-Iterative Clustering (SNIC) based on high-resolution optical images and time-series
SAR data can reduce the speckle noise of SAR data and remove speckles in classification
results [30].
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Supervised classification highly depends on samples to train the classification mo-
del [31]. The threshold-based decision tree method needs to rely on samples to find the
optimal threshold too. And also the curve similarity matching method needs to provide
a standard curve library through samples [22]. The quantity and quality of samples
determine the generalizability and reliability of these methods. Some early crop mapping
methods use historical crop labels or datasets to predict crop types in the target year through
classifier and sample transfer strategies [32,33]. The sample transfer strategy assumes that
if the crop type remains unchanged for many years in the same plot, the default target
year will also remain unchanged [10]. However, national agricultural policy adjustments
may lead to interannual changes in the planting structure, challenging the validity of this
assumption. The classifier transfer strategy uses classification model trained by historical
crop labels and images directly transferred to the target year [34]. This assumption may not
exist when different crop management practices, or any other factors lead to inter-annual
variability in spectral and SAR backscatter signal strength [32]. Also, models trained in
local environments may not be applicable to other locations [27]. At present, most studies
focus on supervised classification or phenology methods to identify rice, and there are
fewer studies on unsupervised classification methods [35]. K-Means is a popular and well-
known unsupervised classification method, which is widely used in the field of computer
vision [36,37].

The major crop datasets in Northeast China have been published [10,38]. They are
both crop distribution maps produced after the crops have been harvested. The hysteresis
of these datasets reduces their use value in some fields. Moreover, early-season rice
mapping can only obtain near-real-time images of the early or middle stages of rice growth.
Commonly used curve fitting methods (Double Logistic function (DL), Whittaker Smoother
(WS), and The Harmonic Analysis of Time Series (HANTS)) require at least all images of
a complete rice growth period or year, so they cannot be used for time series fitting of
early-season rice mapping [39,40]. Savitzky–Golay (SG) filtering uses a locally adaptive
moving window, and polynomial least squares regression is used within the window to fit
time series data [41,42], which can clearly describe small changes in complex crop types
and broken plot areas [43]. Linear interpolation based on the most recent valid observations
can fill the time gaps [44]. This is often used as the first step of SG filtering in NDVI time
series reconstruction to impute missing values [45].

With the support of the Google Earth Engine (GEE) platform, this study proposes
a hierarchical K-Means binary classification rice automatic identification method based
on phenological information feature optimization (PFO-HKMAR) based on Sentinel-1,
Sentinel-2, and Landsat 7/8 data. This method combines multi-source heterogeneous data
sources to solve the shortcomings of a single data source, and uses phenology methods to
achieve early-season unsupervised automatic mapping of rice. We apply PFO-HKMAR
to Tongjiang City, which has strong spatial heterogeneity, and prove the advantages of
PFO-HKMAR through accuracy evaluation and comparison with existing crop datasets
and ARM-SARFS [10,23,38]. Specifically, the following problems are solved.

(1) How can near-real-time SAR time series data be reconstructed in early-season ri-
ce mapping?

(2) Can a SAR index be constructed that can reflect the dynamic characteristics of rice?
(3) What is the earliest date when rice can be identified by PFO-HKMAR?

2. Study Area and Materials
2.1. Study Area

Tongjiang City in the northeastern part of Heilongjiang Province (132–134◦E, 47–48◦N)
was selected as the study area. Tongjiang City locates in the hinterland of the Sanjiang
Plain, on the south bank of the confluence of the Heilongjiang River and the Songhua
River (Figure 1), with a total area of 6229 km2. Tongjiang City has a continental monsoon
climate with rain concentrated in July and August. The annual average temperature,
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precipitation, sunshine hours, and frost-free period are 4.5 ◦C, 709.3 mm, 3504.7 h, and
148 day, respectively.
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Figure 1. Study area location and sample sites distribution in the Tongjiang City. The background is
the true color image of Sentinel-2 on 24 June 2019.

The soil in Tongjiang City is mostly meadow soil, black soil, and white soil, which
are suitable for crop cultivation. Tongjiang City plants one-season crops throughout the
year, with rice, corn, or soybeans. The central and southern parts of the study area are
large farms, mainly producing rice. The western and eastern regions are dominated by
small-scale farmers. The crop calendar of some major crops is shown in Table 1. The
complex planting structure, diverse planting management methods, and large amounts of
wetlands in the study area are representative for PFO-HKMAR evaluation.

Table 1. The crop calendar of main crops in Tongjiang City.

Month Apr May Jun Jul Aug Sep Oct

Ten-Day M L E M L E M L E M L E M L E M L E

Rice 1 2 2 3 3 4 5 5 5 6 6 7 8 9 10 10 11 12

Soybean 1 2 3 3 4 4 4 5 6 6 6 6 6 6 7 8

Corn 1 2 3 4 4 5 5 5 6 6 7 7 7 7 8 9

Note: Rice: 1, Sowing; 2, Flooding; 3, Flooding/Transplanting; 4, Reviving; 5, Tillering; 6, Boosting; 7, Booting;
8, Heading; 9, Grain filling; 10, Milky maturity; 11, Mature; 12, Harvesting. Soybean: 1, Sowing; 2, Seeding;
3, The third true leaf; 4, Branches forming; 5, Flowering; 6, Pod setting; 7, Mature; 8, Harvesting. Corn: 1,
Sowing; 2, Seeding; 3, Three leaves; 4, Seven leaves; 5, Stem elongation; 6, Heading; 7, Milky mature; 8, Mature;
9, Harvesting.

2.2. Datasets and Preprocessing

Due to the incomplete data of Sentinel-1A in the study area, the descending orbit data
of Sentinel-1B were selected for SAR data. As shown in Figure 2, the number of remote
sensing images under different cloud contents of Landsat 7, Landsat 8, and Sentinel-2 in
the study area from January to December 2019 was counted. In April, May, and June, both
Sentinel-2 and Landsat 8 were affected by clouds to some extent. Although quality of
Landsat 7 images is higher, the “SLC-off” problem is not avoided. To reduce the impact of
cloud pollution on optical images and capture rice phenology information more accurately,
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three types of optical images, Landsat 7/8 and Sentinel-2 were selected. These data are
available from GEE.
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Figure 2. The number of remote sensing images available under different cloud content in the study
area for 12 months in 2019. S2, L7, and L8 stand for Sentinel-2, Landsat 7, and Landsat 8.

2.2.1. Sentinel-1/2

Sentinel-1 and Sentinel-2 are an Earth observation mission under the European Space
Agency’s Copernicus program. The satellite details of Sentinel-1B and Sentinel-2 are shown
in Table 2. This study selected the VH polarization method of the descending orbit Sentinel-
1B product of the IW mode in 2019 covering the entire study area. The Lee-sigma speckle
filtering algorithm of the 7*7 window was used to remove speckle noise [46]. And mosaic
the images of the same day to obtain 30 periods of images. Only VH polarization was
selected in this study because changes in VH backscattering intensity are more sensitive to
rice growth than VV backscattering intensity [47].

Table 2. Sentinel data used in this study.

Sensor Bands Wavelength (nm) Spatial Resolution Temporal Resolution

Sentinel-2 MSI

Blue 496.6 (S2A)/492.1 (S2B) 10 m

5 d

Green 560.0 (S2A)/559.0 (S2B) 10 m
Red 664.5 (S2A)/665.0 (S2B) 10 m

Red Edge 1 703.9 (S2A)/703.8 (S2B) 20 m
Red Edge 2 740.2 (S2A)/739.1 (S2B) 20 m
Red Edge 3 782.5 (S2A)/779.7 (S2B) 20 m

NIR 835.1 (S2A)/833.0 (S2B) 10 m
Red Edge 4 864.8 (S2A)/864.0 (S2B) 20 m

SWIR 1 1613.7 (S2A)/1610.4 (S2B) 20 m
SWIR 2 2202.4 (S2A)/2185.7 (S2B) 20 m

Sentinel-1B SAR
C (VV) 10 m

12 dC (VH) 10 m

This study used the Sentinel-2 surface reflectance product from 16 April to 15 June 2019,
with cloud content less than 80%. The spectral bands with 20 m spatial resolution were
resampled to 10 m using the nearest neighbor method. Two methods were used to remove
clouds: (1) the Sentinel-2 Cloud Probability product provided by GEE to remove pixels
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covered by clouds with a threshold of 65%; (2) the QA60 band of the Sentinel-2 image to
remove cirrus and dense clouds.

2.2.2. Landsat 7/8

Landsat 7 and Landsat 8 are the seventh and eighth satellites of Landsat. A single
satellite can achieve global coverage every 16 days. Landsat 8 is consistent with the
previously launched Landsat 7 in terms of spatial resolution and spectral characteristics.
The comparison of band information between Landsat 8 and Landsat 7 images is shown in
Table 3.

Table 3. Comparison of band information between Landsat 7 and Landsat 8.

Landsat 7 Landsat 8

Band Name Band Range (um) Spatial Resolution Band Name Band Range (um) Spatial Resolution

Band 1 Blue 0.45–0.52 30 m Band 1 Coastal 0.433–0.533 30 m
Band 2 Green 0.52–0.60 30 m Band 2 Blue 0.450–0.515 30 m
Band 3 Red 0.63–0.69 30 m Band 3 Green 0.525–0.600 30 m
Band 4 NIR 0.77–0.90 30 m Band 4 Red 0.630–0.680 30 m

Band 5 SWIR1 1.55–1.75 30 m Band 5 NIR 0.845–0.885 30 m
Band 6 TIR 10.40–12.50 60 m Band 6 SWIR1 1.560–1.660 30 m

Band 7 SWIR2 2.09–2.35 30 m Band 7 SWIR2 2.100–2.300 30 m
Band 8 Pan 0.52–0.90 15 m Band 8 Pan 0.500–0.680 15 m

Band 9 Cirrus 1.360–1.390 30 m
Band 10 TIR1 10.6–11.2 100 m
Band 11 TIR2 11.5–12.5 100 m

Note: NIR, SWIR, and TIR represent near infrared, shortwave infrared, and thermal infrared, respectively.

This study used Landsat 7 and Landsat 8 surface reflectance products with cloud
content of less than 80% from 16 April to 15 June 2019. The spatial resolution were
resampled to 10 m using the cubic convolution method. The “CFMask” algorithm was
used to remove clouds and cloud shadows [48,49].

2.2.3. Ancillary Data

The auxiliary data used in this study are as follows: Crop calendar data in the study
area came from the Ministry of Agriculture and Rural Affairs of the People’s Republic of
China; The European Space Agency (ESA) World Cover 10 m 2020 product (ESAWC2020)
provides a global land cover map for 2020 at a 10 m resolution based on Sentinel-1 and
Sentinel-2 data; crop mapping datasets (10 m) from 2017 to 2019 (YCP) [38]; and crop
mapping datasets (30 m) from 2013 to 2021(XCP) [10]. Data details are shown in Table 4.

Table 4. Download links for related datasets applied in this study.

Datasets Data Source

Crop calendar of China https://zdscxx.moa.gov.cn:8080/nyb/pc/calendar.jsp (accessed on 10 August 2023)
ESAWC2020 https://esa-worldcover.org/en (accessed on 12 August 2023)
YCP datasets https://doi.org/10.6084/m9.figshare.13090442 (accessed on 20 July 2023)
XCP datasets https://doi.org/10.6084/m9.figshare.20411424.v1 (accessed 20 July 2023)

This study first intersected the cultivated land layer in the ESAWC2020 dataset with
the rice layer in the YCP and XCP datasets to obtain a more accurate rice area. The obtained
rice area was then superimposed on time-series Sentinel-2 images and high-resolution
Google Earth images to create a point sample set and a validation set. A point sample
set was mainly used for time-series spectral analysis and calculation of JM distances of
different characteristics. We visually interpreted 4201 sample points using the auxiliary
data above. Among them, there were 1083 rice plants, 1159 other crops, 505 wetlands,
548 woodlands, 532 buildings, and 374 permanent water bodies. A sample set of plots

https://zdscxx.moa.gov.cn:8080/nyb/pc/calendar.jsp
https://esa-worldcover.org/en
https://doi.org/10.6084/m9.figshare.13090442
https://doi.org/10.6084/m9.figshare.20411424.v1
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was mainly used for accuracy verification. There are a total of 98 plots of data, including
50 for rice and 48 for others (including other crops, wetlands, woodlands, buildings, and
permanent water bodies). The plot location was first determined through the auxiliary
data above, and then the boundaries are delineated through high-resolution Google Earth
imagery. The above operations are completed in QGIS.

3. Methods

This study proposed a hierarchical K-Means binary automatic rice classification
method based on phenological feature optimization (Figure 3). First, after the recon-
struction of Sentinel-1B VH time series backscattering intensity, feature construction and
optimization was conducted for data. Then, for optical data, feature selection, optimization,
and reconstruction were performed. Finally, the object-based hierarchical K-Means binary
classification method was established to automatically identify rice.
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Figure 3. Overview of methodology. Note: LCTs is the abbreviation of “land cover types”.

The main steps of PFO-HKMAR were as follows: (1) Use the method combining
mean synthesis and SG filtering algorithm to reconstruct the Sentinel-1B SAR time series
backscattering data. (2) Construct two SAR features: the cumulative sum of VH backscat-
tering intensity (VH-sum) and the slope of VH backscattering intensity (VH-slope), and
determining the best time range through JM distance, so as to calculate VH-sum. (3) Se-
lect three spectral indices (SI), namely Flooding signal vegetation index (FSVI), MNDWI,
and Multi-Band Water Index (MBWI), for time series image synthesis; generate SI weight
overlap map (SI-W) based on best features selected through JM distance. (4) Perform SI-W
image segmentation by SNIC method, and obtain the object average value for VH-sum,
VH-slope, and SI-W features calculation. (5) Conduct binary classification by the K-Means
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method using VH-sum and SI-W features, so as to obtain water bodies and rice, including
some wetlands, which in this study was called the Water-Rice area. (6) Conduct binary
classification through the K-Means method using VH-slope feature and Water-Rice area
map to obtain the rice spatial distribution map.

3.1. Reconstruction of the Sentinel-1B Synthetic Aperture Radar Time-Series Backscatter Data

Near-real-time VH curve of rice was constructed by combining mean synthesis and
SG filtering. The backscatter intensity of VH was firstly synthesized as a 36-day average to
mitigate fluctuations. Secondly, SG filtering was used to obtain the smooth variation trend
of the SAR backscattering intensity time series. The length and polynomial order of the SG
filter fitting window were set to 5 and 3, respectively. Finally, the last two periods of data
missing after SG filtering were filled using the 36-day average and real-time values. This
not only weakened the noise that still existed after preprocessing and effectively suppressed
the anomalies caused by the environment, thus weakening the differences between rice, but
also retained the various characteristics among different land cover types to the greatest
extent, which helped realize early-season rice mapping. Figure 4 shows the reconstruction
results of rice time series of SAR VH backscattering intensity. Compared with the original
VH backscattering curve, the reconstructed one can more clearly reflect the changing trend
throughout the whole rice growth.
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3.2. Temporal Signature of Sentinel-1B Backscatter for Different Land Cover Types

Temporal changes in VH backscattering intensity of rice were analyzed based on its
biochemical characteristics, which can provide a theoretical basis for a new SAR index
constructed in Section 3.3. It can be seen from Figure 5 that different land cover types
presented different VH time series curves. According to the curves of rice and its phenology
in the study area, three main periods were divided for rice: the sowing and transplanting
stage from mid-April to the end of May, which is called the Sowing/Transplanting period
(ST); the Transplanting/Mature period (MT) from early June to August, which covers rice
growth stages of reviving, tillering, jointing, and heading; the Mature/Harvest period (MH)
from early September to October including rice growth stages of Milky maturity, Mature,
and harvesting. During the entire growth period of rice, the VH backscattering intensity of
forest and buildings is greater than that of rice. And water performed oppositely.
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In the ST stage, the humidity of rice field gradually increases, with a decrease in
roughness. The specular reflection of water in rice field is the main backscattering mecha-
nism, which causes the SAR backscattering intensity dropping rapidly from about −23 dB
to about −26 dB (the lowest value). As shown in Figure 5b, there are large differences
in the VH curves during the ST stage of rice. Rice 1–4 have a “V”-shaped characteristic
with obvious flooding signals before and after the transplanting period. This is called the
“standard rice time series curve” (SR). Rice 5–6, on the contrary, demonstrate what is called
the “non-standard rice time series curve” (NSR). The VH backscattering intensity of NSR
may be greater than that of other crops and wetlands.

During the MT stage, the SAR backscattering intensity increases from approximately
−26 dB to approximately −14 dB (the highest value). During this period, the VH backscat-
tering intensity of rice has been lower than that of other crops. In early June, rice is in the
greening and tillering stage. During this period, rice is sparsely distributed, rice seedlings
are young, and the water content of rice fields is high, with water accounting for the major-
ity. Therefore, the VH backscattering intensity is dominated by specular reflection, with less
body scattering and Double Bounce. During this period, the VH backscattering intensity
was still low but began to gradually increase. From the end of June to the end of July, rice is
mainly in the late tillering and jointing stages. During this period, the number of rice tillers
increases, the rice grows rapidly, and the canopy roughness gradually increases. The main
backscattering intensity of VH becomes the body scattering of rice and the Double Bounce
between the rice stem and the lower surface of the rice field. The specular reflection of the
rice field water gradually decreases, causing the VH backscattering intensity to increase
rapidly. In August, rice is mainly in the reproductive stage. During this period, the rice
plant height reaches its highest, the leaves almost completely cover the water surface of the
rice field, and the rice biomass is the highest. The main backscattering intensity of VH is
the body scattering of rice and the surface scattering of the rice canopy. The Double Bounce
decreases and the VH backscattering intensity gradually reaches the maximum [50]. During
this period, due to the arrival of the rainy season, precipitation gradually increases, and
the VH backscattering intensity of the wetland decreases rapidly. The VH backscattering
intensity of rice is greater than that of wetland. After September, rice gradually matures
and is harvested. During this period, the water content of rice leaves decreases, the rice
ears bend, the leaves gradually turn yellow, and the VH backscattering intensity of the rice
fields continues to decrease.
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3.3. Feature Construction

This study used two feature types: (1) SAR index derived by analyzing the temporal
changes in VH backscattering intensity of different land cover types. (2) Spectral index
generated from optical spectral calculation based on existing research.

3.3.1. SAR Feature

By analyzing VH time series changes in different land cover types, this section pro-
posed two new SAR characteristics: the cumulative sum of VH backscattering intensity for
a specific time period (VH-sum) and the VH slope in the rice growth stage.

According to the temporal dynamics of VH backscattering intensity of rice in Section 3.2,
in the ST stage, NSR does not have obvious “V”-shaped characteristics, and the VH
backscattering intensities of rice, wetland, and other crops intersect. In the MT stage, the
VH backscattering intensities of SR and NSR were lower than those of other crops. Before
the arrival of the rainy season in the MT stage, the VH backscattering intensity of wetlands
is higher than that of rice, indicating that the impact of wetlands on rice can be effectively
removed at this stage. Considering the above issues, to highlight these characteristics,
this study proposed the cumulative sum of VH backscattering intensity. Through the
accumulation of VH backscatter intensity, subtle differences can be exaggerated, improving
the separability of rice and other crops, while reducing intra-class differences in rice. During
the rice growth period, the VH-sum of buildings, woodland, and other crops is greater than
that of rice, the VH-sum of water bodies is smaller than that of rice, and the VH-sum of
wetlands fluctuates with rainfall.

Recent studies have shown that using radar backscatter slope is effective for rice
classification [23,51]. Although the VH slope of rice during the growth stage is close to that
of other crops, it is highly separable from buildings, forest land, and water bodies. In this
study, the VH slope of rice was obtained by linear fitting of the VH backscatter intensity
and time of multiple images after 16 May 2019.

3.3.2. SI Feature

Compared with other crops, a unique physical characteristic of rice is that rice needs
to grow in flooded soil [52]. This study selected FSVI (a combination of NDVI and LSWI),
MNDWI, and MBWI to identify water information in the early stages of rice growth.
These spectral indices have been widely used in rice mapping and have been proven to
be effective. When rice is in the transplanting and tillering stages, the LSWI of rice field
is greater than NDVI. Therefore, the FSVI, calculated by subtracting NDVI from LSWI (in
this study, the maximum value of NDVI was selected during the period from 16 April to
15 May 2019), can highlight the water body information in rice fields and avoid vegetation
interference on LSWI identification of water bodies. MNDWI can reduce the background
effects caused by vegetation and soil and highlight water body information [53]. MBWI can
robustly extract surface water from cluttered backgrounds such as mountainous shadows
and dark built-up areas. At the same time, the seasonal effects caused by changes in solar
conditions can be reduced [54]. The band operations of FSVI, MNDWI, and MBWI are
shown in Table 5.

Table 5. Five spectral indices were selected in this study and their associated equations.

Spectral Index Equation Reference

NDVI (ρNIR−ρ Red)/(ρNIR + ρ Red) [55]
LSWI (ρNIR − ρSWIR1)/(ρNIR + ρSWIR1) [52]
FSVI LSWI − NDVI [56]

MNDWI (ρGreen − ρSWIR1)/(ρGreen + ρSWIR1) [53]
MBWI 2 ∗ ρGreen − ρRed − ρNIR − ρSWIR1 − ρSWIR2 [54]
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3.4. Feature Optimization and Weighted Superposition

JM distance was used to evaluate the separability of VH-sum and VH-slope in different
time ranges and select the best rice phenological phase construction characteristics. By
analyzing the separability of spectral indices, a spectral index weighted overlay map during
the rice flooding period was constructed.

Although using more features is beneficial for detecting subtle differences between
different land cover types, the participation of redundant features may reduce classification
efficiency and accuracy to a large extent [57]. Spectral separability is an important factor
in determining rice classification accuracy. In land cover classification, JM distance is
a widely recognized spectral separability measure [58]. This study used JM distance to
quantitatively analyze the separability of rice and non-rice in different phenological stages.
The calculation formula of JM distance can be found in [57].

3.4.1. SAR Feature Separation Evaluation

The JM distance was employed in this study to assess the discriminability of various
land cover types based on VH-sum characteristics across different temporal intervals. As
shown in Figure 5, different land cover types showed different characteristics in different
phenological stages. Therefore, separability evaluation was performed on VH-sum features
at different time intervals with different starting dates. Since the time resolution of Sentinel-
1B is 12 d, the time interval was selected as half a month. The specific time interval design
was shown in Table 6. The rice transplanting dates in the study area are mainly concentrated
in mid-May, and then as the rice grows, the VH backscattering intensity of the rice gradually
increases. This study used 15 May as the starting date and 1 month as the time interval
to evaluate the separability of different land cover types in VH-slope characteristics in
different time ranges.

Table 6. Different time intervals in different start date time phases in 2019.

End Date
Start Date

1 May 16 May 1 June 16 June 1 July 16 July 1 August 16 August 1 September

Name SART1 SART2 SART3 SART4 SART5 SART6 SART7 SART8 SART9

15 May

31 May

15 June

30 June

15 July

31 July

15 August

31 August

15 September

30 September

In terms of VH-sum characteristics, when the starting date is 1-June, the separability of
rice and other land cover types is the best (Figure 6). VH-slope characteristics can effectively
improve the separability of rice and water. It can also make up for the poor separability of
VH-sum characteristics on rice and wetland in rainy season. Therefore, the VH-sum feature
was studied in the SART3 stage (Table 6).
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Figure 6. JM distance with different characteristics of different land cover types. (a–e) These indicates
the JM of the VH-sum feature at different times. (a–e) These represent the JM distance of Rice-Water,
Rice-Buildings, Rice-Other crops, Rice-Forests, and Rice-Wetlands. Image (f) shows the JM distance
of the VH-slope feature in SART2. (a–e) For legends, refer to Table 6.

3.4.2. SI Feature Optimization and Weighted Superposition

Three optical data sources were selected in this study: Landsat 7/8 and Sentinel-2.
Three spectral indices, namely FSVI, MNDWI, and MBWI, and their average, maximum,
and median value were obtained for image synthesis. Finally, the optimal features were
selected through JM distance for weight overlap addition to obtain the weight overlap
addition map of SI. The details are as follows:
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(1) Multiple methods for image synthesis.

The time range for identifying flooding signals in the early growth stage of rice was
determined as 16 April to 15 June 2019. The time range is guaranteed to be at least 30 days
and accumulated in half-month intervals, divided into 6 time stages [34]. Perform median
synthesis, maximum synthesis, and average synthesis on the images within the time period,
respectively [34,59]. The time stages in 2019 are defined as follows: 16 April~15 May (SIT1),
16 April~31 May (SIT2), 16 April~15 June (SIT3), 1 May~31 May (SIT4), 1 May~15 June
(SIT5), 16 May~15 June (SIT6).

(2) Feature selection and weight overlap based on JM distance.

Analyze the JM distances of rice and other crops using different synthesis methods
with different spectral indices in different periods (Figure 7). In the SIT5 stage, the spectral
separability of the mean synthesis and median synthesis of FSVI and MNDWI is optimal.
The median synthesis of MBWI (MBWI-median) obtained the highest JM distance of 1.93 in
the SIT3 stage.
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Based on the above analysis, this study first selected the maximum composite of
FSVI (FSVI-max-SIT5), the average composite of FSVI (FSVI-mean-SIT5), and the median
composite of FSVI (FSVI-median-SIT5) in the SIT5 stage for weighted overlap to obtain
the weighted overlapped value of FSVI (FSVI-W). Then select the maximum synthesis of
MNDWI (MNDWI-max-SIT5), the average synthesis of MNDWI (MNDWI-mean-SIT5),
and the median synthesis of MNDWI (MNDWI-median-SIT5) in the SIT5 stage to per-
form weight overlap addition, and obtain the weight overlap addition value of MNDWI
(MNDWI-W). Finally, weight overlap addition was performed on FSVI-W, MNDWI-W,
and MBWI-median-SIT3 to obtain the SI-W. Since the JM distance of different features are
relatively close, this study chose the average weight. SI-W is calculated as follows:

FSVI-W = FSVI-max-SIT5 × W1 + FSVI-mean-SIT5 × W2 + FSVI-median-SIT5 × W3

MNDWI-W = MNDWI-max-SIT5 × W4 + MNDWI-mean-SIT5 × W5 + MNDWI-median-SIT5 × W6

SI-W = FSVI-W × W7 + MNDWI-W × W8 + MBWI-median-SIT3 × W9
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3.5. Superpixel Segmentation Based on Simple Non-Iterative Clustering

SNIC algorithm in GEE was used to perform SI-W segmentation. The SNIC algo-
rithm does not require iterative convergence of cluster centers [60,61]. It requires forced
connections from the beginning of algorithm clustering. It takes up less memory and is
faster. It is suitable for images of different sizes and resolutions. Considering the texture
characteristics of landscape patches in the study area and previous studies [30], this study
tested the spacing of superpixel seeds from 20 to 100 at intervals of 5 and finally selected
40. SNIC, in GEE, requires setting some main parameters, these parameters were set as
follows: compactness = 0, connectivity = 8, and neighborhood size = 1000.

3.6. K-Means Model

The purpose of K-Means is to cluster the dataset by quantifying the similarity among
samples, aiming to minimize intra-class gap and maximize inter-class gap [62,63]. Consid-
ering the performance of VH-sum, VH-slope, and SI-W characteristics for different land
cover types, as well as the deficiencies of K-Means clustering algorithm, a hierarchical
K-Means binary classification algorithm was proposed. For detailed steps, please refer to
Table S4 in the Supplementary Materials.

3.7. Determining Earliest Identifiable Timing (EIT)

Through the JM distance analysis of the separability of various characteristics of
different land cover types, the SART3 time stage was selected, with the starting date being
1 June 2019, and gradually extending until 30 September 2019, at half-month intervals.
The PFO-HKMAR was employed to identify rice in different stages, and an accuracy
evaluation was conducted. The determination of EIT was based on an examination of
temporal changes and spatial distribution pertaining to rice mapping accuracy.

3.8. Accuracy Assessment

To prove the reliability of rice distribution in the study area, the accuracy of rice
classification was evaluated and the consistency of its spatial distribution was verified.
Five evaluation indices, including overall accuracy (OA), producer accuracy (PA), user
accuracy (UA), kappa coefficient (KC), and F1 score (F1), were calculated by establishing a
confusion matrix to quantitatively assess the mapping results [58]. A detailed description
of these five indicators can be found in previous studies [16,58]. We compared our results
with existing YCP and XCP datasets. Furthermore, we compared our findings with the
ARM-SARFS method proposed by Zhan et al. [23], which is based on the “V”-shaped
characteristics before and after the rice transplanting period. The choice to compare with
ARM-SARFS was motivated by its status as a classic rice recognition algorithm using
Sentinel-1 data that has attracted widespread attention.

4. Results
4.1. Comparative Analysis of Early-Season Rice Mapping Based on SNIC and Pixel

The changes in the accuracy of rice mapping based on SNIC and pixel-based multi-
source remote sensing images are shown in Figure 8. Regardless of the combination of
SAR+SI or SAR, the classification accuracy based on SNIC is higher than that based on pixels.
The combined SNIC-based classification of SAR+SI is 0.0478, 0.0932, and 0.0530 better than
the pixel-based classification OA, KC, and F1, respectively. The SNIC-based classification
of SAR is improved by an average of 0.0511, 0.0993, and 0.0584 compared to the pixel-based
classification OA, KC, and F1, respectively. Based on the SNIC classification, as shown
in Figure 8, it can be observed that regardless of the SAR+SI combination or only SAR,
the F1 change trend exhibits a rapid increase before 15 July, followed by a slower increase
thereafter. It shows a slight increase after 15 August and eventually reaches a state of
almost stabilization. The pixel-based classification increased rapidly until 15 August, then
it slightly increased and almost stabilized. This indicates that in early-season rice mapping,
SNIC-based classification has more advantages than pixel-based classification.
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intervals of the SART3 time stage from different remote sensing image data sources.

4.2. Effect of Different Data Sources on the Early-Season Rice Mapping

The changes in rice mapping accuracy for different combinations of data sources are
shown in Figure 9. Whether it is SNIC-based or pixel-based classification, the combination
of SAR+SI yields higher classification accuracy than using SAR alone. In the SNIC-based
classification, the combination of SAR+SI improves OA, KC, and F1 by an average of 0.0081,
0.0165, and 0.0071, respectively, when compared to using SAR only. In the pixel-based
classification, the combination of SAR+SI improves OA, KC, and F1 by an average of
0.0114, 0.0227, and 0.0124, respectively, compared to using SAR only. Compared with
the SNIC-based classification method, the pixel-based classification method has a greater
accuracy improvement through the combination of SAR+SI than using only SAR data. It
can be observed from the changes in F1 in Figure 9 that in different phenological stages of
rice, the combination of SAR+SI can stably improve the accuracy of rice mapping compared
with only using SAR, and has little impact on early-season rice mapping.
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4.3. The Earliest-Identified Temporal and Spatial Distribution of Rice

Based on the analysis in Sections 4.1 and 4.2, this study chooses the combination of
SNIC-based SAR+SI to determine the final EIT. Existing research has defined the earliest
identifiable time of each crop as the first time the F1 of the crop reaches 0.9 [34]. Although
the F1 of rice is verified by accuracy to be greater than the threshold 0.9 on 15 August, after
all, the accuracy verification is carried out with limited samples. We determined the earliest
date of rice identification by analyzing the spatial distribution map of rice after 15 August
(inclusive). From the spatial distribution of rice in the study area shown in Figure 10, we
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can observe a generally consistent spatial distribution of rice at different time intervals in
the study area, with the main difference being observed in the Qinglong River area. It can
be observed from the detailed map of the Qinglong River area in Figure 10 that although
the F1 of rice is greater than 0.9 on 15 August, the Qinglong River channel is incorrectly
identified as rice. The rice recognition effect on 31 August is the best, even better than that
of 15 September and 30 September. However, some dunes in the river channel will still be
mistakenly classified as rice. Based on the temporal changes in F1 in rice and the spatial
distribution of rice, this study selected 31 August as the earliest identifiable date of rice.
The results based on the PFO-HKMAR method in the following analysis of this study refer
to the rice identification results of the SNIC-based SAR+SI combination at the SART3 time
stage on 31 August.
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Figure 10. The spatial distribution map of rice in the study area on 15 August, 31 August,
15 September, and 30 September in the SART3 period and the local detailed map of the Qinglong
River area. Image (a–d) represent 15 August, 31 August, 15 September, and 30 September respectively.
The bottom image is Sentinel-2 on 24 June 2019 (R: SWIR2, G: SWIR1, B: NIR).

The rice planting area in Tongjiang City in 2019 is approximately 3651.29 km2. As
shown in Figure 10, rice is primarily distributed in large farms located in the central region.
It is then followed by the Sancun Irrigation District along the Heilongjiang and Songhua
Rivers to the west, and scattered in the Linjiang Irrigation District in the northeast. This is
consistent with the actual situation in the study area.

4.4. Comparison of Rice Mapping Results between PFO-HKMAR and ARM-SARFS

ARM-SARFS is an unsupervised classic rice identification method based on rice
phenology. Therefore, we compared PFO-HKMAR and ARM-SARFS in terms of accuracy
and spatial distribution. The rice mapping method of ARM-SARFS is detailed in [23]. We
set the thresholds of slope (MRsowing-transplanting), slope (MRgrowing), mean (VHyear),
and mean (VHrice-growth) to 0, 0, −20 dB, −20 dB, respectively. These are general
thresholds adapted to the Northeast region. As shown in Table 7, PFO-HKMAR is 0.1957,
0.3945, and 0.1791 higher than ARM-SARFS in OA, KC, and F1, respectively. As shown in
Figure 11, ARM-SARFS performs better in large farm areas, but the extracted rice plots are
broken. The phenomenon of missing mention is observed in small farmer economic areas.
Additionally, the water bodies of Heilongjiang, Songhua River, and Qinglong River are
mistakenly classified as rice fields. Furthermore, there are also a large number of broken
patches in forest land that are misdivided into rice. However, there is no misdividing of
wetlands into rice in the Yalu River and Nongjiang River basins.
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Table 7. Rice classification accuracy of YCP datasets, XCP datasets, and ARM-SARFS method.

Accuracy UA PA OA Kappa F1

ARM-SARFS 0.7511 0.7155 0.7157 0.4295 0.7329
YCP 0.9089 0.7998 0.8607 0.7211 0.8509
XCP 0.7164 0.8837 0.8248 0.6431 0.7913
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4.5. Comparison between PFO-HKMAR and Existing Rice Datasets

We compare PFO-HKMAR with the recently publicly released medium-resolution
rice datasets of YCP and XCP in terms of accuracy and spatial distribution. As shown in
Table 7, PFO-HKMAR is 0.0507, 0.1029, and 0.0611 higher than YCP in OA, KC, and F1,
respectively. PFO-HKMAR is 0.0866, 0.1809, and 0.1207 higher than XCP in OA, KC, and
F1, respectively. Figures 12 and 13 indicate that the spatial distribution of rice in YCP and
XCP is generally consistent with the spatial distribution of rice in PFO-HKMAR, but there
are differences in some regions. The PFO-HKMAR method and the YCP datasets provide
more detailed field information. The XCP datasets only use 30 m Landsat data. Due to
mixed pixels, the field roads are misdivided into rice. The YCP datasets mainly misclassify
large wetlands in the Yalu River and Qinglong River basins as rice fields. The XCP datasets
mainly misclassify large wetlands in the Heilongjiang and Songhua River basins as rice
fields. Moreover, there are a small number of broken patches distributed in the study area,
and depressions and wetlands are misidentified as rice. Compared to the datasets of YCP
and XCP, PFO-HKMAR exhibits the best distinction between rice and wetland without any
broken spots.
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Figure 13. Rice spatial distribution map and local detail map of XCP. (a) Tongjiang City; (b) Hei-
longjiang Basin; (c) Yalu River Basin; (d) Songhua River Basin; (e) Qinglong River Basin; (f) Qinglong-
shan Farm. The bottom image is Sentinel-2 on 24 June 2019 (R: red; G: green; B: blue).
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5. Discussion
5.1. Feasibility of an Unsupervised Early-Season Rice Mapping Approach Based on Phenology

The feasibility of K-Means classification based on phenology in early-season rice
mapping is analyzed in this section, considering the VH temporal changes in rice and the
JM distance of different characteristics. We use a K-Means clustering model to automatically
learn multi-feature temporal change information of different land cover types based on
phenology information. It does not require a large number of samples to train the model, nor
does it need to find the optimal segmentation threshold, and it overcomes the shortcomings
of K-Means classification. The method can automate rice mapping and achieve good results
in early-season rice mapping. Additionally, it can also be extended to identify other crops.

The PFO-HKMAR method based on the combination of SAR+SI can identify rice in the
study area as early as the end of August. It can be observed from the time series changes
in VH backscattering intensity of different land cover types that the VH backscattering
intensity of other crops is significantly greater than the VH backscattering intensity of rice
from June to July. Although the VH backscattering intensity of other crops overlapped
with the VH backscattering intensity of rice in August, the average VH backscattering
intensity of other crops is still greater than the average VH backscattering intensity of
rice. In early September, the VH backscattering intensity of both reaches the maximum
and then begins to decrease. During this period, the VH backscattering intensity of both
is almost the same. It shows that before September, rice and other crops can be better
separated by using VH-sum characteristics. The VH-sum features of rice and other crops
are separable well on 15 August and 31 August, and the JM distance values are 1.8444
and 1.8350, respectively. Before September, the VH backscattering intensity of buildings
and woodland is much higher than that of rice, so the separation of rice and buildings,
and rice and woodland can be easily achieved through the VH-sum feature. Since rice
and wetland have flooding signal asynchrony in the early stages of rice growth, VH-sum
and SI-W features can easily distinguish rice and wetland at this stage. After that, as
the precipitation gradually increased, on 15 August, the JM distance between rice and
wetland in the VH-sum feature is almost 0. However, the JM distance between rice and
wetland in the VH-slope feature reaches 1.99. Therefore, before September, according to
the performance of VH-sum, VH-slope, and SI-W characteristics in different phenological
stages, the advantages of the three complement each other at different time intervals, and
effective early separation of rice and wetland can be achieved. Although the VH backscatter
intensity of the water body fluctuates depending on the water level, as the rice grows,
the separability of the two gradually increases. Regarding the VH-slope feature, the JM
distance between rice and water reaches saturation on 15 August, with a value of 1.6693.
Therefore, the temporal changes in different land cover types illustrate that rice can be
identified at the end of August.

5.2. Comparison of Rice Classification Based on SNIC and Pixel

This section discusses the advantages of using SNIC in the PFO-HKMAR method
from the perspective of rice mapping accuracy and comparison with other datasets. The
quality of the image affects the segmentation effect of SNIC, and the segmentation effect
has a decisive impact on rice recognition. Research has shown that multi-stage NDVI
segmentation is superior to using a single image [64]. We choose SI-W images to search
for homogeneous objects, which can identify rice fields more accurately. And, it is more
suitable for image segmentation than using a single spectral index or solely relying on the
median synthesis method.

The study found that the classification results based on SNIC are superior to those
based on pixels, whether it involved a combination of SAR+SI or using only SAR data. This
is mainly because the average value of all pixels within the object is used to reduce the
speckle effect of SAR. By smoothing the pixel values of the same crop within the object in
the same plot, it reduces the intra-class variance of different land cover types and increases
the separability between different land cover types. At the same time, it also reduces the
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impact of the external environment such as terrain undulations on the same plot of land.
The classification accuracy based on SNIC is much higher than that based on pixels before
15 August, as shown in Figure 8. It shows that the object-based classification method can
effectively improve the classification accuracy in the early stage of rice. After 15 August
(including 15 August), SNIC-based OA is about 2–3% higher than pixel-based OA. The
main reason for this slight improvement is that object-based classification mainly eliminates
some artifacts. The VH-sum feature makes the spectral values of rice in the same plot
smoother through the accumulation of VH backscattering intensity. This has a certain
improvement effect on the missed classification caused by differences within rice categories
and the misclassification caused by broken patches in some low-lying dryland areas.

The YCP and XCP datasets are based on the pixel classification of optical data, and the
ARM-SARFS method is based on the pixel classification of SAR data. It can also be seen
from its spatial distribution of rice that the ARM-SARFS YCP and XCP datasets have a large
number of fragmented patches in the dry crop areas in the northeast and southwest regions
of the study area. In the classification results of PFO-HKMAR combined with SAR+SI on
31 August, broken patches are also observed in dry crop areas based on pixel classification
(Figure 14). Moreover, small water bodies are easily affected by mixed pixels and may be
misjudged as rice. The SNIC-based classification does not have this phenomenon at all.
The Heilongjiang and Songhua Rivers are affected by seasonal changes in water volume
and mixed pixels, resulting in a large amount of debris in the channels based on pixel
classification. However, the SNIC-based classification can completely remove water bodies.
In summary, the object-based classification method can completely solve the debris in water
areas caused by SAR and reduce debris in low-lying dryland areas.
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5.3. Combination of SI and SAR

This section primarily discusses the impact of different data sources on rice mapping
at each step in the PFO-HKMAR method. The classification of optical images is more
robust than that of SAR images, as optical images contain a greater amount of spectral
information [30]. The flooding signal in rice fields is an important feature for identifying
rice, and this feature typically persists for about 2 months [65]. Using time-series optical
images is an effective method for accurately identifying rice. However, the study area
experiences limited availability of clear optical images due to the onset of the rainy season
in July. SAR data can make up for the lack of clear images in optical images during cloudy
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and rainy periods, improving the generalization and adaptability of rice identification.
Additionally, the combination of optical and SAR can capture different aspects of rice’s
phenological characteristics. Blaes et al. argued that the highest separability of land cover is
achieved when optical and SAR images are used together [66]. Yang et al. research shows
that although the overall accuracy of Sentinel-2 is significantly higher than VV, VH, or
VV+VH, the combined use of optics and SAR images is better than using only optical or
SAR images [30]. Integrating images from different sensors and combining the advantages
of various data sources can effectively overcome the limitations of a single data source and
enhance the accuracy of rice identification [58]. The combined classification accuracy of
SAR+SI is higher than that of using only SAR for the SNIC-based classification method,
as shown in Figure 9. However, the improvement in accuracy is not significant. This is
mainly because the SNIC-based method increases the separability of low-lying dryland
areas from rice by averaging all pixels within the object, effectively reducing fragmentation
in the classification results. Although the SNIC method can reduce the debris in low-lying
areas of dryland, the accuracy of early-season rice mapping can be effectively improved
by adding SI features. Although the statistical significance is not great, it can effectively
solve the shortcomings of SAR data and avoid the misclassification of dryland low-lying
areas and wetlands, which has important practical significance. This study analyzed the
performance of rice in different phenological stages and used the hierarchical K-Means
binary classification method to identify rice in two steps. The following analysis considers
the impact of different data sources on rice identification at each step.

In the first step, K-Means binary classification is performed based on the performance
of VH-sum and SI-W for different land cover types. The main purpose is to completely
remove buildings, forest land, and other crops, including some wetlands, to obtain a Water-
Rice area. The VH-slope feature is not used in this step because the maximum value of
the JM distance between rice and other crops is only 1.0 in the VH-slope characteristics
during different time intervals throughout the SART2 period. It can also be observed from
Section 4.4 that the ARM-SARFS method uses the “V” shaped characteristics before and
after the rice transplanting period to identify rice. However, due to different rice planting
modes and the coarse time resolution of Sentinel-1B, a large number of points are missed
in small farmer economic areas. Therefore, we did not select VH-slope characteristics
(including the declining slope of rice before transplanting and the rising slope of rice
during the growth stage) in the first step. It can be observed from area 1 in Figure 15 that
VH-sum is sensitive to soil moisture and can easily misjudge other crops in low-lying areas
as rice. Optical images have shorter wavelengths and provide rich spectral information.
The combination of SAR and SI can effectively prevent other crops in low-lying areas
from being misjudged as rice. The VH-sum characteristics of rice and wetlands remain
consistent in August due to the influence of rainfall. It can be observed from area 2 in
Figure 15 that due to the complex spectral information of the built area, the SI-W feature
easily misjudges the built area as a water body. The interference of built-up areas has
always been a challenging aspect in the study of water extraction [67]. The combination
of SAR and SI can not only remove large areas of wetland, but also effectively solve the
interference in low-lying dryland areas, completely avoiding misjudgment of built-up areas
as rice caused by SI. After comprehensively analyzing the distribution, in the first step, the
combination of SAR and SI can completely remove buildings, woodland, and other crops,
including large wetlands, to achieve the desired effect.

The second step of PFO-HKMAR using the VH-slope feature to remove water bodies
and part of wetlands in the Water-Rice area to obtain a rice distribution map in the study
area. Regarding the VH-slope characteristics of the SART2 time stage, as the date increases,
the JM distance between rice and water bodies gradually increases and tends to reach a
plateau on 15 August. In terms of VH-sum characteristics, the JM distance value between
rice and water gradually increased, reaching a maximum of 1.82 on 30 September. A
large number of studies have used NDVI to distinguish vegetation and other land cover
types [10]. During the rice sowing and transplanting periods, the NDVI value of rice fields
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closely resembles that of water bodies. As rice grows, the NDVI value gradually increases
and reaches the maximum value at the heading stage [15]. Therefore, we conducted a
comparative analysis of the VH-slope, VH-sum, and NDVI-mean on 31 August in the
SART2 time stage to determine which feature better removes water bodies and wetlands
in the Water-Rice area. As shown in the local details of Figure 16, in the Heilongjiang and
Songhua River basins, the VH-sum and NDVI-mean features form elongated patches at the
boundaries of water bodies, and it is difficult to remove small water bodies. This is mainly
caused by the influence of mixed pixels and the seasonal changes in water body boundaries
and small water bodies. Moreover, the VH-sum and NDVI-mean features cannot remove
the wetlands left over from the first step, such as the wetlands in the Yalu River Basin and
Honghe National Nature Reserve that are misjudged as rice. The VH-slope feature can
perfectly solve the above problems.
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5.4. Uncertainty and Implication for Future Studies

Although the current results demonstrate the high accuracy of PFO-HKMAR, we
recognized that there are still some potential limitations. PFO-HKMAR may be affected
by the floods in August, causing the rice covered by floods to lose points. However, PFO-
HKMAR can also achieve better results on 31 July before the floods, with OA reaching
0.8833. Moreover, the dunes in the Qinglong River irrigation canal are misdivided into
rice fields, which deserves further research. Currently, Northeast China is experimenting
with the use of direct seeding drip irrigation technology for rice cultivation. This aspect
should be focused on in future rice mapping. The first step of PFO-HKMAR primarily uses
the water body information in the early stage of rice growth to determine the Water-Rice
area. It can achieve better results during this initial phase. However, the second step
requires the slope of the long-term VH backscatter intensity during the rice growth stage to
distinguish between rice and water bodies, which is the main reason for the EIT time delay.
In the future, spectral changes in different land cover types before rice transplantation can
be studied for achieve early identification of rice and water bodies. However, spectral
consistency caused by early snow cover in Northeast China and spectral changes caused by
snow melting need to be considered. Unlike ARM-SARFS, PFO-HKMAR does not require
precise rice transplanting dates. However, it is also necessary to provide the approximate
growth period of rice in the study area. This limits the application of PFO-HKMAR in
areas and large areas where rice phenological information is unknown. In the future, the
spectral time series change information of rice can be used to automatically identify the
key phenological stages of rice [68]. This will also help to apply the method in multi-
cropping rice growing areas in southern China. Currently, due to incomplete Sentinel-1A
data in the study area, we are only using Sentinel-1B images with a temporal resolution
of 12 days covering the study area. In addition, other SAR sensor data (such as GF-3 and
RADARSAT, etc.) can be supplemented to enhance the density of time series datasets [69].
The Harmonized Landsat Sentinel-2 (HLS) project provides consistent surface reflectance
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data from the Operational Land Image aboard the joint NASA/USGS Landsat 8 satellite
and the Multi-Spectral Instrument aboard Europe’s Copernicus Sentinel-2A and Sentinel-2B
satellites. The combined measurement enables global land observations every 2–3 days at a
spatial resolution of 30 m [70]. However, when we submitted the article in November 2023,
although the GEE platform provided the HLS datasets, they were incomplete. The GEE
platform is currently improving the HLS datasets.

6. Conclusions

Combining SAR and optical data, this study proposed a hierarchical K-Means binary
automatic rice classification method based on phenological information feature optimiza-
tion (PFO-HKMAR). This method considered characteristics of Sentinel-1B VH backscatter
intensity time series for different land cover types and different rice planting patterns. We
tested the performance of this method in Tongjiang City, Heilongjiang Province, which
has strong spatial heterogeneity, and compared it with two published datasets and ARM-
SARFS. The results showed that PFO-HKMAR can realize early-season rice mapping one
month in advance. The spatial distribution of rice was consistent with existing data prod-
ucts. OA, KC, and F1 reach 0.9114, 0.8240, and 0.9120, respectively, which are better scores
than those of the other three methods. Early-season rice mapping enables governments
to make effective decisions on food security issues. In addition, the SAR time series data
filtering method that combines average value and SG can achieve near real-time SAR time
series filtering in the early or middle stages of rice. The constructed VH-sum characteristics
can reflect the dynamic characteristics of rice growth. SNIC segmentation for SI-W based
on multiple synthesis methods, multiple spectral indices, and multi-source optical data,
solved the problem of image missing and cloud pollution during the rice transplanting
period. At the same time, the integrity and homogeneity of rice fields are also improved.
It was proved that multiple heterogeneous data sources can complement each other’s
advantages. The object-oriented classification method can effectively improve the accuracy
and time of early-season rice mapping. More detailed spatial information can be provided
than the XCP rice spatial distribution map using Landsat data. In summary, PFO-HKMAR
can realize early automatic mapping of rice and can be promoted in Northeast China.
Future improvements to PFO-HKMAR should focus on the automatic identification of rice
phenological stages and its application in multi-season rice areas.
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the SART3 time stage; Table S2: OA, UA, PA, Kappa, and F1 scores of rice classification based on
SNIC and pixel under SAR data source at different time intervals in the SART3 time stage; Table
S3: Glossary of full-text abbreviations; Table S4: Detailed steps of hierarchical K-Means binary
classification method.
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