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Abstract: The simulation of seismic wavefields holds paramount significance in understanding sub-
surface structures and seismic events. The lattice Boltzmann method (LBM) provides a computational
framework adept at capturing detailed wave interactions, offering a new approach to improve seismic
wavefield simulations. Our study involves a novel comparative analysis of wavefields using different
lattice Boltzmann models, focusing on how relaxation times, discrete velocity models, and collision
operators affect simulation accuracy and efficiency. We explore the impacts of distinct relaxation times
and evaluate their effects on wave propagation speed and fidelity. By incorporating four discrete
velocity models of LBM, we innovatively investigate the trade-off between spatial resolution and
computational complexity. Additionally, we delve into the implications of employing three collision
operators—single relaxation time (SRT), two relaxation times (TRT), and multiple relaxation times
(MRT). By comparing their accuracy and stability, we provide insights into selecting the most suitable
collision operator for capturing complex wave interactions. Our research provides a comprehensive
framework to optimize the LBM parameters, enhancing both accuracy and efficiency in seismic wave
simulations, and offers valuable insights to benefit wave simulation across diverse disciplines.

Keywords: lattice Boltzmann method; relaxation time; discrete velocity set; collision operator; seismic
wave modeling

1. Introduction

Seismic numerical simulation is a crucial research method in seismology, providing
valuable insights into the mechanism of earthquakes, seismic event prediction, risk assess-
ment, exploration of the Earth’s internal structure, oil and gas exploration, and resource
development. Additionally, seismic modeling forms the foundation for full-waveform
inversion [1-7] and reverse-time migration [8-14], and aids seismic interpretation.

The lattice Boltzmann method (LBM) is a powerful numerical approach for simulating
macroscopic fluid dynamics based on mesoscopic kinetic equations. Its applicability also
extends to wavefield simulation. In the past 30 years, researchers have proposed various
collision models to broaden the application scope of the LBM. These models comprise the
lattice Bhatnagar-Gross—Krook (BGK) model, also known as the single-relaxation-time
(SRT) model, as well as the two-relaxation-times (TRT) and multiple-relaxation-times (MRT)
collision models. The LBM has seen significant developments in various research areas, as
evidenced by multiple studies in the literature.

The LBM with single relaxation time (LBM-SRT), introduced by different groups
simultaneously [15-17], is widely used and versatile. Xiao (2007) proposed an innovative
LBM with a flux-corrected transport algorithm for studying shock wave propagation in
elastic solids [18]. Additionally, Zhang et al. (2009) developed a two-dimensional (2D)
LBM model using higher-order moment methods and multiscale techniques, along with
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the Chapman-Enskog expansion, to recover the wave equations [19]. Frantziskonis (2011)
expanded the LBM to model wave propagation in elastic solids, encompassing volumetric
and shear viscoelasticity [20]. Viggen (2009, 2014) demonstrated the LBM’s applicability
for acoustic wave simulations and its role as a compressible Navier-Stokes solver in cases
where the flow field interacts with the acoustic field [21,22]. Salomons et al. (2016) employed
LBM to simulate sound propagation in various scenarios, achieving good agreement with
acoustic equation solutions [23]. Jiang et al. (2020) improved boundary reflections by
introducing a viscous absorbing boundary in LBM wavefield simulations [24]. Xia et al.
(2017, 2022) established a mapping model between the relaxation time of LBM-SRT and
the quality factor based on the Kelvin—Voigt model, validating it by comparing wavefields
with the finite difference method (FDM) [25,26].

The LBM with two relaxation times (LBM-TRT), initially introduced by Ginzburg in
2005, finds applications in various flow simulations [27]. Servan-Camas and Tsai (2008)
investigated the third-order accuracy and linear stability of LBM-TRT for the advection—
diffusion equation, reporting enhanced solution accuracy and stability through the intro-
duction of an additional relaxation time [28]. Talon et al. (2012) evaluated LBM-TRT for
simulating Stokes flow in porous media [29]. Vikhansky and Vikhansky (2014) devised a
TRT scheme to simulate passive scalar transport in heterogeneous media [30]. Peng et al.
(2016) proposed LBM-TRT for shallow-water equations without turbulence [31]. Zhao et al.
(2018) introduced a novel lattice kinetic scheme and validated its stability through numeri-
cal experiments [32]. Bhopalam et al. (2018) employed the LBM-TRT model to compute
flow in double-sided cross-shaped lid-driven cavities [33]. Postma and Silva (2020) demon-
strated the integration of force methods into the two-relaxation-times collision process,
revealing the impact on viscosity independence with a second-order velocity moment [34].

The LBM with multiple relaxation times (LBM-MRT) has made significant strides in
various research areas, and was first proposed by d’"Humieres in 1992 [35]. d’"Humieres
(2002) demonstrated superior numerical stability of the LBM-MRT equation compared
with the classical BGK equation by simulating three-dimensional (3D) diagonally lid-
driven cavity flow [36]. Fakhari and Rahimian (2010) developed a scheme for multiphase
flows with varying densities using LBM-MRT [37]. Zhao et al. (2012) proposed a novel
method based on the LBM-MRT equation and kinematic boundary condition for simulating
2D viscous free surface waves [38]. Wang et al. (2013) applied LBM-MRT to simulate
2D incompressible thermo-hydrodynamic flows [39]. Viggen (2014) found LBM-MRT
more stable and accurate than LBM-SRT in studying acoustic wave propagation [22].
Dhuri et al. (2017) analyzed a linear lattice Boltzmann formulation for simulating linear
acoustic wave propagation in heterogeneous media, incorporating grid refinement for
simulating waves in media with varying velocities [40]. Chai and Shi (2020) developed a
unified framework of the MRT model to solve the Navier-Stokes and nonlinear convection—
diffusion equations [41]. Benhamou et al. (2023) conducted numerical investigations of
acoustic wave propagation using LBM-MRT in differentially heated square enclosures filled
with air and water [42]. Jiang et al. (2023) extended the concepts of viscous absorbing
boundaries and perfectly matched layer (PML) absorbing boundaries from LBM-SRT to
LBM-MRT, proposing a unified absorbing boundary to reduce reflections at truncated
boundaries. The advancements in LBM-MRT highlight its potential across a wide range of
applications and its significant role in complex media wavefield simulations [43].

These studies highlight the versatility and wide-ranging applications of the LBM in
simulating fluid dynamics and wavefield propagation across various fields. Indeed, the
LBM has seen significant development in various discrete models, catering to different
numerical scenarios such as flow field simulation, wavefield calculation, and thermody-
namic research. However, there is currently a deficiency in thorough comparative analysis
and research regarding the wavefields calculated by these various LBM models. Therefore,
we conducted an innovative comparison and analysis of the performance and accuracy of
various LBM models in simulating wavefields. Such a novel study could help identify the
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strengths and limitations of each model, provide insights into their respective applicability,
and guide the selection of the most suitable LBM model for specific simulation scenarios.

In this paper, we focus on the application of the LBM in the field of seismic wave
numerical simulation. The main goal is to extensively explore the influences of the relax-
ation time, discrete velocity models, and collision operator on the simulation results of
the wavefield. By studying these factors, we aim to provide valuable reference examples
that can help researchers to select the most appropriate LBM approach for their seismic
wave forward modeling tasks. The objective is to gain insights into the performance and
capabilities of LBM in simulating seismic wave propagation and to guide researchers in
making informed choices for their specific seismic wavefield simulations.

This paper starts with an introduction to the methods and principles of LBM. Next, it
analyzes the numerical dispersion and stability of LBM in wavefield simulations. Then,
various numerical simulation examples are presented to compare and analyze the com-
putation results obtained with different LBM models. Finally, the simulation results are
thoroughly discussed and analyzed, and some comprehensive conclusions are drawn based
on the findings.

2. Lattice Boltzmann Models
2.1. Basis Theory

LBM is a versatile computational technique that has gained prominence in simulating
fluid dynamics and various complex physical phenomena. It operates by simulating the
behavior of fictitious particles within a discrete lattice, yielding macroscopic fluid behaviors.
The LBM'’s foundation lies in the lattice Boltzmann equation (LBE), which describes the
evolution of particle distribution functions shown as following equation [17]:

ﬁ(x+ci/t+1):fi(xrt)‘l'ni(x/t)/ 1)

where f;(x, t) is the particle distribution function in the i direction, c; is the corresponding
discrete velocity vector, and Q);(x, t) is the collision term which represents the increment of
the particle distribution function along the i direction due to collisions between particles.
In the LBM system, the fluid density p and fluid velocity v(x, t) in the macroscopic sense
can be easily obtained by a simple weighted summation using the particle distribution
function f;(x, t) and the discrete velocity c¢;, as follows [26]:

P t) = Lfilx 1),

(2)
U(x, t) = W;fl (xr t)ci (x/ t)/
where 7 is the number of grids the particles jumping per time step (streaming speed).
In Equation (1), the most commonly used collision operator is the simple linearized
Bhatnagar-Gross—Krook (BGK) collision operator with only one relaxation time (LBM-BGK
or LBM-SRT) [17]:

0i(x,1) = ~LLfi(x 1) ~ £ (x,1)], ®)

where the collision operator represents a relaxation process in which the particle distri-
bution function approaches its equilibrium state, T is the relaxation time, and ffq (x,t) is
the equilibrium distribution function. The Maxwell-Boltzmann equilibrium distribution
function in the second-order truncated form is expressed as [44]:

0-C + (v'ci)z _Lz]
c? 2t 2¢27

£ = pwill + @

where w; is a weight factor, c; is the lattice speed of sound.
The choice of discrete velocity model is of vital importance when using LBM for
numerical simulations of fluid flow or wave propagation. An LBM model with too few
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discrete velocities may result in some physical quantities that should be conserved not
satisfying the conservation law, while a model with too many discrete velocities may result
in computational waste. The term “DdQq” is commonly used in LBM to label different
discrete velocity models, where d represents the number of spatial dimensions and q
represents the number of discrete velocities. The discrete velocity models in 2D space
are shown in Figure 1. In this context, the classical D2Q9 model is utilized to elucidate
the fundamental framework of the model. The discrete velocity sets {c;} for the D2Q9
model along with their corresponding weighting factors {w;} are presented in Table 1.
Additionally, the lattice speed of sound (cs) for the D2Q9 model is 1/+/3.
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Figure 1. Sketch maps of the discrete velocity sets for the 2D LBM models. (a) D2Q4, (b) D2Q5,
(c) D2QQ9, and (d) D2Q13.

Table 1. Comparison of the discrete velocity sets, weights, and lattice sound speeds for the 2D LBM
discrete models.

Discrete

Models Ci Wi CE
(i-m (i-1)m 15
D204 (cos' 7, sin " )n, i = 1,2,3,4 1 i=1234 1/2
5205 (00)1'—0 { 1i=0 3
Q (cos[(l 71, sin[ (=07 ) "n,i=1,2,3,4 t,i=1,234
(0,0), i =0 4=
D2Q9 (cos DT gin =Dy, —1,2,3,4 { 1,i=1,234 1/3
V/2(cos (21_4” ,sini % 41) )n, i=>5,6,7,8 %, 1=5,6,7,8
( 0) =0 2,i=0
- . '
2013 (cos U0 gin =Dy, —1,2,3,4 % i=1,234 25
v/2(cos (2 41) ,sin ( )ﬂ)n, i=5,6,7,8 g, i=5,6,7,8

2(cos )7 sin@)n, i=9,10,11,12 0. 1= 9,10,11,12
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To provide a more accurate depiction of wave propagation motion at an interface
within the inner region of the computational domain, the reflection and transmission
coefficients are defined as stated by [26]:

R = f22—o1m
p1m1+pana’ (5)
T — _2mm
p11y+pona”
where p1,p2 and 1y, 1, are the densities and streaming velocities on both sides of the
interface. The classical LBM evolution process consists of a collision step and a streaming
step [45]. After accounting for the reflection and transmission effects, the streaming step is
modified as follows:

fix e, t+1) = Tf (x,8) + RfZ(x + ¢ t), ©6)
where —i is the opposite lattice direction of i and the superscript “*” represents the particle
distribution function after collisions. In the wave simulation of a viscous absorbing medium,
it is especially crucial to align the relaxation time 7 of the LBM with the media’s quality
factor Q [26]. Via rigorous mathematical calculations, Xia et al. (2022) derived the following
mapping model for the LBM-SRT with the D2Q9 model [26]:

1

Q= 47 fnCi(T — 05)

@)

where C; is the time conversion factor and f;; is the dominant frequency. Utilizing this
quantitative relationship, one can adjust various relaxation times to cater to attenuation
media with diverse quality factors in seismic wave modeling, as per specific requirements.

According to the theory discussed earlier, we can proceed with the numerical simula-
tion of LBM. However, as previously indicated, the discrete velocity models and collision
operators are fundamental elements of LBM theory. Therefore, the upcoming subsections
will be dedicated to introducing these components and examining their influence on the
results of wave simulations.

2.2. 2D Discrete Velocity Models

LBM has garnered substantial attention as a computational fluid dynamics technique
for modeling intricate fluid flows or wave propagations. A pivotal consideration in LBM
involves selecting the discrete velocity model, which establishes the discrete velocities
set {¢;} and the corresponding weighting coefficients {w; }. This subsection conducts an
exhaustive investigation into diverse discrete velocity models designated as DdQq in the
2D case, e.g., D20Q4, D2Q5, D2Q9, and D2Q13 (as shown in Figure 1) [17,46,47] are the four
most representative LBM discrete velocity models.

The selection of the DAQq model profoundly affects the model’s accuracy;, stability,
and computational efficiency. A pivotal aspect involves finding the equilibrium between
discrete velocities count and the model’s adherence to physical conservation laws. While
fewer velocities conserve memory and lower computational demands, an inadequate count
might breach fundamental conservation principles. Additionally, even when adhering
to conservation, limited velocities can curtail the model’s potential for attaining high
numerical precision. Achieving the optimal equilibrium entails a systematic method of
constructing DdQq models that fulfill both memory and accuracy prerequisites.

The discrete velocity sets {¢;; w; } within the LBM are characterized by the two distinct
components: the discrete velocity ¢; and its corresponding weight factor w;. Another crucial
parameter that can be derived from these discrete velocity sets is the lattice sound speed
cs. The values of the weight coefficients and lattice sound speed directly influence the
stability of simulations. For the discrete vectors of the LBM model, certain assumptions
must be satisfied to ensure the isotropic nature of the discrete lattice, which is essential for
the accurate derivation of the macroscopic Navier—Stokes equations [22].
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This subsection will address four commonly used 2D velocity models employed in
the square lattices, i.e., D20Q4, D2Q5, D2Q9, and D2Q13. Their lattice configurations are
illustrated in Figure 1. The D2Q5 model is composed of four discrete velocity vectors
emitted from the central node in the upward, downward, leftward, and rightward di-
rections ¢(1,0),¢(0,1),¢(—1,0),c(0, —1), along with one discrete velocity located c(0,0)
at the central node itself. D2Q4 and D2Q5 share similarities, with the distinction that
D2Q4 lacks a particle at the central node, featuring only four discrete velocity vectors [47].
Both the D2Q4 and D2Q5 models can be viewed as straightforward extensions of one-
dimensional problems. In contrast, the D2Q9 model is more intricate, augmenting the
D2Q5 model with an additional four discrete velocity vectors in diagonal directions
c(1,1),¢(=1,1),¢(—=1,-1),¢(1,—1). The D2Q9 model, having a stricter stability condi-
tion than the D2Q5 due to additional diagonal speeds, is preferred for its high accuracy
and efficient processing time, making it the most popular and versatile 2D discrete model.
For further refinement in simulation precision, the D2Q13 model is obtained by incorpo-
rating four more discrete velocity vectors along the axes ¢(2,0),¢(0,2),c(—2,0),¢(0, —2).
Compared with the D2Q9 model, D2Q13 attains heightened accuracy at the cost of com-
putational efficiency. An overview of the discrete velocity sets, weights, and lattice sound
speeds for these LBM models is summarized in Table 1.

2.3. TRT and MRT Collision Operators

The SRT model simplifies the collision operator in the LBE, as depicted in Equation (1).
While the SRT collision operator is straightforward and efficient, it comes at the cost of
computational accuracy, especially when dealing with higher fluid viscosities. Additionally,
it may compromise stability when applied to media with lower viscosities. As a solution, the
MRT collision operator has emerged, incorporating adjustable free parameters to address
these concerns. These models are referred to as LBM-MRT models.

The LBE of the MRT model adheres to the general form shown in Equation (1), and
the collision function );(x, t) is replaced with a collision vector constructed in moment
space. Diverging from the LBM-SRT model, the collision process in the LBM-MRT model
necessitates operation within moment space, wherein the particle distribution function
vector fis mapped into the moment space vector m. Equation (1) can be transformed into
the following form [22,48]:

flx+ci,t+1) — flx,t) = —M 1S[m(x,t) — m®(x,t)]. (8)

Upon subjecting the system to collision (or relaxation) processes that drive it to equi-
librium, the moment space vector m can be transformed back into the population space
vector f. This process can be mathematically expressed as follows:

m=Mf and f=M 'm, )
where:
o Moo -+ Mog—1 fo
m = ( : ) M=| .t L=
' Mg-10 -+ Mg-1,4-1 fq-1

Tl’lq_l

In the following text, we take the D2Q9 discrete velocity model as an example to
present the relaxation matrix S, the transformation matrix M, and the inverse transformation
matrix M~ within the LBM-MRT framework [48-50]. The transformation matrix M reads:
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1 1 1 1 1 1 1 1 1
-4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 -2 -2 1 1 1 1
0 1 o -1 0 1 -1 -1 1
M=|0 -2 0 2 0o 1 -1 -1 1 |, (10)
0 0 1 o -1 1 1 -1 -1
0 0 -2 0 2 1 1 -1 -1
0 1 -1 1 -1 0 0 0 0
0 0 0 0 o 1 -1 1 -1
and its inverse matrix M~ ! is:
4 4 4 0 0 0 0 0 0
4 -1 -2 6 -6 0 0 9 0
4 -1 -2 0 0 6 —6 -9 0
1 4 -1 -2 -6 6 0 0 9 0
M'=_—|4 -1 -2 0 0 -6 6 -9 0 (11)
%14 2 1 6 3 6 3 0 9
4 2 1 -6 -3 6 3 0 -9
4 2 1 -6 -3 -6 -3 0 9
4 2 1 6 3 -6 -3 0 -9

The relaxation matrix S of the D2Q9 model takes the following diagonal matrix
form [48]:
S = diag{0, w,, we,0,wg, 0, wy, wy, wy }, (12)

where the zero relaxation factor corresponds to the conservation matrices for density and
momentum, w, and wy are associated with volume and shear viscosities, w, and w; are
adjustable free parameters. Through the Chapman-Enskog multi-scale expansion method
and by comparing the coefficients with those of the Navier-Stokes equations, one can
obtain the expressions for calculating the macroscopic fluid pressure p, shear viscosity 7,
and bulk viscosity #p, as follows [48,50]:

il
n=pcs(y —3) (13)
B = pc (o — %)-

Based on Equation (13), it is evident that, unlike the SRT model, the shear viscosity
and bulk viscosity in the MRT model can be independently selected. This is a notable
advantage of the LBM-MRT model over the LBM-SRT model.

MRT, serving as the most comprehensive relaxation model, simplifies to the TRT model
by assigning one relaxation factor (i.e., inverse of the relaxation time) w™ to all even-order
non-conserved moments and another relaxation factor w™ to odd-order moments [27,48].
The relaxation matrix for the TRT model can still be represented as in Equation (12), but the
relaxation factors need to satisfy the following relationships:

W = === 1)
w = wq,

indicating the utilization of only two relaxation factors in the TRT model (i.e., w™ and w™).
In the TRT model, the kinematic viscosity v of the media can be tuned with the relaxation

factor w™: . )
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The additional relaxation factor w™ is freely selected, and a good choice can improve
the numerical stability. One can obtain optimal stability for any viscosity by adopting
the TRT model, and this is clearly not possible with the SRT model. To minimize the
viscosity’s dependence on the slip velocity, the relaxation factor w™ is suggested with the
value 8(2 — wy)/(8 — wy). However, the TRT scheme is not as popular as SRT or MRT.
Furthermore, if only a single relaxation factor is used in the MRT model, the MRT model
can be further simplified to the SRT model, as shown in Section 2.1. The relaxation time in
the LBM-SRT model is tied to the kinematic viscosity as v = (7 — 0.5)c? [51]. Note that,
unlike the MRT model, neither the TRT nor SRT models permit the independent adjustment
of bulk viscosity from shear viscosity.

3. Numerical Dispersion and Stability Analysis

Before conducting numerical simulations of the seismic wavefields using the LBM
schemes, it is crucial to perform numerical dispersion and computational stability analy-
sis [22,48]. This analysis serves a fundamental purpose and holds significance for ensuring
the accuracy, reliability, and credibility of the subsequent simulations.

3.1. Numerical Dispersion Analysis

Numerical dispersion analysis is a fundamental aspect in assessing the accuracy and
fidelity of simulations conducted using LBM [22,40,48]. It involves the investigation of how
LBM captures wave propagation characteristics and ensures that the numerical solutions
accurately reflect the underlying physical behavior. In this subsection, we delve into
the process of numerical dispersion analysis within the framework of LBM. Numerical
dispersion occurs when the simulated wave propagation behavior deviates from the actual
physical behavior due to the discretization and computational aspects of the simulation.
By conducting numerical dispersion analysis, we aim to quantify and understand these
discrepancies, ensuring that the wavefields produced by LBM schemes exhibit minimal
distortion compared to the actual results.

Numerical dispersion analysis of the LBM-SRT scheme involved the following steps:

Step 1: Combining Equations (2) and (4), and rewriting the expression for the equilib-
rium distribution function in the linearized form:

>:wi<zﬁ+;q.zm>. (16)
j s J

V-C
c

fieq = pw; (1 +

In this way, fl.eq morphs into a function only with respect to f;.
Step 2: Bringing the modified equilibrium distribution function into Equations (1) and (3),
and after some calculations, obtaining the following equation:

flx+c;,t+1) = Af. (17)

For the four discrete velocity models of D2Q4, D2Q5, D2Q9, and D2Q13, with the
relaxation time in the LBE set as 0.50, the numerical matrices A are shown as follows:

1 1 —1 1
1] 1 1 1 -1
Aprs = sl 1 1 1 | (18)
1 -1 1 1
-1 2 2 2 2
1 1 1 1 -2 1
Amgs=z[ 1 1 1 1 -2, (19)
1 -2 1 1 1
1 1 -2 1 1
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-2 16 16 16 16 16 16 16 16
4 -2 4 -8 4 16 -8 -8 16
4 4 -2 4 -8 16 l6 -8 -8
1 4 -8 4 -2 4 -8 16 16 -8
Amg=1g[ 4 4 -8 4 2 -8 -8 16 16 |, (20)
1 4 4 -2 -2 11 1 -5 1
1 -2 4 4 -2 1 -11 1 -5
1 -2 -2 4 4 =5 1 -11 1
1 4 -2 -2 4 1 -5 1 —11
and
Apqiz = 1i5 X
-30 120 120 120 120 120 120 120 120 120 120 120 120
32 38 32 —48 32 112 —48 —48 112 192 32 —128 32
32 32 -38 32 —48 112 112 —48 —48 32 192 32 —128
32 —-48 32 38 32 —48 112 112 —48 128 32 192 32
32 32 —48 32 38 —48 —48 112 112 32 —128 32 192
12 42 42 -18 -18 -78 12 —48 12 72 72 —48 —48 (21)
12 -18 42 42 -18 12 -78 12 —48 48 72 72 —48 |.
12 -18 18 42 42 —-48 12 =78 12 —48 —48 72 72
12 42 -18 -—-18 42 12 —48 12 78 72 —48 —48 72
1 6 1 —4 1 6 —4 —4 6 —-139 1 -9 1
1 1 6 1 —4 6 6 —4 —4 1 —139 1 -9
1 —4 1 6 1 —4 6 6 —4 -9 1 —139 1
1 1 —4 1 6 —4 —4 6 6 1 -9 1 —139

Step 3: A 2D Fourier transform of Equation (17) in the time- and space-domain yields
e'“F = diag[e’* ] AF, (22)

where w is the angular frequency, F is the Fourier transform of f in the frequency domain, k
is the wavenumber vector. This is an eigenvalue problem, and in order to ensure that the
above equation has a nonzero solution, it needs to satisfy:

|e'“E — diag[e’*]A| = 0. (23)

Step 4: For a certain discrete velocity model DdQq, given the number of sampling
points in a unit wavelength N, and the wave propagation angle 6, one can solve the
nonlinear equation shown in Equation (23) to obtain the numerical wave number modulus
k;,. Therefore, the normalized phase velocity x can be written as:

_Cspp W
Cs kncs’

(24)

where cg;, is the phase velocity of the LBM scheme.

Figure 2 illustrates the dispersion curves of the four discrete velocity models for D2Q4,
D2Q)5, D2QQ9, and D2Q13, for different sampling points N, and different wave propagation
angles 6; the four subfigures are the results for 8 = 0°, 15°, 30°, 45°, respectively. Two
conclusions can be drawn from Figure 2. Firstly, in general, the dispersion of D2Q4, D2Q)5,
D2Q)9, and D2Q13 gets worse under the same conditions with the increasing number of
discrete velocities. Secondly, D204, D2Q5, and D2Q13 have the most severe dispersion in
the coordinate-axis direction and the weakest dispersion in the diagonal direction, while
D2Q9 shows the opposite behavior.

To further investigate the azimuth characteristics of the numerical dispersion char-
acteristics of the wavefield calculated by LBM, Figure 3 shows the spatial variation of
the relative errors of the normalized phase velocities of the four LBM discrete models
using five different relaxation times (i.e., 0.50, 0.51, 0.65, 0.80, and 1.00). By comparing
the calculation results of the four LBM models, it is not difficult to see that the numerical
dispersion error increases with the increase in the number of discrete velocities. However,
the azimuth difference of the numerical dispersion also decreases, and the error curves are
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gradually approaching a circle. Moreover, for any LBM model, the numerical dispersion
error generally increases with the increase of relaxation time. One can also notice that for
both D2QQ9 and D2Q13, the numerical dispersion errors at a relaxation time of 1.00 are less
than those for a relaxation time of 0.80. We think the abnormal phenomena may be due to
the existence of extra stationary particles and additional dispersion velocities in D2Q9 and
D2Q13 compared with the D2Q4 model. In practical application, it is necessary to select an
appropriate discrete velocity model and relaxation time according to the research needs to
obtain the best numerical simulation results.
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Figure 2. Comparison of the normalized phase velocity curves of the four LBM models for different
angles of (a) 0°, (b) 15°, (c) 30°, and (d) 45°. N, represents the number of discrete points per wavelength.
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3.2. Stability Analysis

The stability analysis of LBM in the context of seismic wavefield simulation is a pivotal
step to ensure the robustness and accuracy of numerical results [22,48]. To examine the
behavior of LBM under various parameter configurations, it is necessary to determine the
parameter ranges that guarantee stable and reliable simulations. Stability analysis for LBM
is complex because the Courant number is not the sole determining factor. Beyond the
parameters Ax, At, and v, LBM introduces additional variables, including one or more
relaxation times. Furthermore, it encompasses multiple equations, each corresponding
to a specific direction of the q directions in a DdQq model. As a result, determining the
dispersion relation of the LBM discrete equations necessitates the inversion of a q x q
matrix, where q represents the number of populations in a DdQq model. Therefore, we
only offer qualitative stability analysis for seismic wavefield simulation via LBM, and our
focus is on the key issues, including the selection of the relaxation time, discrete velocity
set, and collision operator.

(1) Influence of the relaxation time. Relaxation times are pivotal in determining LBM
stability, particularly within the collision step of the LBM algorithm, where they
dictate the system’s approach to equilibrium. Understanding their impact on LBM
stability is vital for precise and efficient simulations. In LBM, each lattice node holds
distribution functions representing particle populations moving in discrete directions.
During collision, these functions adjust according to the relaxation times, influencing
the system’s relaxation factor toward equilibrium. Choosing inappropriate relaxation
times can result in numerical instability, yielding inaccurate or unrealistic simulation
outcomes. This selection significantly influences the stability of seismic simulation,
with shorter relaxation times necessitating smaller time steps due to higher associated
wave speeds. Conversely, longer relaxation times permit larger time steps but may
introduce artificial damping of seismic waves. Usually, the relaxation time is located
in the range of (0.50, 2.00).

(2) Influence of discrete velocity models. The discrete velocity set is a fundamental com-
ponent of LBM and profoundly impacts both the stability and accuracy of simulations.
It signifies the directions the particles move along the lattice grid during each time
step and makes it pivotal for tailoring LBM to specific fluid flow scenarios. Selecting
an appropriate set is critical for numerical stability, ensuring simulations generate
physically meaningful results devoid of uncontrolled growth or oscillations in the flow
field. The velocity set choice influences isotropy, ensuring accurate representation of
wave behavior in all spatial directions. A well-balanced discrete velocity set preserves
isotropy, minimizing numerical artifacts and maintaining stability. The discrete veloc-
ity model also affects stability, with models featuring more discrete velocities (e.g.,
D2Q13 model) demanding smaller time steps for stability and precise wave propaga-
tion representation, albeit at the potential cost of increased computational resources.

(3) Influence of the collision operators. The collision operator, a critical element of LBM,
significantly impacts the simulation’s stability by modeling particle interactions at
lattice nodes. Its choice, particularly in terms of the relaxation time (1) within the
SRT model, a common LBM collision operator, plays a pivotal role. T dictates the
rate of distribution function convergence towards equilibrium, influencing numerical
dissipation. Optimal T selection is essential, as too small values may result in excessive
dissipation and loss of fine-scale details, while overly large values can lead to insta-
bility with unphysical oscillations or divergence. Beyond the SRT model, advanced
options like the TRT and MRT collision models provide flexibility by allowing distinct
relaxation factors for various moments of distribution functions, potentially enhanc-
ing stability. Collision model selection depends on specific simulation needs and
complexity. Careful consideration of these factors is necessary to design successful
LBM simulations yielding reliable, physically meaningful results across diverse fluid
flow and wave propagation scenarios.
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In summary, computational stability in LBM-based seismic wavefield simulations is
influenced by multiple factors, such as the CFL condition, relaxation time, grid spacing,
discrete velocity model, collision operator, physical parameters, and numerical schemes.
Adhering to stability criteria and striking the right balance among these factors is essential
for conducting accurate and dependable seismic simulations using LBM.

4. Numerical Examples

This section sequentially examines the effects of key factors closely associated with
the LBM model, such as relaxation time, discrete model architecture, and collision operator,
on the solved seismic wavefields.

4.1. Comparative Tests of Different Relaxation Times and Discrete Velocity Models

The relaxation time 7 in the LBE is linked to media viscosity, indicating that LBM-
calculated seismic wavefields encompass certain viscous effects. In efforts to unravel the
viscoacoustic mechanism of waves generated by the LBM model with the D2Q9 lattice
structure, extensive simulations have been conducted. Xia et al. (2017, 2022) established
a mapping model between the relaxation time of LBM and the quality factor (Q) of the
Kelvin-Voigt model, known as the 7-Q model [25,26]. In this context, we investigated the
impact of relaxation time on simulated seismic waves and compared it with four different
LBM discrete structures of D2Q4, D2Q5, D2Q9, and D2Q13.

In our simulations, we utilized a 2D homogeneous model with discrete grids measur-
ing 801 x 801. The spatial intervals in the x and z directions, along with the time interval,
were uniformly set to 1 unit. For the conversion between lattice variables and physical
variables, please refer to Table 1in [26]. A Ricker wavelet source with a dominant frequency
of 25 Hz was initiated at the center of the homogeneous model and integrated into the nine
particle distribution functions. The receiver point was located at coordinates (300 m, 300 m).
We conducted numerical simulations employing four LBM discrete velocity models and
five different relaxation times to evaluate the LBM schemes.

Figure 4 compares normalized seismic snapshots of the LBM at the same time, utilizing
four discrete velocity models of D204, D2Q5, D2Q)9, and D2Q13 with four distinct relax-
ation times of 0.51, 0.65, 0.80, and 1.00 in a homogeneous medium. As depicted in Figure 4,
an increase in relaxation time led to heightened medium viscosity, resulting in a consistent
decrease in the amplitude of the calculated direct wave. Notably, for the D2Q9 and D2Q13
models, the amplitude of the calculated direct wave remained largely unchanged in all
directions. Conversely, with the D2Q4 and D2Q5 models, particularly when the relaxation
time was relatively large (e.g., 0.80 and 1.00), the calculated amplitude of the direct wave
varied across directions. It exhibited a pattern of lower amplitude along the coordinate
axes and higher diagonal amplitude. This phenomenon is believed to be connected to the
azimuthal characteristics of numerical dispersion in LBM simulations. Additionally, with
equal lattice spatial and time intervals, varying lattice sound speeds in discrete models led
to distinct wavefront propagation distances.

Seismic traces, computed using the FDM solution of the acoustic wave equation
(referred to as FDM-Acoustic), are presented alongside those generated by four discrete
velocity models and five distinct relaxation times (i.e., 0.50, 0.51, 0.65, 0.80, and 1.00) in a
homogeneous medium, as depicted in Figure 5. From Figure 5, it is clear that the seismic
records computed using the four LBM models with T = 0.51 are very close to that of the
FDM solution of acoustic wave equation. Moreover, it can be observed that as the value of
T increases, the amplitude of the signal gradually decreases, with the peaks and central
frequencies of the corresponding amplitude spectra decreasing sequentially, aligning with
real-world observations. Furthermore, it is evident that the arrival time of the direct wave
in the seismic record computed with D204 is the earliest, followed by D2Q13. Conversely,
the arrival times of the direct wave in the D2Q5 and D2Q9 calculations are the same but
occur later. This observation aligns with the theoretical wave propagation velocities, or
lattice sound speeds, of the four discrete velocity models. In addition, one can also find
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that when the relaxation time is set to 0.50, the seismic traces for D2Q9 and D2Q13 are
anomalous, and we attribute this phenomenon to numerical dispersion.
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Figure 4. Comparison of the seismic snapshots of LBM with four discrete velocity models of (a) D20Q4,
(b) D2Q5, (¢) D2Q9, and (d) D2Q13, and four different relaxation times of 0.51, 0.65, 0.80, and 1.00 in
homogeneous medium.
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Figure 5. Comparison of the seismic traces computed using LBM with four discrete velocity models
of (a) D2Q4, (b) D2Q5, (c) D2Q9, and (d) D2Q13, and five different relaxation times of 0.50, 0.51, 0.65,
0.80, and 1.00 in the homogeneous medium.

To assess the impact of various discrete velocity models and relaxation times on the
frequency characteristics of the seismic records, spectrum analysis was conducted on the
seismic records presented in Figure 5. The resulting amplitude spectra are compared in
Figure 6. It is evident from Figure 6 that as the relaxation time increases, the peak amplitude
of the spectrum decreases, and the central frequency generally exhibits a downward
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trend. Notably, the shift in the central frequency of the seismic record computed by
D204 is scarcely discernible. In addition, as the relaxation time approaches 0.50, all
discrete velocity models, except for D2Q4, exhibit the presence of weak abnormal high-
frequency components in their amplitude spectra. This phenomenon may be attributed to
the numerical dispersion characteristics of LBM.
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Figure 6. Comparison of the spectra of seismic traces calculated using LBM with four discrete velocity
models of (a) D2Q4, (b) D2Q5, (c) D2Q)9, and (d) D2Q13, and five different relaxation times of 0.50,
0.51, 0.65, 0.80, and 1.00 in a homogeneous medium.

For a more in-depth analysis of the influence of different discretized LBM models
on wavefield computation results, we utilize the case with T = 0.51 as an example to
compare simulation outcomes across different LBM discrete velocity models. Also, we
compare the seismic records and amplitude spectra obtained with LBM with those from
FDM-Acoustic in Figure 7. The figure reveals that the wavefield shapes computed by the
different LBM models are strikingly similar. However, there are disparities in the wavefront
propagation speeds calculated by different discrete velocity models. The D2Q4 model
exhibits the fastest wavefront propagation, followed by the D2Q13 model, while the D2Q5
and D2Q9 models show slower wave propagation. This correlation corresponds with
the lattice sound velocities of these models as listed in Table 1. Additionally, as seen in
Figure 7c, the D2Q9 and D2Q13 models manifest unusual energy in the high-frequency
range within the simulated wavefield, contrasting with the other models. This anomaly is
likely to be attributable to numerical dispersion. Notably, the D2Q13 model exhibits a less
pronounced numerical dispersion in comparison with that of the D2QQ9 model, possibly
attributed to the four additional axial neighbors at the far end.

In the case of the selected relaxation time of 0.51, all four models performed well,
providing reasonable simulation results. However, when the relaxation time was set to
0.50 (i.e., representing zero viscosity in the fluid media), both the D2Q9 and D2Q13 models
encountered severe numerical dispersion problems, leading to abnormal calculation results.
In contrast, the D2Q4 and D2Q5 models still yielded accurate results. In essence, the
D2Q9 and D2Q13 models are suitable for simulating viscoacoustic waves, while the D2Q4
and D2Q5 models can simulate both viscoacoustic and purely acoustic waves without
viscosity effects. These findings underscore the importance of selecting the appropriate
LBM model for accurate wavefield computations. While the wavefield shapes remain
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similar, differences in wave propagation speeds and the presence of numerical dispersion
emphasize the nuanced distinctions between the tested models. This knowledge provides
valuable insights for practitioners seeking to choose LBM models that align with their
desired balance of accuracy and computational efficiency.

(=]

LBM-D2Q4 LBM-D2Q5
200 0.5
E
< 400 0
="
D
=
600 -05
800 LBM-D2Q13 LBM-D2Q9 e

0 200 400 600 800
Distance (m)

(a)

1 1
- ——FDM-Acoustic ——FDM-Acoustic
2 v LBM-D204 2 v LBM-D204
£ o5 LBM-D2Q5 208 LBM-D205
= s LBM-D2QO = e LBM-D2Q9
g - LBM-D2Q13 06 - LBM-D2Q13
< | i i Al g P <
s 0 =
@ @
N 0.4
£ £

—0.5 i

s 502
z i z

0.2 0.25 0.3 0.35 0.4 0 25 50 75 100

t(s) Frequency (Hz)
(b) (o)

Figure 7. (a) Snapshots, (b) seismic traces, and the corresponding (c) amplitude spectra obtained
with FDM-Acoustic and LBM with four different discrete velocity models of D2Q4, D2Q5, D2Q)9, and
D2Q13 with T = 0.51.

This investigation underscores the pivotal role of relaxation time in LBM-based seis-
mic wavefield simulations. By accurately accounting for media viscosity effects through
the parameter 7, these simulations produced wave behaviors that align with real-world
propagation characteristics. The establishment of a mapping model between relaxation
time T and the quality factor Q, as introduced by Xia et al. (2022), contributes to a deeper
theoretical understanding of the viscoacoustic mechanisms captured by LBM [26]. The
findings illuminate the intricate interplay between relaxation time, discrete velocity models,
viscoacoustic effects, and wave propagation characteristics. The comprehensive analysis
conducted in this study advances our comprehension of how 7 influences seismic wave-
fields, aiding in the optimization of LBM parameters for more accurate and physically
meaningful simulations. Furthermore, these insights have the potential to extend to broader
applications across fields such as seismology, geophysics, and beyond.

4.2. Comparative Tests of Different Collision Operators

When employing the LBM method to solve various problems, there are several col-
lision operators available, namely SRT, TRT, and MRT. In this subsection, we assess and
investigate the wavefield simulation outcomes using different collision operators within
the context of the D2Q9 model. This investigation encompasses both a two-layer model
and a modified Marmousi model.

4.2.1. Two-Layer Model

For a more comprehensive comparison of different collision operators, we examined
a heterogeneous medium comprising two layers of homogeneous media connected at a
horizontal interface with discrete grids of 801 x 801, as depicted in Figure 8. The lower
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layer exhibits a larger velocity in comparison to the upper layer. Both layers are assumed to
possess a constant density value of 1000 kg/m?, and uniform spatial and temporal intervals
are employed in the wave propagation simulations. The upper and lower layers’ velocities
are 1155 m/s and 2310 m/s, while the source and receiving points are located at coordinates
(401 m, 341 m) and (361 m, 361 m), respectively. The Ricker wavelet source has a dominant
frequency of 50 Hz, and the relaxation time of the LBM-SRT model is 0.54. The guideline for
choosing relaxation times in LBM-TRT and LBM-MRT is explained in Section 2.3. Notably,
a shared relaxation time of 0.54, associated with the media’s viscosity, was used for all
the models.
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Figure 8. Two-layer model.

To validate and compare the wave simulation results from different LBM models, we
have employed consistent parameters. The reference non-viscous wavefields were obtained
by solving the acoustic equation using the classical FDM scheme.

Figure 9 shows the snapshots of Vz calculated with FDM-Acoustic and three LBM
schemes by adopting the D2Q9 models. Due to the LBM’s relaxation time being close to
0.54, the viscosity effect on the simulated wavefield is minimal. As a result, the calculated
waveforms of the three LBM models closely resemble that of FDM reference solution. The
seismic records and corresponding amplitude spectra in Figure 10a,b demonstrate that
the direct waves closely align with that of FDM, with slight variations in the amplitude
values of the interface-reflected waves. This divergence is due to the computation of
weakly viscous sound waves by LBM. Moreover, Figure 10b shows that there is relatively
high consistency in the energy of the amplitude spectra of the wavefields, particularly in
the middle and low-frequency bands, when comparing the spectra from the three LBM
models with that of the FDM-calculated sound wave. However, in the high frequency
range, the LBM-calculated wavefield energy is slightly weaker, owing to some attenuation.
In order to further investigate the performance of different relaxation times under short
relaxation time, Figure 10c,d also compare the simulation results when the relaxation time
is 0.51. It is evident that when the relaxation time is closer to 0.50, the seismogram and its
amplitude spectra from the LBM simulations closely resemble the results obtained with
FDM, consistent with real-world observations. Simultaneously, we observe that when the
relaxation time is set to 0.51, seismic records simulated by LBM-SRT exhibit distortion,
resulting in a deviation from the FDM reference solution. In contrast, LBM-TRT and LBM-
MRT still produce reasonable wavefields, highlighting the advantages of LBM-TRT and
LBM-MRT over LBM-SRT.
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Figure 9. Snapshots of Vz calculated with (a) FDM-Acoustic, (b) LBM-SRT, (¢) LBM-TRT, and
(d) LBM-MRT in the two-layer model.
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Figure 10. (a) Seismic records and the corresponding (b) amplitude spectra of Vz calculated with
FDM-Acoustic and the three LBM models in the two-layer model with a relaxation time of 0.54;
(c) seismic records and the corresponding (d) amplitude spectra of Vz calculated with FDM-Acoustic
and the three LBM models in the two-layer model with a relaxation time of 0.51.

4.2.2. Modified Marmousi Model

To further assess discrepancies between various LBM models when simulating seismic
wave propagation within complex geological models, we devised the modified Marmousi
model, depicted in Figure 11. The grid utilized for calculations is 801 x 801, with source
point coordinates situated at (761 m, 601 m). The seismic source operates at a dominant fre-
quency of 40 Hz, the LBM-SRT model employs a relaxation time of 0.80, and the settings of
relaxation times for the LBM-TRT and LBM-MRT models are similar to that in Section 4.2.1.
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Similarly, FDM is employed to compute acoustic wavefields in the same model, serving as
a reference solution.
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Figure 11. Vp of the modified Marmousi model.

Figure 12 shows snapshots of Vz calculated using FDM and the three LBM models.
The figures highlight that the general shape of the wavefield snapshots across the four
methods is nearly identical, validating the coherence of wavefields calculated by the three
LBM models. Nevertheless, nuances between the three LBM-calculated wavefields and
the FDM reference solutions are observable in finer details, such as the direct wave in
the lower right corner. Ultimately, through comparisons, we deduce that the wavefields
computed using the three LBM models exhibit greater similarity among themselves than
with FDM-calculated results. This underscores that while slight energy disparities may
exist in seismic wave forward simulation outcomes using different LBM models, overall
wavefield characteristics remain unaffected.
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Figure 12. Snapshots of Vz in the modified Marmousi model calculated with (a) FDM, (b) LBM-SRT,
(c) LBM-TRT, and (d) LBM-MRT.

The assessment of different collision operators through the two-layer and modified
Marmousi models demonstrates the robustness and reliability of LBM in simulating seismic
wave propagation across varying geological scenarios. Despite nuanced energy variations,
the essential wave propagation characteristics were preserved. The findings suggest that
despite minor variations, wave snapshots, seismic records, and amplitude spectra generated
by the different LBM models exhibit remarkable similarities. These results imply that the
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choice of the most suitable LBM model for practical seismic wave numerical simulations can
be based on the simulated medium’s viscosity characteristics. For a low-viscosity medium,
MRT provides better simulation results. In a medium with relatively high viscosity, the
simulation outcomes of the three collision models are comparable. However, for cases
requiring more refined characterization of medium viscosity, MRT demonstrates greater
flexibility and stability compared with SRT and TRT.

Consequently, in practical seismic wave numerical simulations, the selection of the
most suitable LBM model can be based on the simulated medium’s kinematic and dynamic
viscosity characteristics. These insights offer practitioners valuable guidance in selecting
suitable LBM collision operators for seismic simulations in various geological settings.

5. Discussion

We have undertaken a comprehensive investigation to compare and analyze wave-
fields generated through the utilization of different relaxation times, discrete velocity
models, and collision operators within the framework of the LBM. The purpose of our
analysis was to gain insights into how these parameters influence the characteristics of
wave propagation and to discern the optimal combinations for accurately representing
wave phenomena.

Our examination of five relaxation time values of 0.50, 0.51, 0.65, 0.80, and 1.00
revealed distinct impacts on the generated wavefields. A smaller relaxation time accelerates
the relaxation process and results in quicker equilibration of distribution functions and,
consequently, reduced energy consumption. Conversely, larger relaxation times dampen
the wave propagation and lead to more obvious phase distortion. The choice of relaxation
time should therefore be guided by the desired wave attenuation characteristics and the
physical accuracy required for the simulation.

The wavefields calculated using the four discrete velocity models, namely, D20Q4,
D2Q5, D2Q)9, and D2Q13, showcased diverse behaviors in wave propagation. Models
with a larger number of discrete velocities, such as D2Q13, generally exhibited improved
representation of waveforms due to their finer spatial resolution. However, the computa-
tional cost associated with these models also increased. For scenarios where computational
efficiency is crucial, a trade-off between accuracy and computational load needs to be
considered when selecting a discrete velocity model.

Our investigation also encompassed three collision operators, i.e., SRT, TRT, and MRT.
The choice of collision operator plays a pivotal role in controlling the relaxation process
and thereby influencing wave propagation behavior. The SRT operator introduces a single
relaxation time, resulting in a uniform relaxation process across all velocity directions.
While computationally efficient, it may not accurately capture complex wave interactions,
especially in scenarios with varying relaxation factors. The TRT operator’s ability to
incorporate distinct relaxation times for different distribution function modes enhances its
capability to represent non-equilibrium wave phenomena. This makes it a valuable choice
for simulations requiring accurate wavefield representation. The MRT operator’s multiple
relaxation parameters and transformation matrices provide a more nuanced control over
relaxation dynamics. It excels in simulating wavefields with anisotropic and turbulent
characteristics, although at the expense of increased computational complexity.

The findings of our study emphasize the interconnectedness of relaxation times,
discrete velocity models, and collision operators in shaping wavefields within the LBM
framework. Researchers and practitioners should consider these interdependencies while
selecting appropriate parameter combinations for specific simulation scenarios.

6. Conclusions

In this study, we embarked on a comprehensive exploration of wavefield simulations
within the LBM, focusing on the interplay between relaxation times, discrete velocity
models, and collision operators. Through a systematic investigation, we have gained
valuable insights on the behavior of wavefields simulated using LBM, as follows:
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(1) Relaxation time. We observed that the choice of relaxation time profoundly influences
wave propagation speed. Small relaxation times (i.e., around 0.50) yield more fidelity
seismic recording and higher wavefield energy, while larger relaxation times dampen
wave propagation. The choice of a suitable relaxation time depends on the desired
wave dynamics and the level of physical fidelity required in the simulation.

(2) Discrete velocity models. Our analysis revealed that discrete velocity models with
a larger number of velocities provide finer spatial resolution and more accurate
wavefield representation. However, this comes at the cost of increased computational
complexity. The trade-off between accuracy and computational efficiency must be
carefully considered when choosing a discrete velocity model.

(3) Collision operators. The collision operator plays a crucial role in dictating relaxation
dynamics and consequently influences the wave propagation behavior. While the
SRT model offers computational efficiency, it may not capture complex wave inter-
actions accurately. The TRT and MRT models, with their ability to accommodate
different relaxation factors, excel in representing non-equilibrium wave phenomena
and anisotropic behaviors.

These insights can guide the development of hybrid approaches that combine the
strengths of different relaxation times, discrete velocity models, and collision operators to
achieve higher accuracy and efficiency in wavefield simulations. Future research avenues
could include in-depth analyses of the interactions between these parameters in more
specialized scenarios, such as multiphase flows, turbulent environments, and complex
geometries. Additionally, extending this comparative analysis to other types of waves,
such as aero-acoustic, electromagnetic, or elastic waves, could broaden the applicability of
our findings to an even wider range of physical phenomena.
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