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Abstract: In light of the challenging conditions of exploration environments coupled with escalating
exploration expenses, seismic data acquisition frequently entails the capturing of signals entangled
amidst diverse noise interferences and instances of data loss. The unprocessed state of these seismic
signals significantly jeopardizes the interpretative phase. Evidently, the integration of attention mech-
anisms and the utilization of generative adversarial networks (GANs) have emerged as prominent
techniques within signal processing owing to their adeptness in discerning intricate global depen-
dencies. Our research introduces a pioneering approach for reconstructing and denoising seismic
signals, amalgamating the principles of self-attention and generative adversarial networks—hereafter
referred to as SAGAN. Notably, the incorporation of the self-attention mechanism into the GAN
framework facilitates an enhanced capacity for both the generator and discriminator to emulate mean-
ingful spatial interactions. Subsequently, leveraging the feature map generated by the self-attention
mechanism within the GAN structure enables the interpolation and denoising of seismic signals.
Rigorous experimentation substantiates the efficacy of SAGAN in simultaneous signal interpolation
and denoising. Initially, we benchmarked SAGAN against prominent methods such as UNet, CNN,
and Wavelet for the concurrent interpolation and denoising of two-dimensional seismic signals
manifesting varying levels of damage. Subsequently, this methodology was extended to encompass
three-dimensional seismic data. Notably, performance metrics reveal SAGAN’s superiority over
comparative methods. Specifically, the quantitative tables exhibit SAGAN’s pronounced advantage,
with a 3.46% increase in PSNR value over UNet and an impressive 11.90% surge compared to Wavelet.
Moreover, the RMSE values affirm SAGAN’s robust performance, showcasing an 11.54% reduction
in comparison to UNet and an impressive 29.27% decrement relative to Wavelet, hence unequivocally
establishing the SAGAN method as a preeminent choice for seismic signal recovery.

Keywords: seismic signal interpolation and denoising; self-attention generative adversarial network;
damage levels; performance metrics

1. Introduction

Most advanced seismic signal processing methods, such as reverse time migration
(RTM) [1], full waveform inversion (FWI) [2], and surface-related multiple elimination
(SRME) [3], benefit from high-quality seismic signals. Based on high-quality seismic
signals, we can also map geological structures and explore mineral resources. However,
in field seismic exploration, the signal is often missing or contains noise due to the harsh
acquisition environment and poor construction conditions. The presence of incomplete
signals tainted by noise not only leads to the forfeiture of crucial information but also exerts
detrimental effects on subsequent processing stages. Hence, the interpolation and denoising
of seismic signals emerge as a pivotal endeavor in the realm of seismic exploration [4–7],
holding profound significance in ensuring the fidelity and integrity of the data employed
in this field.

Remote Sens. 2024, 16, 305. https://doi.org/10.3390/rs16020305 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16020305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16020305
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16020305?type=check_update&version=3


Remote Sens. 2024, 16, 305 2 of 28

Investigations into seismic signal interpolation and denoising methods can be broadly
categorized into two primary methodologies: traditional approaches founded on model-
driven principles and deep learning techniques rooted in data-driven paradigms.

Sparse transformation methods within traditional approaches have been extensively
employed in the domain of seismic signal interpolation and denoising. For instance, Hin-
driks and Duijndam [8] introduced the concept of minimum norm Fourier reconstruction,
employing Fourier transformation on non-uniformly sampled data to derive Fourier co-
efficients and subsequently utilizing inverse Fourier transformation to yield a uniform
time domain signal. In a similar vein, Satish et al. [9] pioneered a novel methodology
to compute the time–frequency map of non-stationary signals via continuous Wavelet
transform. Additionally, Jones and Levy [10] harnessed the K-L transform to reconstruct
seismic signals and suppress multiples within CMP or CDP datasets. These methodologies,
grounded in sparse transformation, often employ iterative techniques and leverage sparse
transformations. Predominantly, the transformations utilized presently rely on fixed basis
functions. However, a persisting challenge lies in the selection of appropriate basis func-
tions to achieve a sparser representation of the data. The optimization of basis function
selection to yield enhanced sparsity remains an ongoing concern within this domain.

Artificial neural networks have garnered significant traction in the realm of seismic
data processing. Liu et al. [11], for instance, proposed a method centered on neural net-
works for denoising seismic signals, demonstrating the efficacy of this approach. Similarly,
Kundu et al. [12] leveraged artificial neural networks for seismic phase identification, show-
casing the versatility of these networks within seismic research. Despite their widespread
application, traditional artificial neural networks exhibit certain drawbacks. The challenges
encompass an excessive number of weight variables, necessitating a substantial computa-
tional load and protracted training durations. These limitations pose considerable hurdles,
prompting researchers to explore alternative methodologies to circumvent these issues and
enhance the efficiency of neural network-based seismic data processing.

Recent strides in convolutional neural networks (CNNs) have markedly influenced
the broader landscape of signal and image processing [13,14]. Groundbreaking algorithms
rooted in deep learning have been cultivated within various image processing domains,
fostering sophisticated methodologies for signal interpolation and denoising. Given the
multi-dimensional matrix nature of seismic signals, akin to a distinctive form of imagery,
CNNs emerge as a compelling tool for addressing the intricate task of seismic signal inter-
polation and denoising. These techniques, as a result of sustained scholarly exploration,
have become pivotal in geophysical exploration, particularly in the comprehensive study of
interpolation and denoising challenges. A seminal work by Mandelli et al. [15] marks the
pioneering introduction of CNNs, enabling seismic interpolation amidst randomly miss-
ing seismic traces—an unprecedented achievement. Similarly, Park et al. [16] harnessed
the UNet architecture to achieve the complete interpolation of seismic signals afflicted
by regularly missing traces, unveiling its potential in signal restoration. Wang et al. [17]
extended this, solidifying CNN’s efficacy in reconstructing both regular and irregular
signals through rigorous comparative analysis. Furthermore, Gao and Zhang [18] pro-
posed leveraging trained denoising neural networks to reconstruct noisy models, albeit
necessitating input network interpolation. Notably, exceptional performance has been
attained across these tasks by leveraging advanced network architectures like residual
neural networks [19,20], generative adversarial networks [21], and attention mechanisms,
further affirming the versatility and effectiveness of these methodologies in addressing
seismic signal processing intricacies.

While the performance of deep learning methods in seismic interpolation and de-
noising remains commendable, the need for the separate training of missing and noisy
seismic signals adds significant processing time, advocating the necessity for intelligent
seismic signal processing technologies in the future. Hence, the exploration of concurrent
interpolation and denoising techniques for seismic signals emerges as a promising research
avenue. Vineela et al. [22] ingeniously amalgamated attention mechanisms with Wavelet
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transforms, introducing an innovative method employing attention-based Wavelet convolu-
tional neural networks (AWUN). This pioneering approach showcased remarkable results,
particularly validated through robust field data experiments. Additionally, Li et al. [23]
optimized the nonsubsampled contourlet transform by refining iterative functions, signifi-
cantly expediting convergence rates. The efficacy of this refined method was substantiated
through comprehensive experiments demonstrating seismic signal interpolation and de-
noising. Furthermore, Cao et al. [24] proposed a novel threshold method grounded in L1
norm regularization to elevate the quality of simultaneous interpolation and denoising
processes. Iqbal [25] proposed a new noise reduction network based on intelligent deep
CNN. The network demonstrates the adaptive capability for capturing noisy seismic sig-
nals. Zhang and Baan [26] introduced an advanced methodology encompassing a dual
convolutional neural network coupled with a low-rank structure extraction module. This
approach is designed to reconstruct signals that are obscured by intricate field noise. These
seminal contributions underscore the ongoing pursuit of more efficient and integrated
methodologies in the realm of seismic signal processing.

In recent years, attention mechanisms have emerged as foundational models capable
of capturing global dependencies [27–31]. Specifically, self-attention [32,33], also referred to
as intra-attention, calculates the response within a series by comprehensively considering
all elements within the same array. Vaswani et al. [34] demonstrated the remarkable poten-
tial of using only a self-attention model, showcasing the ability of translation models to
achieve cutting-edge results. In a groundbreaking stride, Parmar et al. [35] introduced an
image transformer model that seamlessly integrated self-attention into an autoregressive
framework for picture generation. Addressing the intricate spatial–temporal interdepen-
dencies inherent in video sequences, Wang et al. [36] formalized self-attention as a non-local
operation, introducing a novel paradigm for representing these relationships. Despite these
advancements, the exploration of self-attention within the context of generative adversarial
networks (GANs) remains unexplored. Xu et al. [37] pioneered the fusion of attention
with GANs, directing the network’s focus towards the word embeddings within an input
sequence while not considering its internal model states.

The superiority of generative adversarial networks (GANs) over traditional probabilistic
generative models lies in their ability to circumvent the learning mechanism of Markov chains.
GANs present a versatile framework where diverse types of loss functions can be integrated,
establishing a robust algorithmic foundation for crafting unsupervised natural data generation
networks [38]. Mirza and Osindero [39] pioneered the conditional generation adversarial
network, augmenting the GAN by introducing a generation condition within the network to
facilitate the production of specific desired data. Radford et al. [40] proposed a pioneering
approach, merging a deep convolutional GAN with a CNN, enhancing the authenticity and
naturalness of the generated data. Exploring further innovations, Pathak et al. [41] introduced
the Context Encoders network, employing noise coding on missing images as input for a deep
convolutional GAN. This inventive methodology was tailored for image restoration purposes,
showcasing its efficacy in image repair. In a similar vein, Isola et al. [42] leveraged deep
convolutional GANs and conditional GANs to process images, demonstrating the versatility
of GAN architectures in image manipulation and enhancement.

The emergence of attention mechanism models and generative adversarial networks
(GANs) represents recent advancements in neural networks, showcasing significant accom-
plishments in signal and image processing domains. Exploring their potential application
in seismic signal interpolation and denoising stands as a valuable and compelling re-
search trajectory [43,44]. Investigating the adaptation of these cutting-edge neural network
paradigms within the context of seismic data holds promise for enhancing interpolation
and denoising techniques in this specialized field.

To efficiently and accurately reconstruct and denoise the seismic signal, this research
suggests a novel approach that combines the self-attention mechanism and the generative
adversarial network for interpolation and denoising. The novelty of this method is that the
receptive field may widen due to the self-attention mechanism, and combined with the gener-
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ative adversarial network, it can better generate high-quality seismic signals. It also provides
subsequent theoretical support for seismic signal interpolation and denoising methods based
on deep learning. The contributions of this paper can be summarized as follows:

(1) Based on the characteristics of seismic signals, a novel network is proposed by com-
bining a self-attention mechanism with a generative adversarial network. The self-
attention module can effectively capture long-range dependencies. Therefore, SAGAN
can comprehensively synthesize different event information from the seismic signals
and is not limited to local areas. This is critical for the interpolation of missing trace
seismic signals, where global factors need to be considered.

(2) The proposed method can simultaneously reconstruct and denoise seismic signals
without training two networks separately, saving time and improving efficiency.

(3) This method has a good generalization ability, can be used for 2D and 3D seismic
signals, and has achieved competitive results.

The rest of this article is organized as follows. Section 2 introduces the proposed
method and the training process of the network. Section 3 introduces the seismic sig-
nal dataset, analyzes the results obtained from interpolation and denoising experiments,
and compares the proposed method with other methods to demonstrate its effectiveness.
Section 4 is the conclusion of this article.

2. Methods
2.1. SAGAN Network Design

Convolutive layers are used to construct the majority of GAN-based models [40,45,46]
for data generation. It is computationally inefficient to describe long-distance dependen-
cies in multidimensional signals using only convolutional layers since convolution only
analyzes information in a limited vicinity. In this section, self-attention is added to the
GAN framework using an adaptation of the non-local model, allowing both generator
and discriminator to effectively describe interactions between spatial areas that are far
apart. Due to its self-attention model, we refer to it as self-attention generative adversarial
network (SAGAN), abbreviated as SAGAN. The SAGAN was introduced as a method
for rapidly discovering internal signal representations that have global and long-range
dependencies, and its specific architecture is shown in Figure 1.

To compute the attention map, the data features from preceding hidden layer x are
initially transformed into two feature spaces, A and B, where A(x) = WAx and B(x) = WBx.

β j,i =
exp

(
si,j

)
∑N

i=1 exp
(
si,j

) , si,j = A(xi)
T B

(
xj
)

(1)

and β j,i denotes the degree to which the model synthesizes the jth area while paying
attention to the ith location. M is the number of channels in this example, while the number
of feature locations from preceding hidden layer is N. The attention layer’s output is
o =

(
o1, o2, . . . , oj, . . . , oN

)
∈ RM×N , where

oj = d
(
∑N

i=1 β j,iC(xi)
)

, C(xi) = WCxi, d(xi) = Wdxi (2)

In the above formulation, WA ∈ RM×M, WB ∈ RM×M, WC ∈ RM×M, and Wd ∈ RM×M

are the weight matrices; they use 1 × 1 convolutions as their implementation. After a few
training epochs on our dataset, we found that there was no appreciable performance drop
when we changed the channel number from M to M/k, where k = 1, 2, 4, 8. In all of our
trials, we chose k = 8 (M = M/8) for memory effectiveness.

Additionally, we feed back the input feature map after further scaling the output of
attention by scale parameter. Consequently, ultimate result is provided by

yi = ρoi + xi (3)
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where ρ is a scalar that may be learned and is initially set to 0. Adding the learnable ρ
enables the network to primarily depend on clues in the immediate area, as it is simpler, and
then progressively study to give greater weight to non-local data. The aim is to understand
brief tasks first and, after that, gradually make them more difficult. Both generator and
discriminator in SAGAN have been trained alternately by reducing the hinge version
of adversarial loss, and both have been given the suggested attention module. The loss
functions of generator and discriminator are shown in Formula (4).

LG = −Ez∼pz ,y∼psignal D(G(z), y)
LD = −E(x,y)∼psignal

[min(0,−1 + D(x, y))]
−Ez∼pz ,y∼psignal [min(0,−1 − D(G(z), y))]

(4)
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2.2. SAGAN Network Training

We constructed a training set of 14,416 seismic signals to train the network. The
dataset used was the internal dataset of the research group. Firstly, five types of seismic
signals with clear information on the event were selected, and then the five large-sized
seismic signals were cut to obtain a huge number of seismic signals for the field of seismic
exploration. These datasets were used for training, all of which had a size of 256 × 256.
These seismic signals include both synthetic seismic signals and field seismic signals. So,
the training set is made up of five groups of seismic signals, each of which consists of eight
levels of damage. The training set to the validation set to the test set is eight/one/one.
To verify the performance of SAGAN, we select the commonly used Wavelet, CNN, and
UNet approaches as the comparison methods. In order to better demonstrate the training
process, Figure 2 shows the training curves of each process of the SAGAN network. The
generator’s adversarial loss function, the discriminator’s adversarial loss function, as well
as the generator’s loss function and the discriminator’s loss function together can be seen.
Among them, the loss function value of one epoch is obtained by averaging multiple
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batches of seismic data. The number of epochs used in this experiment is 100, which was
verified through multiple interpolation and denoising experiments.
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Figure 2. Some line graphs during the training process: (a) adversarial loss function of the generator,
(b) adversarial loss function of the discriminator, (c) loss function of the generator, (d) loss function of
the discriminator.

Now, we will give a detailed introduction to the parameter settings during the training
process of the SAGAN method. The input size of the network is set to 192 × 192, the size
of the inference input is 256 × 256, the training batch size is set to 4, epoch is set from to
0 to 100, and the pre-trained weight models GB2A and DA are loaded. The GB2A model
contains 14,776,866 parameters; the DA model contains 9,314,753 parameters. The learning
rate of the generator is set to 0.0002, and the learning rate of the discriminator is set to 0.001.
The optimizer selects the Adam optimizer; beta1 is 0.5 and beta2 is 0.999. The adversarial
loss is the least squares loss. The output of the network is divided into three parts, namely
input value, interpolation and denoising value, and label value.

Figure 3 displays the training process of the SAGAN and UNet modules, in which
Figure 3a is the curve of PSNR varied with epoch, and Figure 3b is the curve of SSIM varied
with epoch. Figure 3a,b demonstrate that the PSNR curves of SAGAN and UNet are both
increasing, but the performance of SAGAN is better than that of UNet, and the SSIM curve
is also the same. It can be seen that when the number of epochs reaches 100, the curve
begins to converge.
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The specific steps for reconstructing and denoising experiments using the SAGAN
method are as follows:

(1) Input seismic signals with noise and missing traces into the SAGAN network.
(2) The input seismic signal is represented in a matrix form, and then the self-attention fea-

ture map is obtained through the convolutional feature map decomposition operation
of the self-attention mechanism.

(3) Next, through GAN, we make the seismic signal generated by the generator a fake
seismic signal, and the clean seismic signal is true seismic signal. Then, the hyperpa-
rameters of the generative adversarial network are iteratively trained and generated.

(4) Finally, the reconstructed and denoised seismic signal is output.

2.3. The Innovation of SAGAN Method

The incorporation of self-attention modules within convolutions represents a syn-
ergy aimed at capturing extensive, multi-level dependencies across various regions within
images. Leveraging self-attention empowers the generator to craft images meticulously, or-
chestrating intricate fine details in each area to harmonize seamlessly with distant portions
of the image. Beyond this, the discriminator benefits by imposing intricate geometric con-
straints more accurately onto the global structure of the image. Consequently, recognizing
the potential and applicability of these attributes in seismic signal processing, a tailored
SAGAN method has been proposed to optimize the interpolation and denoising processes
within this specialized domain.

The selection of UNet, CNN, and Wavelet transform methods for comparison in sub-
sequent experiments stems from their distinct structural and functional attributes. UNet’s
architecture stands out for its ability to amalgamate information from diverse receptive
fields and scales. However, each layer in UNet, despite its capacity to incorporate varied
multi-scale information, operates within limited constraints, primarily focusing on local-
ized information during convolutional operations. Even with different receptive fields, the
convolutional unit confines its attention to the immediate neighborhood, overlooking the
potential contributions from distant pixels to the current area. In contrast, the inherent
capability of the attention mechanism, as incorporated in SAGAN, lies in its aptitude to
capture extensive, long-range relationships; factor in global considerations; and synthesize
information across multiple scales without confining itself solely to local regions. This
stands as a distinctive advantage over methods like UNet, enabling a more holistic per-
spective when processing seismic signals. Furthermore, the inclusion of CNN serves as a
benchmark, representing a classic deep learning methodology. Meanwhile, the utilization
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of Wavelet transform method adds a classical, traditional approach to the comparative
analysis. This diverse selection of methodologies ensures a comprehensive evaluation,
juxtaposing modern deep learning techniques with conventional yet established methods,
enriching the exploration of seismic signal processing techniques.

3. Interpolation and Denoising Experiments Simultaneously

The seismic signal datasets used in this paper for training, verification, and testing are
two-dimensional (2D) synthetic seismic signals, 2D marine seismic signals, three-dimensional
(3D) land seismic signals, and 3D field seismic signals. The data sets utilized in this experiment
have been sourced from the internal repositories of our research group, ensuring a controlled
and specialized collection for our investigations. However, the availability of public data sets
plays a pivotal role in advancing research in seismic exploration. Fortunately, repositories like
https://wiki.seg.org/wiki/Open_data (accessed on 10 May 2020) offer valuable public data
sets, although a standardized, widely accepted public data set remains an ongoing aspiration
for scholars within the seismic exploration domain.

The pursuit of a standardized public data set stands as a shared goal among scholars in
this field. Such a resource would not only facilitate benchmarking and comparison among
various methodologies but also foster collaboration and innovation within the seismic
exploration community. As researchers continue to commit their efforts to this pursuit, the
creation of a standard public data set remains a collective ambition, promising significant
advancements in the field.

In this section, the performance validation of the SAGAN method is undertaken
through comprehensive simultaneous interpolation and denoising experiments. The exper-
iments are meticulously divided into four distinct parts, each dedicated to the interpolation
and denoising of specific types of seismic signals: 2D synthetic seismic signals, 2D marine
seismic signals, 3D land seismic signals, and 3D field seismic signals. This structured
approach allows for a comprehensive evaluation of the SAGAN method’s efficacy across
diverse seismic signal types, ensuring a robust assessment of its performance in varying
signal complexities and domains.

The damage process of seismic signals is divided into two steps. Firstly, Gaussian
white noise is artificially added, and the specific method is as follows:

y = x + sigma·b (5)

Among them, x is the original seismic signal, b is the added Gaussian white noise,
sigma is the variance, also known as noise level, and y is the noisy seismic signal. Because
the noise contained in seismic signals is mostly random noise, the method of adding noise
is to add Gaussian white noise with different noise levels (variances), just as papers [47,48]
also adopt the same strategy.

The second step is to create missing seismic signals. The formation process of missing
seismic signals is as follows:

ym = Sy (6)

Among them, S is the sampling matrix, and the damaged seismic signal ym is obtained
by operating the sampling matrix with the noisy signal. This paper sets four sampling rates
in the experiment, namely 30%, 40%, 50%, and 60%, which represent the missing rate.

The interpolation and denoising performance metrics are RMSE, PSNR, and SSIM.
The definitions of the three metrics are shown in Formulas (7)–(9).

RMSE =
√

MSE =

√
1

m × n ∑ ∑(yid − x)2 (7)

PSNR = 10 × log10
max2(x)

MSE
(8)

https://wiki.seg.org/wiki/Open_data
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SSIM(x, yid) =

(
2µxµyid + c1

)(
2σxyid + c2

)(
µ2

x + µ2
yid

+ c1

)(
σ2

x + σ2
yid

+ c2

) (9)

where m and n are the traces and sampling points of seismic signal, respectively. Among
them, the x represents the original seismic signal, yid is the interpolated and denoised
seismic signal, max2(x) is the maximum value in the original seismic signal. µx and µyid ,
respectively, represent the mean of x and yid; c1 and c2 are the constants; σ2

x and σ2
yid

,
respectively, represent the variance of x and yid; σxyid represents x and yid covariance.

The smaller the value of RMSE, the better the interpolation and denoising effect. The
higher the value of PSNR, the better the interpolation and denoising effect. The closer the
value of SSIM is to 1, the better the interpolation and denoising effect. When the MSE value
approaches 0, the PSNR value tends to infinity, but this situation is almost impossible to achieve.

3.1. Two-Dimensional Synthetic Seismic Signal Interpolation and Denoising

In the experimental setup, a 2D synthetic seismic signal is intentionally subjected to
varying degrees of damage, encompassing eight distinct levels of impairment. Specifically,
these levels are delineated by two factors: a noise level of 10 or 20, coupled with different
sampling rates (30%, 40%, 50%, 60%). This controlled setting aims to simulate diverse
scenarios of signal degradation. To restore and denoise these impaired seismic signals,
the Wavelet, CNN, UNet, and SAGAN methods are employed. The results of the signal
recovery across all eight damage degrees are presented in Figure 4 and subsequent dis-
plays, providing a comprehensive visual representation of the recovery outcomes for each
scenario. Figure 4a showcases the pristine state of the 2D synthetic seismic signal—a clean
representation comprising three distinct events. This signal is characterized by 256 traces,
each containing 256 sampling points, forming the foundational basis for the subsequent
comparative analyses of signal restoration and denoising efficacy.

Upon scrutinizing the subgraphs of Figure 4, a notable observation arises. Specifically,
in Figure 4k, where the noise level is set at 10 and the missing rate at 30%, a discernible
discrepancy surfaces: the error map derived from the SAGAN method displays minimal
residuals, contrasting starkly with the conspicuous residual evident in the error map
generated by the Wavelet transform method across three events. Delving deeper into
Figure 4m,o, a compelling trend emerges: with the consistent missing rate, the escalation
in noise levels indeed exerts a tangible influence on both interpolation and denoising
outcomes. Of note, the impact is discernable as the missing rate ascends; the performance of
CNN gradually deteriorates in its efficacy for interpolation and denoising. In stark contrast,
SAGAN exhibits a consistent ability to sustain continuity amidst escalating missing rates,
underscoring its resilience in preserving continuous events.

Observations from Figure 4 elucidate a crucial aspect: at a 60% degree of missingness,
the method exhibits certain limitations attributed to substantial contiguous missing regions.
Nonetheless, it is notable that in most instances, the method proposed in this manuscript
excels in simultaneous interpolation and denoising. Furthermore, the efficacy of SAGAN
becomes evident, particularly as the extent of damage intensifies, owing to its adaptive
utilization of the attention mechanism in recovering seismic signals. To better discern the
recovery performance across the four approaches, Table 1 encapsulates the RMSE, PSNR,
and SSIM values. These metrics aim to provide a comprehensive evaluation framework,
allowing a nuanced comparison of the performance among these methodologies.

From the data in Table 1, it becomes apparent that at specific conditions, such as a
noise level of 10 and a missing rate of 30% or a noise level of 10 with a missing rate of
40%, the recovery efficacy of UNet surpasses that of SAGAN. However, as the extent of
damage escalates, SAGAN exhibits its strengths and advantages over UNet. To enhance
the visual representation of these results, we organized the RMSE and PSNR values from
Table 1 into box plots for improved visualization. Figure 5 comprises two distinct box
plots, delineating pertinent insights. Notably, in Figure 5a, the median line representing
the SAGAN method sits below that of the comparative method, highlighting SAGAN’s
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superior performance. Conversely, in Figure 5b, the median line for the SAGAN method
exceeds that of the comparative method, indicating a differing trend in performance under
these specific conditions.
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Figure 4. Two-dimensional synthetic seismic signal recovery results: (a) 2D synthetic seismic signal;
(b) noise level 10, 30% missing; (c) noise level 10, 40% missing; (d) noise level 10, 50% missing;
(e) noise level 10, 60% missing; (f) noise level 20, 30% missing; (g) noise level 20, 40% missing; (h)
noise level 20, 50% missing; (i) noise level 20, 60% missing; (j) Wavelet recovery, CNN recovery,
UNet recovery, SAGAN recovery (10, 30%); (k) = (j) − (a); (l) Wavelet recovery, CNN recovery, UNet
recovery, SAGAN recovery (10, 60%); (m) = (l) − (a); (n) Wavelet recovery, CNN recovery, UNet
recovery, SAGAN recovery (20, 60%); (o) = (n) − (a).
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Table 1. Performance metrics of different approaches for interpolation and denoising of 2D synthetic
seismic signal.

RMSE/PSNR (dB)/SSIM

Level of Damage Input PSNR (dB) Methods
Wavelet CNN UNet SAGAN

Noise Sigma = 10,
Missing rate = 30% 21.3675 0.0373/28.5560/0.9466 0.0193/34.2746/0.9553 0.0093/40.6373/0.9900 0.0100/40.0055/0.9881

Noise Sigma = 10,
Missing rate = 40% 20.5388 0.0471/26.5555/0.9389 0.0281/31.0139/0.9504 0.0134/37.5471/0.9888 0.0169/35.5634/0.9854

Noise Sigma = 10,
Missing rate = 50% 19.2951 0.0693/23.1836/0.9355 0.0469/26.5850/0.9463 0.0205/34.1264/0.9759 0.0141/36.7690/0.9851

Noise Sigma = 10,
Missing rate = 60% 20.3152 0.0453/26.8821/0.9497 0.0238/32.4514/0.9623 0.0220/33.1525/0.9731 0.0171/35.3238/0.9821

Noise Sigma = 20,
Missing rate = 30% 17.8284 0.1063/19.4569/0.8822 0.0677/23.3855/0.9078 0.0233/32.7898/0.9684 0.0137/36.8497/0.9693

Noise Sigma = 20,
Missing rate = 40% 14.7681 0.1643/15.6867/0.8541 0.1306/17.6812/0.8280 0.0317/30.7922/0.9709 0.0229/32.9653/0.9711

Noise Sigma = 20,
Missing rate = 50% 17.9899 0.0962/20.3390/0.8825 0.0563/24.9824/0.9105 0.0358/29.2340/0.9741 0.0182/35.1373/0.9760

Noise Sigma = 20,
Missing rate = 60% 17.0659 0.0965/20.3090/0.8816 0.0566/24.9474/0.9186 0.0363/28.8516/0.9648 0.0179/35.2176/0.9665

Bold PSNR and SSIM values indicate the maximum value, while bold RMSE values indicate the minimum value.
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3.2. Two-Dimensional Marine Seismic Signal Interpolation and Denoising

In the realm of the 2D marine seismic signal, diverse damage degrees were intention-
ally induced, spanning eight distinct levels. Each setting included variations in the noise
level, set at 10 or 20, and diverse sampling rates ranging from 30% to 60%. Employing
the Wavelet, CNN, UNet, and SAGAN methods, the seismic signal underwent a process
of interpolation and denoising. Figure 6 aptly illustrates the resulting recovery outcomes
across varying sampling rates. Figure 6a serves as a visual depiction of the original 2D
marine seismic signal. This intricate signal comprises multiple discernible events, with a
trace number totaling 256 and 256 sampling points, encapsulating the complexity inherent
in such seismic signals.

In Figure 6m, a notable observation emerges: the error map derived from the Wavelet
transform method exhibits the most pronounced residuals. Notably, on distinct seismic
traces, the performance of SAGAN outshines that of UNet and CNN, showcasing superior
error reduction. Continuing the observation with Figure 6n, it becomes apparent that
when confronted with consecutively missing traces, the efficacy of various methods in
reconstructing the seismic signal presents challenges. Portions of the missing trace remain
unreconstructed across methodologies. However, even under these demanding conditions,
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the interpolation and denoising outcomes achieved by SAGAN maintain a noticeable
superiority over other methodologies.

In scrutinizing Figure 6, a discernible trend emerges: when confronted with lower
damage degrees, both methods exhibit commendable restoration of the seismic signal.
However, as the damage degree escalates, the advantage of SAGAN becomes increasingly
pronounced. SAGAN’s adept use of adaptive attention mechanisms enables a more discern-
ing observation of events within seismic signals, facilitating more effective recovery. This
characteristic positions SAGAN as a superior choice for seismic signal interpolation and
denoising when compared to Wavelet, CNN, and UNet. To facilitate a clearer comparison
of the recovery effects among the four approaches, Table 2 compiles the RMSE, PSNR, and
SSIM values. These metrics serve as quantitative indicators to discern and evaluate the
performance discrepancies across these methodologies.
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(e) noise level 10, 60% missing; (f) noise level 20, 30% missing; (g) noise level 20, 40% missing;
(h) noise level 20, 50% missing; (i) noise level 20, 60% missing; (j) Wavelet recovery, CNN recovery,
UNet recovery, SAGAN recovery (10, 60%); (k) = (j) − (a); (l) Wavelet recovery, CNN recovery, UNet
recovery, SAGAN recovery (20, 40%); (m) = (l) − (a); (n) Wavelet recovery, CNN recovery, UNet
recovery, SAGAN recovery (20, 60%); (o) = (n) − (a).

The data in Table 2 reveal a pertinent trend: at lower damage degrees in the seismic
signal, the PSNR and SSIM values of SAGAN only marginally exceed those of UNet. How-
ever, as the damage degree intensifies, SAGAN consistently outperforms UNet, aligning
with our prior theoretical analysis. Figure 7 presents two box plots, offering additional in-
sights. In Figure 7a, the median line representing the SAGAN method sits below that of the
UNet, CNN, and Wavelet methods, indicative of its slightly lower performance in specific
conditions. Conversely, in Figure 7b, the median line for the SAGAN method surpasses
that of the UNet, CNN, and Wavelet methods, signaling its superior performance under
these circumstances. These visualizations further corroborate the performance disparities
across methodologies under varying degrees of damage in seismic signals.

Table 2. Performance metrics of interpolation and denoising of 2D marine seismic signal by differ-
ent approaches.

RMSE/PSNR (dB)/SSIM

Level of Damage Input PSNR (dB) Methods
Wavelet CNN UNet SAGAN

Noise Sigma = 10,
Missing rate = 30% 23.0118 0.0557/25.0762/0.8756 0.0328/29.6861/0.9229 0.0295/30.5934/0.9527 0.0272/31.3150/0.9557

Noise Sigma = 10,
Missing rate = 40% 22.1721 0.0598/24.4692/0.8312 0.0381/28.3798/0.8999 0.0274/31.1412/0.9453 0.0257/31.6912/0.9504

Noise Sigma = 10,
Missing rate = 50% 21.1377 0.0692/23.2014/0.8010 0.0437/27.1964/0.8703 0.0403/27.7319/0.9296 0.0316/29.9147/0.9343

Noise Sigma = 10,
Missing rate = 60% 20.1712 0.0808/21.8555/0.7571 0.0551/25.1781/0.8319 0.0765/22.6639/0.8776 0.0497/26.0973/0.8937

Noise Sigma = 20,
Missing rate = 30% 22.5951 0.0564/24.9794/0.8346 0.0356/28.9685/0.8887 0.0337/29.4952/0.9083 0.0321/29.8710/0.9168

Noise Sigma = 20,
Missing rate = 40% 21.7344 0.0643/23.8343/0.7926 0.0423/27.4818/0.8626 0.0408/27.7084/0.8910 0.0297/30.5528/0.9085

Noise Sigma = 20,
Missing rate = 50% 20.1474 0.0836/21.5574/0.7734 0.0553/25.1522/0.8513 0.0546/25.1785/0.8731 0.0473/26.4918/0.8896

Noise Sigma = 20,
Missing rate = 60% 19.4090 0.0941/20.5252/0.7284 0.0704/23.0576/0.8090 0.0893/20.9284/0.8413 0.0615/24.3725/0.8504

Bold PSNR and SSIM values indicate the maximum value, while bold RMSE values indicate the minimum value.
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Figure 7. Box diagrams of data in Table 2: (a) RMSE; (b) PSNR.
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Aimed at better proving the performance of SAGAN, the 3D seismic signals are
recovered below.

3.3. Three-Dimensional Land Seismic Signal Interpolation and Denoising

The investigation extends ablation experiments initially conducted in a 2D setting
to encompass the dynamic scope of 3D land and field seismic signals. To delineate the
impact of varied damage intensities, the 3D land seismic signals were subjected to eight
distinct damage degrees. Specifically, these degrees were configured with two noise levels,
10 and 20, encompassing sampling rates of 30%, 40%, 50%, and 60% for each noise level.
Employing the Wavelet, CNN, UNet, and SAGAN methodologies, the seismic signals
underwent interpolation and denoising procedures. As illustrated in Figure 8, the outcomes
of the recovery process under different sampling rates are depicted. Figure 8a specifically
presents the original 3D land seismic signal, comprising a multitude of events within its
slice. This slice encompasses 256 traces with a sampling point of 256, manifesting the
intricacies inherent in the seismic signal.

Figure 8l distinctly highlights the discernible presence of artifacts, particularly evident
when employing the UNet method. This observation underscores the inherent challenges
encountered during the intricate process of reconstructing and denoising three-dimensional
seismic signals. Analogous to their two-dimensional counterparts, the complexity amplifies
when confronted with uninterrupted missing traces. However, the culmination of comprehen-
sive experimentation and comparative analysis among various methodologies unequivocally
demonstrates that the SAGAN method excels in achieving optimal interpolation efficacy.
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dent when employing the UNet method. This observation underscores the inherent chal-
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Figure 8. Three-dimensional land seismic signal recovery results: (a) 3D synthetic seismic signal;
(b) noise level 10, 30% missing; (c) noise level 10, 40% missing; (d) noise level 10, 50% missing;
(e) noise level 10, 60% missing; (f) noise level 20, 30% missing; (g) noise level 20, 40% missing;
(h) noise level 20, 50% missing; (i) noise level 20, 60% missing; (j) Wavelet recovery, CNN recovery,
UNet recovery, SAGAN recovery (10, 60%); (k) = (j) − (a); (l) Wavelet recovery, CNN recovery, UNet
recovery, SAGAN recovery (20, 60%); (m) = (l) − (a).

Observing Figure 8, it becomes apparent that for lower degrees of damage, both meth-
ods demonstrate a proficient restoration of the seismic signal. However, as the damage
escalates, the advantage in recovery effectiveness distinctly tilts in favor of the SAGAN ap-
proach. This disparity arises due to SAGAN’s adaptive utilization of attention mechanisms,
specifically tailored to the recovery of seismic signals. A mere visual analysis of the recovery
outcome graphs fails to comprehensively elucidate the nuanced efficacy of distinct methods.
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To more precisely discern the recovery effects of the four approaches, Table 3 meticulously
presents the RMSE, PSNR, and SSIM values corresponding to each methodology.

Table 3. Performance metrics of different approaches for interpolation and denoising of 3D land
seismic signal.

RMSE/PSNR (dB)/SSIM

Level of Damage Input PSNR (dB) Methods
Wavelet CNN UNet SAGAN

Noise Sigma = 10,
Missing rate = 30% 20.9503 0.0446/27.0192/0.8923 0.0337/29.4459/0.9271 0.0271/31.4718/0.9372 0.0197/34.0409/0.9401

Noise Sigma = 10,
Missing rate = 40% 21.9238 0.0357/28.9480/0.8904 0.0259/31.7807/0.9249 0.0211/33.6977/0.9292 0.0175/34.4111/0.9364

Noise Sigma = 10,
Missing rate = 50% 20.5418 0.0408/27.7935/0.8809 0.0333/29.5581/0.9156 0.0284/30.6753/0.9210 0.0216/33.6023/0.9307

Noise Sigma = 10,
Missing rate = 60% 20.0212 0.0479/26.3989/0.8565 0.0356/28.9566/0.9062 0.0321/29.7350/0.9184 0.0299/30.4670/0.9211

Noise Sigma = 20,
Missing rate = 30% 21.5883 0.0428/27.3807/0.8319 0.0314/29.8987/0.8990 0.0303/30.3749/0.8955 0.0256/31.8639/0.9006

Noise Sigma = 20,
Missing rate = 40% 21.1568 0.0482/26.3428/0.8209 0.0345/29.2482/0.8752 0.0326/29.6741/0.8929 0.0273/31.1526/0.8932

Noise Sigma = 20,
Missing rate = 50% 20.9307 0.0571/24.8710/0.8165 0.0493/26.0855/0.8531 0.0475/26.5899/0.8850 0.0278/31.1129/0.8861

Noise Sigma =20,
Missing rate = 60% 19.8891 0.0649/23.9510/0.8105 0.0514/25.3785/0.8360 0.0501/25.7908/0.8651 0.0374/28.3685/0.8752

Bold PSNR and SSIM values indicate the maximum value, while bold RMSE values indicate the minimum value.

Table 3 distinctly portrays a substantial disparity in the PSNR and SSIM values,
showcasing the marked superiority of SAGAN over the UNet, CNN, and Wavelet methods.
Notably, this pronounced performance divergence persists consistently when the missing
rate of the seismic signal stands at 50%, irrespective of the noise level. Even at a missing rate
of 60%, SAGAN retains a notable edge in the recovery process, aligning with the anticipated
outcomes derived from theoretical analysis. These objective performance metrics, thus,
validate and reinforce the empirical findings, affirming the advantageous proficiency of the
SAGAN methodology in seismic signal recovery.

Figure 9 shows two box plots, and it can be observed that the median line of the
SAGAN method in Figure 9a is lower than that of the comparison method, while the median
line of the SAGAN method in Figure 9b is higher than that of the comparison method.
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Figure 9. Box diagrams of data in Table 3: (a) RMSE; (b) PSNR.

The culminating segment of the experimentation process involves the recovery of the 3D
field seismic signal, presenting the most formidable challenge within this experimental phase.
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3.4. Three-Dimensional Field Seismic Signal Interpolation and Denoising

The intricate nature of 3D field seismic signals necessitates comprehensive efforts in
their interpolation and denoising processes. To address this challenge, various damage
levels were meticulously assigned to the 3D field seismic signal, encompassing eight
distinct degrees. These levels were carefully structured around two noise levels, 10 and 20,
coupled with sampling rates set at 30%, 40%, 50%, and 60%. Interpolation and denoising
endeavors were meticulously conducted, employing the Wavelet, CNN, UNet, and SAGAN
methodologies, each method tailored to address the complexities inherent in these seismic
signals. In Figure 10, the interpolation and denoising results under diverse sampling rates
are shown. Figure 10a shows the original 3D field seismic signal. The 3D field seismic
signal slice consists of complex events; the trace number in this seismic signal is 256, and
the sampling point is 256.
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Figure 10. Three-dimensional field seismic signal recovery results: (a) 3D field seismic signal; (b) noise
level 10, 30% missing; (c) noise level 10, 40% missing; (d) noise level 10, 50% missing; (e) noise level
10, 60% missing; (f) noise level 20, 30% missing; (g) noise level 20, 40% missing; (h) noise level 20, 50%
missing; (i) noise level 20, 60% missing; (j) Wavelet recovery, CNN recovery, UNet recovery, SAGAN
recovery (10, 30%); (k) = (j) − (a); (l) Wavelet recovery, CNN recovery, UNet recovery, SAGAN
recovery (10, 60%); (m) = (l) − (a); (n) Wavelet recovery, CNN recovery, UNet recovery, SAGAN
recovery (20, 30%); (o) = (n) − (a); (p) Wavelet recovery, CNN recovery, UNet recovery, SAGAN
recovery (20, 60%); (q) = (p) − (a).

A discernible trend emerges from Figure 10k,o, highlighting that at a missing rate of
30%, multiple methodologies exhibit superior efficacy in reconstructing seismic signals.
However, as the missing rate escalates to 40%, 50%, and 60%, the effectiveness of interpola-
tion gradually diminishes across the methods. Notwithstanding, amidst these escalating
missing rates, the SAGAN method consistently maintains its superior performance in both
interpolation and denoising, outperforming its counterparts. Notably, a keen observation
from Figure 10m,q reveals that heightened noise levels predominantly impact the inclined
events within the seismic signal. Specifically, at a noise level of 20, there is a discernible
increase in residual tilted events, signifying the nuanced impact of noise amplification on
the intricate components of the seismic data.

Figure 10 presents a comprehensive overview, indicating that all methods demonstrate
a foundational capacity to undertake the intricate tasks of reconstructing and denoising
seismic signals. Nevertheless, the distinctive advantage of SAGAN becomes evident,
particularly in handling seismic signals plagued by higher missing rates, showcasing its
superior recovery performance in such scenarios. These nuances are further validated
through the RMSE, PSNR, and SSIM values meticulously presented in Table 4. Additionally,
Figure 11, depicted through two box plots, accentuates these disparities; in Figure 11a, the
median line attributed to the SAGAN method conspicuously rests below those of the UNet,
CNN, and Wavelet methodologies. Conversely, in Figure 11b, the median line associated
with the SAGAN method notably surpasses those of the comparative UNet, CNN, and
Wavelet methods. These visual representations offer compelling evidence supporting the
pronounced advantages of the SAGAN approach in effectively handling seismic signal
recovery across diverse conditions.
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Table 4. Performance metrics of different methods for interpolation and denoising of 3D field
seismic signal.

RMSE/PSNR (dB)/SSIM

Level of Damage Input PSNR (dB) Methods
Wavelet CNN UNet SAGAN

Noise Sigma = 10,
Missing rate = 30% 22.7847 0.0386/28.2574/0.8834 0.0323/30.1905/0.9354 0.0316/30.7552/0.9489 0.0271/31.3864/0.9510

Noise Sigma = 10,
Missing rate = 40% 21.0973 0.0416/27.6109/0.8598 0.0329/29.6443/0.9133 0.0313/31.0183/0.9291 0.0251/31.6970/0.9354

Noise Sigma = 10,
Missing rate = 50% 20.1610 0.0478/26.4200/0.8366 0.0371/28.6065/0.8962 0.0335/29.5323/0.9122 0.0315/30.8083/0.9198

Noise Sigma = 10,
Missing rate = 60% 19.9425 0.0550/25.1950/0.7960 0.0434/27.3696/0.8611 0.0415/27.6118/0.8633 0.0369/28.4234/0.8774

Noise Sigma = 20,
Missing rate = 30% 20.7421 0.0417/27.6082/0.8468 0.0353/29.0379/0.8840 0.0341/29.3687/0.8994 0.0320/30.5377/0.9090

Noise Sigma = 20,
Missing rate = 40% 20.3006 0.0471/26.6099/0.8235 0.0391/28.1603/0.8644 0.0380/28.4072/0.8800 0.0342/29.3154/0.8918

Noise Sigma = 20,
Missing rate = 50% 19.4386 0.0496/26.0866/0.8037 0.0469/26.8474/0.8473 0.0443/27.0646/0.8591 0.0366/28.5873/0.8745

Noise Sigma = 20,
Missing rate = 60% 18.2866 0.0613/24.2482/0.7591 0.0577/24.7718/0.8094 0.0517/25.5704/0.8112 0.0473/26.5031/0.8298

Bold PSNR and SSIM values indicate the maximum value, while bold RMSE values indicate the minimum value.
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Table 4 demonstrates that the performance indexes of the SAGAN method are not
as advantageous as when recovering synthetic seismic signals, which indicates that all
methods can recover seismic signals better in the actual seismic signal recovery task.
However, in order that pursue high-quality seismic signals to achieve better results in
subsequent seismic signal interpretation tasks, the SAGAN method has obvious advantages
for both 2D and 3D seismic signal recovery.

The above four experimental results all indicate that the objective performance metrics
of the SAGAN method have significant advantages. However, we cannot simply focus
on subjective interpolation and denoising maps or only look at objective performance
metrics. We should also combine subjective and objective factors to better illustrate the
generalization of the method. Due to the fact that high-quality seismic signals are provided
for geologists to better interpret the corresponding seismic signals, subjective maps are also
very crucial. We can find that in the above experiments, the subjective maps of the SAGAN
method are also the clearest among the four methods in terms of preserving events of the
original seismic signals.
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3.5. Interpolation Experiments with Various Noises

Next, we add two types of noise to the 3D field seismic signal, namely colored noise
and Gaussian white noise. These two types of noise are also common noises in seismic
signals. The above interpolation and denoising experiments are then repeated using
different methods. In order to simplify the layout, Figure 12 only shows the added noise
and does not show the interpolation and denoising results of different methods. Table 5
still gives the performance indicators.
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Table 5. Performance metrics of different methods for interpolation and denoising of 3D field seismic
signal (two types of noise, colored noise and Gaussian white noise).

RMSE/PSNR (dB)/SSIM

Level of Damage Input PSNR (dB) Methods
Wavelet CNN UNet SAGAN

Noise Sigma = 10,
Missing rate = 30% 22.5773 0.0548/25.2281/0.8662 0.0487/26.2430/0.9123 0.0441/27.1179/0.9439 0.0428/27.3644/0.9472

Noise Sigma = 10,
Missing rate = 40% 21.7290 0.0444/27.0572/0.8471 0.0359/28.8922/0.8795 0.0285/30.8965/0.9278 0.0271/31.3498/0.9316

Noise Sigma = 10,
Missing rate = 50% 19.8068 0.0592/24.5546/0.8236 0.0536/25.4214/0.8581 0.0404/27.8755/0.9112 0.0386/28.2744/0.9147

Noise Sigma = 10,
Missing rate = 60% 18.7340 0.0730/22.7289/0.7854 0.0682/23.3302/0.8128 0.0558/25.0681/0.8606 0.0540/25.3595/0.8670

Noise Sigma = 20,
Missing rate = 30% 20.4312 0.0520/25.6809/0.8152 0.0483/26.3186/0.8644 0.0374/28.5391/0.9044 0.0341/29.3532/0.9082

Noise Sigma = 20,
Missing rate = 40% 19.2761 0.0670/23.4765/0.7867 0.0647/23.7855/0.8319 0.0530/25.5068/0.8777 0.0494/26.1325/0.8818

Noise Sigma = 20,
Missing rate = 50% 19.9476 0.0554/25.1360/0.7662 0.0478/26.4057/0.8146 0.0403/27.8943/0.8586 0.0385/28.3012/0.8638

Noise Sigma = 20,
Missing rate = 60% 18.1415 0.0815/21.7775/0.7298 0.0757/22.4228/0.7669 0.0666/23.5253/0.8088 0.0627/24.0545/0.8166

Bold PSNR and SSIM values indicate the maximum value, while bold RMSE values indicate the minimum value.

It can be seen in Table 5 that after adding two kinds of noise, the performance index of
the SAGAN method is the best regardless of the missing rate, which once again verifies the
advantages of multi-scale SAGAN.

Finally, we increase the intensity of the colored noise and continue the interpolation
and denoising experiments of 3D field seismic signals. The added noise images are shown
in Figure 13. Table 6 lists the performance indicators of seismic signal interpolation and
denoising using different methods under different circumstances.
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Table 6. Performance metrics of different methods for interpolation and denoising of 3D field seismic
signal (two types of noise: 1.5 times colored noise and Gaussian white noise).

RMSE/PSNR (dB)/SSIM

Level of Damage Input
PSNR (dB)

Methods
Wavelet CNN UNet SAGAN

Noise Sigma = 10,
Missing rate = 30% 22.0255 0.0448/26.9825/0.8717 0.0298/30.5137/0.9230 0.0257/31.8075/0.9486 0.0243/32.2854/0.9510

Noise Sigma = 10,
Missing rate = 40% 21.5153 0.0455/26.8411/0.8488 0.0320/29.9029/0.9028 0.0278/31.1314/0.9303 0.0266/31.4957/0.9337

Noise Sigma = 10,
Missing rate = 50% 21.1320 0.0515/25.7713/0.8215 0.0435/27.2209/0.8813 0.0377/28.4815/0.9107 0.0372/28.5929/0.9150

Noise Sigma = 10,
Missing rate = 60% 19.3804 0.0633/23.9739/0.7852 0.0536/25.4209/0.7941 0.0473/26.4952/0.8595 0.0455/26.8333/0.8675

Noise Sigma = 20,
Missing rate = 30% 20.8084 0.0479/26.4002/0.8108 0.0450/26.9311/0.8462 0.0326/29.7242/0.9032 0.0309/30.1913/0.9069

Noise Sigma = 20,
Missing rate = 40% 19.1098 0.0698/23.1276/0.7883 0.0666/23.5263/0.8447 0.0558/25.0684/0.8771 0.0517/25.7297/0.8828

Noise Sigma = 20,
Missing rate = 50% 19.1150 0.0645/23.8054/0.7717 0.0582/24.7030/0.8337 0.0489/26.2195/0.8626 0.0450/26.9295/0.8664

Noise Sigma = 20,
Missing rate = 60% 19.1768 0.0661/23.5939/0.7270 0.0595/24.3124/0.7856 0.0528/25.5430/0.8063 0.0498/26.0576/0.8146

Bold PSNR and SSIM values indicate the maximum value, while bold RMSE values indicate the minimum value.

Observing Figure 13 and analyzing Table 6, it can be found that when 1.5 times the
colored noise is added and the Gaussian noise level is 10, the superposition of the two noises
may produce a neutralizing effect, which will weaken the overall noise. The performance
metrics after interpolation and denoising will generally be better than without colored
noise. However, when the noise level is 20, the overall effect is not as good as when there
is only Gaussian noise, which proves that when multiple noises coexist, the difficulty of
interpolation and denoising will increase. Overall, the proposed SAGAN method still
has advantages.

3.6. Comparison of Running Times of Different Methods

In the last part of the experiments, we started to analyze the computational efficiency to
see what the testing time of different methods is while ensuring the accuracy of interpolation
and denoising. If the test time is also an advantage, then sacrificing a lot of training time is
worth it. Table 7 lists the running time results after using different methods to interpolate
and denoise different types of seismic signals.
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Table 7. The running time of different methods for interpolating and denoising different
seismic signals.

Types of Seismic Signals Wavelet CNN UNet SAGAN

2D synthetic seismic signal 4.13 s 4.33 s 2.72 s 2.64 s
2D marine seismic signal 4.59 s 4.64 s 3.12 s 3.04 s

3D land seismic signal 4.18 s 4.81 s 2.96 s 2.80 s
3D field seismic signal 4.94 s 4.04 s 3.28 s 2.88 s

We analyze the data in Table 7. For the two-dimensional synthetic seismic signal, the
running time of Wavelet transform is 4.13 s, which increases by 4.8% for CNN, decreases
by 34.1% for UNet, and decreases by 36.1% for SAGAN. Compared with UNet, SAGAN
dropped by 2.9%. For a three-dimensional field seismic signal, the Wavelet transform time
is 4.94 s. Compared with Wavelet transform, the CNN running time is reduced by 18.2%, the
UNet running time is reduced by 33.6%, and the SAGAN running time is reduced by 41.7%.
Compared with UNet, the running time of SAGAN is reduced by 12.2%. It can be found
from Table 5 that although the deep learning methods require a lot of time to train network
parameters in the early stage, when the network training is completed, the test time has an
advantage compared with the traditional methods, and the interpolation and denoising
accuracy has also been improved. Therefore, deep learning methods have attracted more
and more attention from scholars in the field of seismic signal processing. Each method has
its own unique contribution to seismic signal processing and has accelerated the intelligent
development of seismic exploration.

4. Conclusions

The acquisition process of seismic signals is notably susceptible to incompleteness and
noise, influenced by both the exploration environment and equipment. Recent years have
witnessed an expanding realm of research delving into the application of deep learning
in seismic signal processing, yielding commendable outcomes. Consequently, this paper
delves into the simultaneous interpolation and denoising of seismic signals, amalgamating
the prowess of self-attention and generative adversarial networks. The pivotal contribution
of this manuscript lies in the formulation of the multi-scale SAGAN method. This method
breaks free from the constraints of local areas, effectively broadening the receptive field
and synthesizing information across varied scales. By employing this innovative approach,
the multi-scale SAGAN method facilitates the concurrent interpolation and denoising of
seismic signals, thereby significantly bolstering operational efficiency in signal processing
methodologies. This advancement heralds a promising stride towards enhancing the
efficacy of seismic data handling in complex exploration environments. The primary
conclusions of the content are as follows:

(1) With a view to intelligentize seismic signal processing, the simultaneous interpolation
and denoising of seismic signals are studied. The Wavelet, CNN, UNet, and proposed
SAGAN methods are selected to conduct four sets of comparative experiments. These
two methods are used to reconstruct and denoise 2D synthetic seismic signals with
different damage degrees and then apply them to 2D marine seismic signals. As-
sessing the PSNR metrics in the realm of two-dimensional synthetic seismic signal
experimentation reveals compelling insights. The SAGAN method, in comparison to
Wavelet, demonstrates an average enhancement of 59.05%, while when juxtaposed
with CNN and UNet, it showcases average improvements of 33.68% and 7.75%, re-
spectively. This substantial margin signifies the pronounced efficacy of the SAGAN
approach in elevating the quality of synthetic seismic signal interpolation. Shifting
the focus to the domain of two-dimensional marine seismic signals, the SAGAN
method maintains a commendable performance. In this context, its average improve-
ments over Wavelet, CNN, and UNet stand at 24.16%, 7.07%, and 6.90%, respectively.
Despite a slightly moderated advantage, the SAGAN method still outshines other
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methodologies, affirming its consistent proficiency in enhancing the quality of marine
seismic signal interpolation.

(2) Furthermore, 3D land seismic signals and field seismic signals are reconstructed and
denoised. Four sets of comparative experiments show the performance of SAGAN.
That is, compared with Wavelet, CNN, and UNet, SAGAN has the best interpolation
and denoising performance. In addition, the recovered seismic signal is also smoother
and more continuous, without faulting. Judging from the PSNR metrics of the three-
dimensional synthetic seismic signal experiment, the SAGAN method has an average
improvement of 19.89% compared to Wavelet, an average improvement of 10.71%
compared to CNN, and an average improvement of 7.15% compared to UNet. From
the perspective of three-dimensional field seismic signals, the SAGAN method has an
average improvement of 11.90%, 5.62%, and 3.46% compared to Wavelet, CNN, and
Unet, respectively. These show that 3D seismic signal interpolation and denoising are
indeed difficult.

(3) In the process of training the network, we found that the training performance of
SAGAN will be limited by the training set and batch size, and how to better self-
adapt to the tasks of seismic signal interpolation and denoising and achieve better
performance is the focus of our following research in the future.
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