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Abstract: In a SAR image acquired by the ERS-2 satellite, crossed “X-shape” internal solitary waves
(ISWs) south to Dongsha Island are found to be a wave–wave interaction composed of five soli-
tons: two head waves, two tail waves, and the overlapped part. To explain this remote sensing
phenomenon, based on a high-resolution three-dimensional MIT general circulation model (MITgcm)
using realistic topography and tidal forcing, the “X-shape” internal waves are reproduced at the same
location. The development processes of the waves indicate that the “X-shape” ISWs are two waves
diffracted from one internal wave southeast to Dongsha Island. During the propagation, the ampli-
tude of their overlapped part of the “X-shape” ISWs becomes significantly larger than the sum of the
amplitudes of both head waves, which proves that nonlinear wave–wave interaction has occurred.
Based on wave–wave interaction theory, the theoretical maximum value of the amplitude of the
overlapped part at the initial moment is calculated as 14.12 m, which is in good agreement with the
model results of 14 m. Meanwhile, the variation of the theoretical amplitude of the overlapped part is
basically consistent with that of the modeled one, confirming the occurrence of the wave–wave inter-
action. Besides, when the waves propagate over varying water depths, the type of the wave–wave
interaction can change rather than being fixed from the start.

Keywords: oceanic internal wave; wave–wave interaction; numerical model; satellite remote sensing

1. Introduction

The ocean is a key component of the earth’s climate system, and mixing processes
are critical in determining its distribution of salt and heat [1]. As an important marine
dynamic process, internal waves (IWs) are one of the major sources of mixing in the
ocean. It has a significant influence on mass transportation in the ocean [2]. In terms
of energy in the ocean, the energy transfer and exchange between marine phenomena
occur on different temporal and spatial scales. The IW, a mesoscale and sub-mesoscale
dynamic phenomenon, plays an important role in the whole energy cascade of the ocean.
However, it is usually difficult to monitor IWs for long-term and large-area observations
by conventional observation methods. Therefore, satellite remote sensing has gradually
become one of the most important ways to study IWs. Compared with visible light and
infrared sensors, SAR (synthetic aperture radar) has more advantages for observing IWs
because it usually has high resolution and is not affected by clouds or bad weather.

Wave–wave interaction may occur when two IWs meet. Under certain conditions, a
new IW will be generated in the interaction zone. The amplitude of the newly generated IW
can be up to four times that of the pre-interacting IWs [3,4]. During the whole interaction
process, the shape, amplitude, and propagation velocity of the pre-interacting IWs may
change substantially. Therefore, wave–wave interaction not only has an important impact
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on the distribution of salt and heat fields and the dynamic structure of the ocean but also
greatly enhances the destructive power of the ocean engineering structures and the threat
to the safety of underwater vehicles. It has become a frontier topic in the fields of nonlinear
science, ocean engineering, and even ecological environment in recent years [5–9]. Figuring
out the evolution of physical characteristics of internal waves such as shape, amplitude,
and energy in the process of wave–wave interaction can help us better understand the
propagation of the internal waves and also steepen our understanding of energy cascades at
middle and small scales in the ocean. The wave–wave interaction theory was first proposed
by Miles [3,4]. The interaction of two surface solitary waves of equal amplitude was studied
based on the Korteweg–de Vries (KdV) equation [10] and Boussinesq-type equations [11].
It was found that the change in the amplitude or the angle between the two interacting
waves would lead to different forms and transmission characteristics of the waves. In
particular, when the interacting angles met certain conditions, a new wave with a larger
amplitude arose from the interaction zone, which was called the Mach stem. This theory
was confirmed by laboratory experiments [12], numerical simulations [13], and theoretical
analyses [14]. Nevertheless, it is relatively recent that this theory was extended to the
conditions of small-but-finite angles, as the Kadomtsev–Petviashvili (KP) equation was
introduced in [15]. The KP equation can be regarded as a two-dimensional version of the
KdV equation, although formally only for weak transverse effects. It was first proposed
by Kadomtsev and Petviashvili [16]. However, the theory of wave–wave interaction has
seldom been applied to the internal solitary waves in realistic oceans until now. Some
studies on the wave–wave interaction are based on the KP equation [17–19] to evaluate
how effective the theory is when applied to the IWs in the ocean. The interactions of IWs
under realistic oceanic conditions are a little bit different from those of surface solitary
waves because there are more factors at play. The main influencing factors include strong
linearity [20], topography, and Earth’s rotation [21]. Shimizu et al. [22] take these factors
into account and add them to the KP equation to explore how much these terms affect.
The results show that the solutions to the modified KP equation are almost consistent with
those of the traditional Miles theory.

For in-situ observations of the wave–wave interaction, it is difficult to satisfy the
requirements for both horizontal and temporal coverage and resolution for underwater
measurements. Therefore, the in-situ measurement-based study of the wave–wave interac-
tion has been very limited up to now. For instance, Wang and Pawlowicz [23] conducted
measurements on the wave–wave interactions of near-surface internal waves in the Strait
of Georgia, but the results are not quite consistent with the wave–wave interaction theory.

Another way to study the wave–wave interaction is the numerical modeling approach.
However, the numerical studies targeted at wave–wave interactions are also few so far.
Shimizu et al. [22] conducted a series of numerical sensitivity simulations to investigate the
influence of factors such as topography on the wave–wave interaction in the Andaman Sea.
The results are mentioned above.

The northern South China Sea is one of the oceans with the most frequent IWs in
the world. Previous studies [24–28] have shown that IWs in the northern South China
Sea originate from the Luzon Strait. These IWs propagate westward, pass through the
deep basin, shoal on the shelf near Dongsha Island, and finally dissipate. The seabed
topographies have been shown to have significant impacts on water waves [29,30]. The
topography near Dongsha Island is complicated with many small seamounts and ridges,
which can diffract the westward propagating IWs into two branch waves [31]. Then the
south branch and north branch waves may meet and cross when they propagate further
westward after the diffraction. In the propagation process, IWs can cause local upwelling
and downwelling, which affect the distribution of the sea surface flow field and then change
the distribution of micro-scale surface waves, resulting in changes in sea surface roughness.
In this way, remote sensing satellites will receive reflected signals of different intensities,
forming bright and dark stripes on the satellite image [32]. Therefore, remote sensing
satellites, especially SAR satellites, can be used to detect the spatial position of internal
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waves and the characteristics of wave crests. SAR images have shown a lot of crossed crest
lines of IWs near Dongsha Island, indicating that wave–wave interaction may happen [33].
Several papers [31,34,35] have studied wave–wave interaction near Dongsha Island using
SAR data; however, explanations of the SAR-based wave–wave interaction in the northern
South China Sea are still lacking.

In a SAR image obtained by ERS-2 (Figure 1a), crossed “X-shape” ISWs south to
Dongsha Island are found. The waves are composed of five solitons: two head waves,
two tail waves, and the overlapped part. The overlapped part is a stem-like wave, and its
backscattering coefficient is larger than those of other solitons (two head waves and two
tail waves), which suggests that a wave–wave interaction occurs here.
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Figure 1. (a) The SAR image acquired by the ERS-2 satellite at 14:39 on 17 April 2007 UTC; the
wave–wave interaction is indicated in the red rectangle. (b) The topography used in our numerical
simulation (see Section 2.1); curves with numbers are isobaths (units: m), the red dot L1 is an in-situ
station measuring current velocity in the WISE/VANS project [36], and the SAR image in (a) is
overlapped on the map of the topography.

This satellite image reveals perfect evidence of the wave–wave interaction but cannot
provide information on the interior structure of the IWs and its associated evolution
processes. Three interesting questions arise here: First, how does the wave–wave interaction
in Figure 1 forms? Second, how do the shape and characteristic parameters, such as the
amplitude of the internal waves, change during the wave–wave interaction? Third, what
about the corresponding energy change during the wave–wave interaction? To answer
these questions, a numerical model and the wave–wave interaction theory will be used in
this paper.

The paper is organized as follows: Section 2 introduces the numerical model configura-
tion and validation. In Section 3, the wave–wave interaction in the SAR image is reproduced
by using the ocean model, and the physical parameters such as shape, amplitude, and
energy flux in the whole evolution process are calculated and described by combining the
wave–wave interaction theory. Section 4 makes detailed comparisons between the theory
and model results, analyzes the evolution characteristics of this wave–wave interaction,
and draws conclusions.

2. Model Setup and Validation
2.1. Model Setup

The MITgcm (Massachusetts Institute of Technology General Circulation Model) is
able to simulate multi-scale ocean processes, including internal waves, and will be applied
in this research. The MITgcm uses finite volume methods and orthogonal curvilinear
coordinates horizontally. The model domain (115.5◦E–122.4◦E and 17.7◦N–22.4◦N) is
shown in Figure 1b. Since the propagation directions of IWs in the northern South China
Sea are mainly northwestward and westward [24], and this paper focuses on the area
around Dongsha Island, the horizontal resolution is set to 150 m (west to 117.5◦E)/300 m
(east to 117.5◦E) in the zonal direction and 400 m in the meridional direction. Besides, a
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transition zone of 15 grid points is settled along 117.5◦E. In the transition zone, the zonal
width difference between adjacent grids is 10 m, which gradually decreases from 300 m in
the west to 150 m in the east. There are 150 model layers in vertical, with higher resolution
in the upper ocean (1 m near the surface layer) to better characterize the IWs and coarser
resolution in the deeper ocean (200 m near the bottom layer) to save on calculation costs.
Topographic data from the GEBCO dataset (General Bathymetric Chart of the Oceans,
https://www.gebco.net/data_and-_products/historical_data_sets/#gebco_2014, accessed
on 12 June 2022) is interpolated linearly to match the girds. The minimum water depth is
set at 1 m, while the maximum water depth is 5160 m.

Initial conditions are horizontally uniform stratification and no flow. The salinity and
temperature data are from the climatological data of June from the WOA dataset (World
Ocean Atlas, https://www.nodc.noaa.gov/OC5/woa13/, accessed on 5 December 2019)
and input into the model after being horizontally averaged in the study area. Boundary
conditions are no stress at the surface, no slip at the bottom, and no buoyancy flux through
the surface or the bottom. At four open boundaries, eight barotropic tides (K1, O1, P1, Q1,
M2, S2, K2, and N2) forced the model from 20 to 25 June 2005. The amplitudes and phases of
these tides are acquired from the TPXO8-atlas dataset (https://www.tpxo.net/global/tpxo8
-atlas, accessed on 18 May 2021) [37]. Meanwhile, a sponge boundary treatment [38] with a
width of 50 grid points is adapted to avoid the reflection of IWs. The KPP scheme, whose
mixing below the surface mixed layer is represented by a background viscosity/diffusivity
(assumed constants) and a viscosity/diffusivity based on shear instability, is used. For
the horizontal mixing scheme, the Leith scheme [39] is used to provide enough viscous
dissipation to damp divergence and vorticity at the grid scale. The time interval for output
data is 10 min.

2.2. Model Validation
2.2.1. Comparison with In-Situ Measurements

In the WISE/VANS project [36], the tidal current velocity at mooring L1 (20.5897◦N
and 121.9187◦E, shown as the red circle in Figure 1) is observed by using upward-looking
300 kHz ADCP mounted in a cage 4 m off the bottom-sampled 4 m bins every 15 min from
25 April to 28 October 2005. The instrument depth is 455 m. The measured depth range of
velocity is 380 m to 450 m, so we select the model data from the same depth range to make
the comparisons. The vertically averaged values of the measurements and model results
from 17 to 30 June 2005 are shown in Figure 2a. It can be seen that even though there are
some differences between the maximum values of the model results and the measured
results from 21 to 24 June, the overall trend of variation of the model results is consistent
with that of the measured results, so we think that the model results are valid and can be
used for further analysis.

2.2.2. Comparison with SAR Image

Using SAR satellite images, the location of IWs and the distribution of wave crests
can be tracked. Figure 2b shows a SAR snapshot, which includes two IWs west of the
Luzon Strait. One is around 118.1◦E and has an arc shape with tail waves, while the other
is around 117.2◦E and is a soliton. For the model results, we apply a method similar to
Zhang et al. [38] to locate the IWs. We calculate the sea surface height gradient (SSHG):

SSHG(x, y) =

√(
∂ζ(x, y)

∂x

)2
+

(
∂ζ(x, y)

∂y

)2
, (1)

where ζ (x, y) is the height of the sea surface at a certain moment. In our model, the x and y,
respectively, indicate the zonal and meridional directions. Figure 2c shows the SSHG at
39 h of model time (hereafter “model time” is omitted). There are two sets of IWs west of
the Luzon Strait, and we name them W1 and W2. W1 is a wave train and located around
118.2◦E, while W2 is a soliton and located at about 117.3◦E. The forms of both waves are
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slightly different from those in the SAR image. The tail waves of W1 are weaker and more
concentrated. The northern part of W2 (north of about 21.5◦N) is more westerly, and the
SSHG decreases rapidly to the north of 21.8◦N, while the white stripes in SAR images can
still be distinguished to the north of 22.0◦N. Overall, the simulated results are consistent
with the SAR sensing results.
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Figure 2. (a) Vertically averaged zonal velocity over 380 to 450 m depth of the L1 station (eastward
is positive): the blue solid line is the simulated model result, and the black dashed line is the
observed data [36] (Ramp et al., 2010). (b) SAR image acquired by the ENVISAT satellite at 14:04 on
16 August 2008 UTC; the two red circles indicate the two observed IWs. (c) Map of sea surface height
gradient (SSHG) at 39 h of model time; W1 and W2 indicate two IWs.

3. Results
3.1. Model-Produced Amplitudes of the Internal Waves

Based on the model results, to describe the propagation processes of IWs near Dongsha
Island, the SSHG is calculated at each moment. It is found that the IWs at 52 h 20 min
(Figure 3a) are closest to those from the SAR image in Figure 1a. Although their positions
are not exactly identical, their main characteristics are the same. First, both have stem-like
waves at the overlapped part and whose values (backscatter intensity in the SAR image
and SSHG in the model results) are larger than rest solitons. Second, the values of the head
waves are larger than those of the tail waves. These two arguments suggest that wave–wave
interaction has occurred here. Therefore, it is necessary to calculate the amplitudes of each
soliton, that is, two head waves, two tail waves, and the interaction zone, to see how the
interaction is. As the model results include salinity, temperature, and current velocity, we
follow the method proposed by Buijsman et al. [40] to calculate the waves’ amplitudes. The
detailed decomposition and solution are given in Appendix A, and a brief introduction is
given below. An IW can be viewed as consisting of a series of different modes and partial
tides. From the point of view of a mathematical equation, the problem of internal wave
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vertical structure can be reduced to the Sturm-Liouville eigenvalue problem [41]. For an
IW of a certain frequency, it has the characteristics of stratification in the whole water
depth range, so we can use the temperature, salinity, and velocity data at different layers in
our model to calculate the different modes of the IW [42]. By solving the Sturm-Liouville
equation, the coefficients of each mode and partial tides can be determined, and thus the
amplitudes are acquired for any wave of a specific mode.
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like wave. 

Figure 3. (a) Map of the sea surface height gradient (SSHG) near Dongsha Island at 52 h 10 min of
model time; H1, H2, T1, T2, and IZ, respectively, indicate the cross-sections of two head waves, two
tail waves, and the interaction zone. (b) The first three vertical modes of the IWs at cross-section IZ at
52 h 10 min; the red, green, and blue lines, respectively, represent the first, second, and third modes;
the black dot indicates the depth of the maximum value of the first mode.

The M2 tide is dominant near Dongsha Island, and here, we use the M2, M4, M6,
and M8 frequencies. Meanwhile, we use the first 10 modes to calculate the isopycnal
displacement term. Figure 3b shows the results of the first three vertical modes at section IZ
at 52 h and 20 min. Similarly, we calculate the isopycnal displacement term at sections H1,
H2, T1, and T2, as listed in Table 1. Note that the water depth is acquired at the midpoint
of the cross-section.

Table 1. Parameters of sections H1, H2, T1, T2, and IZ in Figure 3a.

Section Water Depth/m Depth of the Maximum Value of the First Mode/m Isopycnal Displacement/m

H1 492.1 208 6
H2 661.2 249 9
T1 489.4 208 4
T2 633.5 244 4
IZ 574.2 229 30

It can be seen that the amplitude of the interaction zone (section IZ) is larger than
the sum of the amplitudes of the two head waves (sections H1 and H2), which indicates
that the two waves do have nonlinear interaction at the overlapped part, which forms a
stem-like wave.

3.2. Spatial and Temporal Variation of the Wave–Wave Interaction

As an important characteristic parameter of IW, the baroclinic energy flux is calculated
using our modeled temperature, salinity, and velocity data to depict the process of this
wave–wave interaction. The position and shape of the waves can be determined from the
pattern of the wave energy flux, through which the propagation of the interaction can be
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tracked. The depth-integrated baroclinic wave energy flux F at each moment is calculated
as follows [25,43,44]:

F = u′p′ + uKE + uKE0 + uAPE − Ah∇KE − Kh∇APE. (2)

The first term is the pressure work that contributes to the energy flux, and the sec-
ond to fourth terms represent the energy advection; the fifth and sixth terms indicate the
horizontal diffusion. For a certain grid point, u′, v′, and w are, respectively, the baroclinic
zonal, meridional, and vertical velocities along the x, y, and z coordinates. The baroclinic
horizonal velocities are computed as u′ = u − U, where the barotropic velocity U = (U, V)

is the vertical averaged (u, v). The perturbation pressure is computed as p′ = ps +
∫ 0

z ρ′gdz′,
where ps is the pressure at the surface and can be acquired by integrating p′ from sur-
face to bottom equaling 0. The kinetic energy is KE = 1/2ρ0

(
u′2 + v′2 + w2

)
, where

ρ0 is the reference density, and here, we choose 1000 kg/m3. The KE0 is computed as
KE0 = ρ0(Uu′ + Vv′). The linearly available potential energy is APE = g2ρ′2/

(
2ρ0N2),

where g is the gravitational acceleration. The perturbation density is ρ′ = ρ − ρb, where ρb
is the density at the stationary state. The buoyancy frequency is N2 = −g/ρ0∂ρb/∂z. The
Ah and Kh are the horizontal diffusion coefficient and the viscosity coefficient in the model
configuration, respectively.

The pattern of energy flux at several selected moments is superimposed together
to track the wave propagation, as shown in Figure 4a. It is found that this wave–wave
interaction comes from the oblique crossing of two diffracted branch waves after the
diffraction of one internal solitary wave at a seamount near 117.1◦E and 20.3◦N (the
magenta circle in Figure 4a).

The whole process of the wave–wave interaction lasts about 16 h until both waves
are nearly dissipated. At 45 h 50 min, the south branch and north branch meet after the
diffraction. Later, the process can be divided into three main stages. We draw a diagram of
the evolution of the shape of the waves, as shown in Figure 4b. The thickness of the line
segment represents the strength of the energy flux. Stage 1 is mainly from 46th to 56th h.
In this stage, the two branches intersect and propagate westward, while the propagation
direction changes a little. The overlapped part of both branches (i.e., two head waves)
changes from a point to a stem-like wave. Meanwhile, the length of its wave front increases
as they propagate westward. Stage 2 is mainly from 56th–60th h. The waves turn northward
when the waves propagate west to 116.5◦E; meanwhile, their energy dissipates obviously
due to bottom friction and other reasons, and both tail waves become indistinguishable. In
stage 3, the two head waves also disappear, leaving only the overlapped part propagating
westward until it dissipates.

In addition to the shape, the variation in amplitudes of each soliton is also an
important parameter to depict the interaction processes. Here, we mainly focus on both
head waves and the overlapped part and calculate their amplitudes at each moment,
according to the method mentioned in Section 2.2. Before the calculation, it is necessary
to determine the propagation path for each soliton. The determining process is sensitive
to the segments of the waves used. Therefore, we check the sensitivity by randomly
choosing the lower and upper bounds of the segments within reasonable ranges. Here,
we take the result at 52 h 10 min as an example. We calculate the energy value and
consider the gray parts representing the head waves, as shown in Figure 5. Then, the
location of the midpoint of this part is obtained. The curve acquired by connecting the
midpoints at each moment is considered to be the propagation path, and we acquire the
paths of both head waves and the overlapped part, named CS1, CS3, and CS2, as shown
in Figure 4a. Vertical modal decomposition is carried out at the points on CS1, CS2, and
CS3 to calculate the isopycnal displacements. In the calculation, the velocity at the point
half an hour before the arrival of the IW is regarded as the background flow. Note that
we consider only the first mode of the IW in this paper.
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Figure 4. (a) Overlapped maps of the energy flux at different model times; CS1, CS2, and CS3 are,
respectively, the propagation paths of the south head wave, the interaction zone, and the north head
wave; purple lines indicate the initial position of the interacted waves. (b) Diagram of the variation
of the shape of the waves; orange, blue, and red lines, respectively, represent the north head wave,
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variations are mainly divided into three stages, of which stages 1 and 2 are indicated in brackets with
the corresponding time periods in (a).

We calculate the temporal variation of the isopycnal displacements on sections CS1,
CS2, and CS3 (Figure 4a), as shown in Figure 6. Focusing on the red boxes in Figure 6a,c,
it can be found that the change processes of the amplitudes of the head waves (shown
by the red arrows) and tail waves (shown by the black arrows) are not the same. The tail
waves exist only for part of the whole interaction process: the south tail wave appears at
about 116.8◦E and disappears at around 116.4◦E, while the north tail wave appears at about
116.9◦E and disappears at around 116.5◦E. But both the south head wave and the north
head wave nearly last for the whole process, and their amplitudes are always larger than
those of the tail waves, although they show a downward trend throughout the process.
In comparison, the change in the interaction zone is different. It increases as the waves
propagate westward after the meeting of the two diffracted branches, reaches its maximum
at about 116.6◦E, and then gradually decreases (red box in Figure 6b).
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Figure 6. The temporal variation of the isopycnal displacements (positive value means depression
wave) on the sections: (a) CS1, (b) CS2, and (c) CS3 in Figure 4a; the three red rectangles highlight the
variation of the interacted waves; the red and black arrows, respectively, indicate the head waves and
the tail waves.

In order to better display the change in the amplitudes, we extracted the changes in
the amplitudes of the head waves and the interaction zone from Figure 6, as shown in
Figure 7a. We consider the meeting of the two diffracted branches at about 117.1◦E as the
initial state of the process of this wave–wave interaction. At this moment, the amplitudes
of the interaction zone, south head wave, and north head wave are, respectively, 14 m,
8 m, and 4 m. The initial amplitude of the interaction zone is close to the sum of the
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amplitudes of both head waves. As the waves propagate westward, the amplitude of
the interaction zone gradually increases and reaches a peak at around 116.7◦E. Then, it
has a sharp decrease until around 116.6◦E. After that, it improves again and begins to
descend at about 116.5◦E. The variation of the amplitudes of the head waves is similar to
that of the interaction zone but also has some differences. The amplitude of the south
head wave has a substantial decrease after the initial state and starts to increase at about
116.9◦E. The amplitude of the north head wave does not improve again after falling from
the peak. Note that the amplitudes of the south head wave and north head wave are 9 m
and 6 m, respectively, when the interaction zone is at its peak. The sum of them is nearly
half of the amplitude of the interaction zone, which confirms the nonlinear effect of this
wave–wave interaction.
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Figure 7. The variation of (a) the amplitudes of both head waves (model results) and the interaction
zone (model result and theoretical value), (b) the angle parameter ψ, (c) the water depth of the section
CS2 in Figure 4a, (d) the wave–wave interaction parameter κ; the dashed line means κ = 1; (e) the
amplitude amplification parameter as, and (f) the energy flux of the sections CS1, CS2, and CS3 in
Figure 4a.

3.3. The Theoretical Amplitudes at the Initial State

For the oblique wave–wave interaction, if the amplitude and the intersection angle
of two IWs are known, the theoretical amplitude of the interaction zone can be calculated
through the wave–wave interaction theory (see Appendix B).

Although the wave–wave interaction theory is suitable for surface solitary waves,
Shimizu et al. [22] found that the results obtained when the theory is applied to IWs in
the Andaman Sea are not much different from their numerical simulation results. Since
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there is no specific theory for calculating IWs in the realistic ocean, we still use the theory
in Appendix B for the following calculation and compare it with our model results. We
also hope it provides a reference for future research on the application of this theory in a
realistic ocean. A brief introduction of the theory and the calculations using our model
results are as follows:

We assume two interacting IWs with amplitudes of, respectively, A1 and A2, and
half the angle between the propagation directions of these two waves, ψ. Then, the mean
amplitude of these two waves A is defined as:

A =

[(√
A1 +

√
A2
)

2

]2

, (3)

and the parameter κ, which reflects the intersecting angle, is defined as:

κ =
tan ψ√

2A/c0 cos ψ
, (4)

where c0 =
√

gh0 is the linear wave velocity. The parameter κ also determines the type of
wave–wave interaction. For different types of wave–wave interaction, the amplitude of the
interaction zone has different theoretical maximums.

For the initial state of the wave–wave interaction in our case, that is, when the two
refracted waves meet at the model time of 45 h 50 min, we acquire the amplitude of the
south head wave A1 = 8 m, the north head wave A2 = 4 m, and half the angle between the
propagation directions of two head waves ψ = 29◦. Therefore, we obtain the parameter
κ = 1.26. κ > 1 means the wave–wave interaction is of the (2143)-type at this moment (a
detailed introduction of the types can be found in Section 4 and in Appendix B). Further-
more, the theoretical maximum value of the amplitude of the interaction zone is calculated
as 14.12 m, which is in good agreement with the model result of 14 m. Thus, in terms
of the initial state of the wave–wave interaction, the theory is effective compared to our
model results.

4. Discussions and Conclusions

This study investigated the wave–wave interaction from a SAR image via high-
resolution three-dimensional MITgcm simulations under realistic conditions near Dongsha
Island. Meanwhile, the theoretical amplitude calculated using the wave–wave interaction
theory is consistent with the model result at the initial state. However, it is important to
note that the wave–wave interaction theory can only be applied in the case of an unchanged
water depth, that is, the h0 in Equation (A5) is a constant. In the real ocean and in our
numerical simulation, the water depth hardly remains unchanged during the propagation
of IWs. Besides, in this paper, the angle between both head waves always changes as
the waves propagate westward (see Figure 7b). Therefore, in the practical application of
the Miles theory, we assume the water depth within a small area to be a constant. In this
way, the parameter κ and amplification factor as during the period of the interaction are
calculated according to the varying angle and depth (Figure 7c) for each moment of the
model results, as shown in Figure 7d,e.

It can be seen from Figure 7b that the angle parameter ψ is relatively stable at the
start and then begins to decrease obviously at about 116.7◦E until both head waves
disappear at around 113.4◦E. The water depth along section CS2 is between 300 m
and 800 m and has a sharp variation at the initial stage. Based on these changes, the
calculated κ also varies substantially during the whole interaction process. The parameter
κ reflects the size of the intersection angle between the two interacting IWs and also
determines the type of the wave–wave interaction. κ > 1 means the angle is relatively
large, and the two waves interact without producing a Mach stem. This type is called
(2143)-type. The numbers 1 to 4 are used to refer to different solitons; for example,
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the two head waves of (2143)-type are referred to as (1,2)-soliton and (3,4)-soliton,
respectively [2,3,15]. Detailed explanations for the types of wave–wave interaction can
be found in Appendix B. Another common type is the (3142)-type when the parameter κ
meets σ < κ < 1. In this type, the intersection angle is relatively small but not too small,
and the interaction of the two waves produces a Mach stem. In this case, the two head
waves are indicated as (1,3)-soliton and (2,4)-soliton. In our model result, the parameter
κ increases from the beginning and exceeds 2 at around 116.9◦E, and then it has a sharp
decrease but is still larger than 1 until 116.56◦E, except slightly lower than 1 for a short
time at around 116.7◦E. However, it is exactly at around 116.7◦E, where κ ≈ 1, that the
amplification factor as reaches its theoretical maximum value of 4, which also means
the amplitude increase in the interaction zone caused by the nonlinear effect reaches its
theoretical maximum according to the wave–wave interaction theory.

Since κ = 1 is the dividing line between the two types mentioned above, the type of
this wave–wave interaction in general changes from (2143) at the beginning to (3142) at the
end, and the two types change back and forth shortly at around 116.7◦E. Therefore, in terms
of the mathematical calculation of κ, the type of the wave–wave interaction in the ocean can
change rather than being fixed from the start. And the varying water depth is an important
reason for the change in κ. The varying water depth not only directly affects the value of the
parameter κ but also has indirect effects by changing the direction of IWs in their shoaling.
This is because if there is no external force, the wave fronts would gradually tend to be
parallel to the isobath as they are shallowing in the surroundings of Dongsha Island [26].
However, this speculation needs more numerical simulations or in-situ observations to
quantify how much influence the varying water depth has on this wave–wave interaction.

We calculate the theoretical amplitude of the interaction zone by multiplying the as
and A, shown as the cyan curve line in Figure 7a. In general, the variation of the theoretical
values is basically consistent with the model results, especially at around 116.7◦E, where
both reach their respective peaks. But in the rest of the process of the interaction, the
theoretical value is smaller than the model results. This suggests that there are other factors
that increase the amplitude of the interaction zone other than the nonlinear effects of
the interaction.

We also investigate the energy variations during the interaction processes. The tempo-
ral variation of energy flux on the three sections CS1, CS2, and CS3 (Figure 4a) is shown in
Figure 8. Meanwhile, the changes in energy flux of both head waves and the interaction
zone are extracted, as shown in Figure 7f. The variations of the energy fluxes are not
consistent with the amplitudes in the three sections CS1, CS2, and CS3. The energy fluxes
of both head waves are in a descending trend due to the energy dissipation caused by the
bottom friction, but their amplitudes do not have a substantial decrease. The interaction
zone increases at the beginning and reaches its maximum at around 116.9◦E. After that, it
decreases but then has a small growth until around 116.7◦E, where the maximum of the
theoretical amplitude of the interaction zone is. In the process of wave propagation, the
energy fluxes of both head waves gradually decrease until they become 0, but the energy
flux of the interaction zone at the end is not much different from the initial value, which
indicates that in the whole process of the wave–wave interaction, the interaction zone does
develop and gain energy, and part of this energy counteracts the energy dissipation caused
by friction.

In conclusion, our model results verify the existence of the wave–wave interaction
in the SAR satellite image (Figure 1a) and reproduce the whole evolution process of this
wave–wave interaction. Meanwhile, the calculated results of the wave–wave interaction
theory are basically consistent with the results of our model. The type of wave interaction
changed from the initial (2143)-type to the final (3142)-type. Due to the bottom friction, the
wave energy has been dissipated in the whole propagation process, but the energy flux of
the interaction zone does increase in the early stages of this wave–wave interaction.
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Appendix A. Modal Harmonic Decomposition for Calculating Amplitudes
of Internal Waves

For a certain IW signal, it can be regarded as the sum of a series of partial tides with
different modes [40]. The wavefield φ(z, t) can be decomposed into a modal-harmonic form:

φ(z, t) = ∑
m

∑
n

φmn exp(−iωmt)Wmn(z). (A1)

Here, subscript m indicates the tidal frequency number, subscript n indicates the
vertical mode number, φmn indicates the modal-harmonic amplitude, ωm represents the
angular frequency, and Wmn indicates the eigenfunction obtained by solving the Sturm-
Liouville equation (Wmn(0) = Wmn(−h) = 0) for given profiles of buoyancy frequency N(z)

d2Wmn(z)
dz2 + k2

mn
N2(z)− ω2

m
ω2

m − f 2 Wmn(z) = 0, (A2)

https://earth.esa.int/eogateway
http://odc.dlou.edu.cn/
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where kmn is the horizontal wave number. After normalizing, the Wmn by multiplying with

δmn =

(
1
h

∫ 0

−h

N2(z′)− ω2
m

ω2
m − f 2 W2

mn
(
z′
)
dz
)−0.5

, (A3)

the vertical eigenfunctions for isopycnal displacement Bmn(z) can be obtained as follows:

Bmn(z) = − iN2(z)
ωm

Wmn(z). (A4)

Then, an integer number of M2 cycles of φ(x,z,t) is least squares fitted to
A + ∑

m
pm(x, z) cos(ωmt) + qm(x, z) sin(ωmt), where A is the temporal-averaged value,

and here we use the M2, M4, M6, and M8 frequencies. The pm and qm are linearly least
squares fitted to ∑n pmn(x)Wmn(z) and ∑n qmn(x)Wmn(z) using the first 10 modes. Fi-
nally, the modal-harmonic amplitude can be calculated as φmn =

√
p2

mn + q2
mn for each x

and a given mode n. In this paper, we consider the amplitude to be positive for a wave
of depression.

Appendix B. Theory for the Oblique Interaction of Internal Waves

The KP equation for the equilibrium state can be written as [15]:

∂

∂x

(
∂η

∂t
+ c0

∂η

∂x
+

3c0η

2h0

∂η

∂x
+

c0h2
0

6
∂3η

∂x3

)
+

c0

2
∂2η

∂y2 = 0, (A5)

where η is the water-surface elevation, c0 =
√

gh0, g is the acceleration rate, and h0
is the water depth. After being scaled and nondimensionalized, Equation (A5) can be
nondimensionalized as follows:

∂

∂x

(
4

∂η

∂t
+ 6η

∂η

∂x
+

∂3η

∂x3

)
+ 3

∂2η

∂y2 = 0. (A6)

The single-soliton solution of Equation (A6) is [18]:

η =
1
2
(

Pi − Pj
)
sech2

[
1
2
(
θi − θj

)
− θ0

]
, (A7)

θi = Pix + P2
i y − P3

i t. (A8)

The subscript [i, j] refers to a soliton solution represented by parameters (Pi, Pj), and
Pi > Pj is assumed. θ0 is the phase shift. The line θi = θj indicates the ridge of the soliton.
For the [i, j]-soliton, the amplitude and inclination are given by [15]:

A[i,j] =
1
2
(
ki − k j

)2, (A9)

tan ψ[i,j] =
(

P2
i − P2

j

)
/
(

Pi − Pj
)
= Pi + Pj. (A10)

Assuming the amplitudes of the two interacting waves are A1 and A2 (A2 > A1), the
parameter of mean amplitude is defined as Equation (3) in the main text. And the different
parameters are defined as:

∆A =
(√

A2 −
√

A1

)2
. (A11)

Furthermore, the parameter σ is defined as:

σ =
1
2

√
∆A
A

. (A12)
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When the interaction is sufficiently long, the amplitude of the overlapped part can be
calculated by the amplification factor:

as =
As

A
=

{
(1 + κ)2 for σ < κ ≤ 1
4 1+σ2

√
δ

1+
√

δ
for κ> 1

, (A13)

δ =
κ2 − 1

κ2 − σ2 , (A14)

where As is the amplitude of the overlapped part. The parameter κ is defined as Equation (4)
in the main text. At κ = 1, As reaches its maximum value and is 4 times that of A. When
κ > 1, as decreased rapidly with the increase in κ until it approached a stable value infinitely.
This theory can be applied to IWs if A1, A2, c, and ψ are known. In this paper, we consider
only the first baroclinic mode to calculate the above parameters.

The interactions can present different forms, among which two relatively simple types
are called (3142)-type and (2143)-type. For the former one, σ < κ < 1, the incident angle is
relatively small but not too small, and the oblique interaction of two solitons creates a Mach
stem. Therefore, there are five solitons, which can be regarded as two head waves (1,3) and
(2,4), two tail waves (1,2) and (3,4), and the overlapped part, namely the Mach stem (1,4).
This interaction is an unstable state, in which the amplitude of the Mach stem reaches a
constant value while its width increases linearly with time as the wave propagates. The
amplitude of the Mach stem is

A(1,4) = A(1 + κ)2 (A15)

For the case κ > 1, the interaction angle is relatively larger. This type is called (2143)-
type. The phase shift between the two waves still exists, and the amplitude of the over-
lapped part still increases as the wave propagates, but the width of the overlapped part
does not broaden linearly with time. Under these circumstances, the interaction zone
cannot be called a Mach stem anymore, but this interaction is steady compared to the
(3142)-type. In this case, the maximum amplitude of the overlapped part is given by:

Amax = 4A

(
1 + σ2

√
δ

1 +
√

δ

)
(A16)
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