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Abstract: Unsupervised person re-identification (Re-ID) aims to match the query image of a person
with images in the gallery without the use of supervision labels. Most existing methods usually
generate pseudo-labels through clustering algorithms for contrastive learning, which inevitably
results in noisy labels assigned to samples. In addition, methods that only apply contrastive learning
at the clustering level fail to fully consider instance-level relationships between instances. Motivated
by this, we propose a joint contrastive learning (JCL) framework for unsupervised person Re-ID.
Our proposed method involves creating two memory banks to store features of cluster centroids and
instances and applies cluster and instance-level contrastive learning, respectively, to jointly optimize
the neural networks. The cluster-level contrastive loss is used to promote feature compactness
within the same cluster and reinforce identity similarity. The instance-level contrastive loss is used
to distinguish easily confused samples. In addition, we use a WaveBlock attention module (WAM),
which can continuously wave feature map blocks and introduce attention mechanisms to produce
more robust feature representations of a person without considerable information loss. Furthermore,
we enhance the quality of our clustering by leveraging camera label information to eliminate clusters
containing single camera captures. Extensive experimental results on two widely used person Re-ID
datasets verify the effectiveness of our JCL method. Meanwhile, we also used two remote sensing
datasets to demonstrate the generalizability of our method.

Keywords: person re-identification; contrastive learning; unsupervised learning; remote sensing

1. Introduction

Person Re-ID aims to recognize the same person across various camera views. In recent
years, researchers have devoted themselves to designing new network structures and effi-
cient loss functions for supervised person Re-ID, aiming to learn cross-camera recognition
feature representations and achieve satisfactory results. Nevertheless, supervised person
Re-ID [1–5] are data-driven and require substantial human and time costs to annotate the
data, which limits the expandability of supervised methods. Therefore, increasing research
is directed towards unsupervised person Re-ID to extract discriminative features directly
from unlabeled data, which has greater deployment potential in real-world scenarios.

Prior studies regarding unsupervised person Re-ID have investigated many effective
solutions [6–10], which fall into two main categories. One of the primary categories
involves the utilization of the unsupervised domain adaptation (UDA) [11–15] approach,
which revolves around creating a unified model that bridges the source and target domain
and achieving domain migration through feature alignment and domain adaptation on the
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target domain. The second category is a purely unsupervised (PU) [16–21] method that
directly uses unannotated data to update the model. PU presents greater challenges since it
does not require a labeled source domain dataset.

Existing PU methods typically predict pseudo-labels and memory banks for unlabeled
training samples by utilizing clustering algorithms as supervised information for model
updates, as shown in Figure 1. The first part is to feed unannotated images into the network
to extract corresponding feature embeddings, which are then saved in the memory bank.
The second step applies a clustering algorithm to cluster the image features, after which each
cluster is assigned a pseudo-label. The third step involves feature representation learning
achieved through contrastive learning. The fundamental distinction of these approaches
lies in the design of various memory banks to achieve different effects. For example,
to make full use of all samples, MMCL [11] treated each image as a single instance and
updated the memory bank to calculate the instance-level loss. The memory bank of SPCL [6]
stored cluster centroid and outlier features and used contrastive learning to distinguish
source-domain classes and target-domain clusters. To enhance the compactness of instance
features belonging to the same identity, CCL [17] constructed a memory at the cluster level
to store central features, thereby mitigating the issue of intra-class update inconsistency.

Figure 1. Illustration of existing PU methods. Such methods utilize clustering algorithms to obtain
pseudo-labels and calculate the averaged momentum representations of each cluster to initialize the
cluster-level memory bank.

Although clustering-based PU methods have demonstrated impressive performance,
there are still some challenges that need to be tackled. First of all, because of the cross-
camera character of the Re-ID task, a person may be captured by multiple cameras [22];
hence, the resulting clusters comprise samples from distinct camera sources. When using
unlabeled datasets, clustering often produces noisy labels, which will cause the model to
update in the wrong direction and severely damage the model’s performance. Secondly,
applying cluster-level contrastive learning does not take into account the structural re-
lationship among instances and does not fully utilize their feature information. Finally,
the training instances that hold the highest value and provide the most information come
from different cameras or different perspectives of the same person. However, due to the
complexity of the shooting environment, different pedestrians usually look similar in the
same camera view.

To address the aforementioned issues, we propose a joint contrastive learning (JCL)
method. Firstly, we use a WaveBlock attention module (WAM) to extract more discrim-
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inative features and then propose a cluster-filtering approach in the clustering stage to
optimize the results. Secondly, we design a cluster-level and an instance-level memory
bank and then jointly train the model by using contrastive loss based on the memory bank,
respectively. For instance-level contrastive loss, we propose an instance screening strategy
to select instances with medium similarity for improving the reliability of positive samples.

Meanwhile, in the current era marked by the swift progress of unmanned aerial
vehicles (UAVs) nowadays, the integration of UAV platforms for video surveillance has
emerged as an essential complementary strategy for conventional stationary camera sys-
tems. With the emergence of person Re-ID datasets PRAI-1581 [23] captured by UAVs,
research in aerial images has become possible. Compared to the images captured by other
stationary cameras, the images captured by UAVs from the top show that each person has
a very different posture, similar appearance, low resolution, and occlusion, making them
more challenging. To showcase the broad applicability and efficacy of our proposed model,
we also conducted experiments on PRAI-1581 to assess its performance. In addition, we
perform visualization experiments on a challenging remote sensing dataset, Xiongan New
Area [24], to further showcase the generalization capability of our approach. The dataset
consists of numerous intricate objects, encompassing diverse categories such as rice, elm,
poplar, and more, predominantly featuring farmlands.

In conclusion, our proposed method has several contributions, which are as follows:

• We propose a joint contrastive learning (JCL) framework that combines cluster-level
and instance-level contrastive losses to jointly optimize models. By applying the
instance screening strategy, the reliability of positive samples can be effectively im-
proved, which is beneficial for model training.

• We design a cluster-filtering approach to eliminate clusters containing single camera
captures by leveraging camera label information. To obtain more discriminative
features of a person, we adopt a WaveBlock attention module (WAM) to directly apply
the attention mechanism to different fluctuation regions.

• Extensive experimental results with impressive performance verify the efficacy of our
proposed approach.

2. Related Works
2.1. Unsupervised Person Re-ID

Previous research on unsupervised person Re-ID can be categorized into two main
groups: unsupervised domain adaptive (UDA) and purely unsupervised (PU).

The UDA method’s goal is to achieve domain migration through feature alignment and
domain adaptation on the target domain. As there exist substantial differences between
domains, various methods reduce the distinctions by performing feature distribution
alignment and image style conversion. For instance, SPGAN [25] utilized CycleGAN [26]
for the transformation of images and employed a source domain label during model
training. However, these approaches are not entirely effective due to the inability to
effectively explore the correlation between instances in the target domain during the
migration process. MMT [12] proposed enhancing the robustness of pseudo labels through
the process of mutual learning.

PU method presents greater challenges compared to the UDA method since it exclu-
sively employs unlabeled data for model training. As a result, establishing robust feature
representations becomes more challenging in the absence of labeled training samples. In un-
supervised learning, researchers commonly employ optimal clustering and memory banks
so that positive and negative samples can be directly obtained from the memory bank in
their work. For example, Lin et al. [18] devised a clustering process that operates from the
bottom up and incorporated a diversity regularization term to equilibrate data volume
within each cluster. MMCL [11] utilized a memory-based non-parametric classifier and
transformed the target task into a multilabel classification problem. CCL [17] constructed a
memory at the center level to store cluster representations and updated them during the
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training process to avoid propagating noise instances to the next training process, which
helps improve the distinguishing ability of features during the training process.

2.2. Attention Mechanism

The attention mechanism was originally introduced in the visual image field to im-
prove the traditional visual search method [27,28], which tries to discover discriminative or
key features to promote the representation capability of the model so as to address the task
of mining person information in person Re-ID. Therefore, lots of researchers attempted to
apply attention mechanisms to person Re-ID. The relationship perception attention (RGA)
module [1] is designed to explicitly explore the global active domain relations and the
excavation of structural information, which helps to infer semantics, thereby increasing
attention. HLGAT [29] injected attention regularization loss to limit the weight of local
features and combine context information to consider structural information. In our re-
search, we leverage the attention mechanism to identify the crucial or negative features
that impact accuracy.

2.3. Contrastive Learning

Contrastive learning aims to extract distinctive features from datasets by enabling the
model to discern similarities and differences among the data. It can be regarded as the
process of looking up the dictionary [30], that is, selecting a person with the same identity
in the candidate set mixed with many negative samples. When dealing with a substantial
quantity of negative samples, contrastive learning can work better because more negative
samples can effectively cover the underlying data distribution. Drawing inspiration from
this, certain recent works have made efforts to employ contrastive learning in tackling the
challenge of unsupervised person Re-ID. CAP [8] uses camera labels to divide each cluster
into varying numbers of proxies and includes the intra- and inter-camera contrastive losses.
CACL [31] is an asymmetric contrastive learning framework aimed at enabling networks to
effectively utilize more effective information beyond color. Compared to previous methods,
our JCL is built at the instance and cluster granularity. It focuses on guiding the learning
process with positive instances with high confidence and hard negative instances.

2.4. Visual Tasks on Remote Sensing Images

In recent academic endeavors, there has been a growing focus on remote-sensing
images, and the majority of research efforts have centered around tasks such as object
detection and classification. Hong et al. [32] introduced an innovative backbone network
designed to acquire local spectral sequence information from neighboring bands of remote
sensing images. Meanwhile, there are also some of the most advanced unsupervised
learning technologies in the area of remote sensing. Tao et al. [33] introduced a unified
feature learning framework to learn image features by using limited labeled or unlabeled
data. Huang et al. [34] introduced a clustering algorithm tailored for hyperspectral images,
which enhances the model’s resilience to noise through the incorporation of an adaptive
spatial regularization technique. H3Net [35] merges the spatial and spectral features within
the Siamese tracker. However, there is limited attention paid to person Re-ID tasks using
remote sensing images. With the proposal of the UAV person Re-ID dataset PRAI-1581 and
the widespread attention of intelligent air surveillance systems, person Re-ID based on
remote sensing images has received attention from researchers. In the dataset PRAI-1581,
all images are taken at an altitude of 20–60 m from the ground, making UAV person Re-ID
more challenging. The variable flight altitude and adjustable camera angle allow people
to have different resolutions, perspectives, and postures in a drone. Additionally, due to
the independent control of two drones in the PRAI-1581, the entire scene is more complex,
greatly meeting the research needs of person Re-ID in remote sensing images.
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3. Method

We propose a joint contrastive learning (JCL) framework, which consists of three
primary modules: a feature extraction module, a cluster optimization module, and a joint
contrastive learning module. The overall framework is depicted in Figure 2.

Figure 2. Illustration of JCL. Our method alternates between the feature extraction stage, clustering
stage, and training stage. In the feature extraction stage, we employ ResNet-50 combined with WAM
to capture image features from unlabeled datasets. Subsequently, we divide the extracted features into
various clusters as pseudo labels and enhance cluster reliability through the clustering optimization
module. Finally, a joint contrastive learning method according to cluster-level and instance-level
memory banks serves to enhance the feature recognition capability of the model.

3.1. Approach Overview

Denote X = {xi}N
i=1 as the training set without labels, encompassing N images. The en-

coder fθ is responsible for extracting image features, represented as fθ(xi) ∈ RC×H×W . Let
U = {ui}N

i=1 represent the features extracted from model fθ and ui = fθ(xi).
In the clustering stage, we employ the DBSCAN method to cluster the extracted im-

age features, after which a cluster filtering strategy is used to eliminate outlier instances
and clusters containing only single camera captures to filter out reliable clusters. We
subsequently allocate identical pseudo labels to instances that are part of the same clus-
ter. Finally, we can obtain a novel labeled dataset, denoted as X̃ = {xi, ỹi}Ñ

i=1, where
ỹi ∈ {1, . . . , Q} means the cluster labels, Ñ is the number of instances, and Q represents
the count of clusters. We calculate the average value of all instance features from a cluster
as the cluster centroid represented as

{
c1, c2, . . . , cQ

}
.

By utilizing memory banks to store image features, we use the cluster-level contrastive
loss (CLL) and instance-level contrastive loss (ILL) for training. The complete loss function
is as follows:

LRe-D = µLcs + (1− µ)Lis (1)

where Lcs represents CLL, Lis represents ILL, and parameter µ is a balancing factor between
0 and 1, which mainly affects the weight of CLL and ILL.
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3.2. Feature Extraction Module

To investigate the features of various body modules of a person, we introduced the
WaveBlock [36] module as an alternative to dropping blocks, which may have the potential
to cause the loss of discriminative features. Figure 3 illustrates the pipeline of WaveBlock.
It uses various bands to adjust the feature map, produces the feature map with increased
discriminative information, and partially retains the original information.

We position the attention mechanism following the WaveBlock, called the WaveBlock
attention module (WAM), and the attention mechanism we use is a non-local block, which
includes two branches. Consider F ∈ RC×H×W as the feature map of a non-local block,
and let υ represent a 1×1 convolution. In the first branch, through υ, the feature map
F undergoes a reduction in the number of channels to half of the previous one, denoted
as υ(F). In a similar fashion, another 1×1 convolution, denoted as ϕ, reduces the channel
count to half of its original value, denoted as ϕ(F). We compress the spatial dimensions of
υ(F) and ϕ(F) into a single dimension, denoted as v′(F), ϕ′(F) ∈ R

C
2 ×HW . We obtain the

matrix J ∈ RHW×HW as follows:

J =
(
υ′(F)

)T · ϕ′(F) (2)

In another branch, the feature map F is input into a 1×1 convolution g followed by a
batch normalization layer denoted as g(F). We compress the spatial dimension of g(F) and
then use a transpose to obtain g′(F) ∈ RHW× C

2 . Then, we perform multiplication between
J and g′(F), followed by a transpose and reshaping of its dimensions to C

2×H×W. Finally,
we employ an additional 1×1 convolution h to revert the channel dimension back to C. We
use E to represent the output result and then add E and F for the final feature representation.

Figure 3. Overview of the WaveBlock module, where x represents the value of extracting the person-
image feature blocks and r is the wave rate. A block is chosen randomly and remains unchanged,
while feature values of the remaining blocks are multiplied by r times. (a) represents the selected
feature block, while (b) describes the way in which the feature values are changed.

3.3. Cluster Optimization Module

Due to differences in lighting [37] and views between cameras, the features of distinct
persons captured by the same camera are prone to clustering together within a cluster,
leading to the generation of inaccurate pseudo labels. Meanwhile, as person Re-ID is a
cross-camera task, where each person is captured by multiple cameras, the camera labels
for the same person image in the dataset should not be entirely the same.

In order to filter out more reliable clusters, we developed a cluster-filtering approach
that leverages camera-based data and evaluates the number of cameras within a cluster
to remove outlier instances and clusters captured by a single camera, thereby optimizing
reliability. We only keep clusters containing samples captured by multiple cameras and
then select trustworthy clusters to continue model training while minimizing the impact of
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extraneous noise labels. Figure 4 illustrates the clustering optimization process and outlier
instances (black dots), and single-camera clusters (green dots) have been removed through
the clustering optimization module.

Figure 4. Visual representation of the feature space (a) prior to and (b) subsequent to the cluster
optimization module. Distinct shapes indicate various cameras, while varying colors represent
belonging to different clusters. Black means outlier instances.

3.4. Joint Contrastive Learning Module

We propose a joint contrastive learning (JCL) that combines CLL and ILL.
In CLL, we use the cluster-level memory bank Mc to reserve unique cluster repre-

sentation features for each cluster. Regardless of the size of the cluster, we update the
corresponding features in Mc to ensure the consistency of clusters and then use ClusterNCE
loss [17] to calculate CLL, as follows:

Lcs = − log
exp(q · c+/τcs)

∑Q
i=0 exp(q · ci/τcs)

(3)

where q is a query instance feature, ci denotes the unique representation vector of cluster i,
c+ represents the centroid feature of the cluster to which the query instance q belongs, and
τcs denotes the temperature hyperparameter.

We compute the centroid of clusters
{

c1, c2, . . . , cQ
}

and then save them in Mc. We
employ the average value of all instance features from a cluster as the initial value for the
cluster representation, as follows:

ci =
1
|Mi| ∑

ui∈Mi

ui (4)

where Mi represents the sample set in the i-th cluster, |·| represents the number of instances.
Only after one epoch is completed, the cluster centroid is updated once through consistency,
and the update process is as follows:

ci ← mci + (1−m)q (5)
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where m represents a momentum updating factor for updating cluster features. Mc under-
goes updates by q following each training iteration.

To further explore the relationship among instances, we designed an instance-level
contrastive loss (ILL) and proposed an instance screening strategy. Firstly, we establish
an instance-level memory bank Ma for preserving the filtered instance features within
each cluster, which contains G instances in Q clusters. Specifically, we find the cluster
to which q belongs through distance measurement. By calculating the similarity rank
between q and all instances in the cluster, we filter out middle-ranked instances to obtain
a more reliable positive sample. For other clusters, the instances closest to q are selected
as the negative samples for contrastive learning, as illustrated in Figure 5. Our instance
screening strategy takes into account the comprehensive relationships between each query
instance and clusters featuring diverse pseudo-labels. We generate a set of Q sample pairs,
comprising one positive sample pair and Q− 1 hard negative pairs, and our ILL is defined
as follows:

Lis = − log
exp

(〈
q · p+mid

〉)
/τis

∑Q
i=0 exp

(〈
q · pi

hard
〉)

/τis
(6)

where τ represents the instance temperature hyperparameter, p+mid is the instance feature
with the middle-ranked cosine similarity within the same pseudo label, and pi

hard denotes
the hard negative instance feature, which corresponds to the i-th cluster and exhibits the
highest-ranked cosine similarity. p+mid and pi

hard are defined as:

p+min = argmid
(〈

q · p+k
〉)

, k = 1, 2, . . . , K (7)

and

pi
hard = argmax

(〈
q · pi

k

〉)
, k = 1, 2, . . . , K (8)

Similarly, in each training iteration, we refresh all instance features corresponding to a
mini-batch and revise the memory bank as follows:

ui
k ← pi

k (9)

Figure 5. Visual representation of feature space for ILL. Each point represents the features of the
image, and different colors are used to represent various identities, where q is a query instance.
The ILL we formulated effectively improves the similarity between the query instance and positive
sample by minimizing the distance between them while pushing away negative samples.
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We outline the entire procedure of our approach in Algorithm 1.

Algorithm 1 Unsupervised Person Re-ID with Joint Contrastive Learning
Require: An unlabeled training dataset X, ResNet-50 encoder f embedded with an atten-
tion module, the total number of iteration N, the batch number batch_num;
Output: Trained model f ;

1: for epoch = 1 to N do
2: Extract the set of instance features from X by f ;
3: Cluster features to create a dataset X′ with pseudo labels with DBSCAN;
4: Establish cluster-level memory bank Mc and instance-level memory bank Ma;
5: for batch = 1 to batch_num do
6: Batch P×K query instances from X;
7: Calculate overall loss LRe-ID in Equation (1), which combines CLL Lcs

Equation (5) and ILL Lis Equation (8);
8: Update model f through backpropagation;
9: Update Mc and Ma via Equation (7) and Equation (11);

10: end
11: end

4. Experiments
4.1. Datasets and Evaluation Metrics

To demonstrate the efficacy of our suggested approach, we assessed the proposed
technique on two extensive benchmark person Re-ID datasets and two remote sensing
datasets, namely Market-1501 [38], DukeMTMC-reID [39], PRAI-1581 [23] and Xiongan
New Area [24].

Market-1501 [38]: this dataset comprises 12,936 images belonging to 751 unique
identities within the training set, while the testing set includes 19,732 images split into a
query set consisting of 3368 images and a gallery set consisting of 16,364 images. The dataset
comprises six distinct non-overlapping cameras, and each individual identity in the dataset
has been recorded by a minimum of two separate cameras.

DukeMTMC-reID [39]: this dataset comprises 16,522 images in the training set,
which are distributed among 702 identities. The testing set of the dataset is composed of
19,889 images with the remaining 702 identities. It comprises eight different cameras, en-
suring that each identity in the dataset has been recorded by at least two different cameras.

PRAI-1581 [23]: this dataset comprises 39,461 images featuring 1581 person identities.
The training set comprises 19,523 images representing 781 identities, while the testing set
of the dataset is composed of 19,938 images with the remaining 799 identities. Within the
testing set, 4680 images associated with 799 distinct identities are designated as query
images. These images are captured from two separate drones, operating at altitudes
varying between 20 m and 60 m above ground level. The proportion of incorrect labels in
this dataset is approximately 5%.

Xiongan New Area [24]: the Xiongan dataset constitutes a hyperspectral image (HSI)
captured in Matiwan Village within the Xiongan New Area of China. The dataset is acquired
using a spectrometer specifically designed for visible and near-infrared imaging. It covers
a spectral range of 400∼1000 nm with 256 bands, and the spatial resolution is configured
at 0.5 m, resulting in an image size of 1580 × 3750 pixels. This dataset comprises various
finely detailed entities, primarily consisting of cultivated lands, as shown in Figure 6. The
Xiongan New Area dataset includes 19 types of objects, such as rice, grassland, elm, willow,
etc. The specific objects and sample sizes are shown in Table 1.



Remote Sens. 2024, 16, 422 10 of 20

Table 1. Number of object samples in the Xiongan New Area dataset.

Category Sample Size Category Sample Size

Rice 26,138 Peach 67,210
Rice stubble 187,425 Vegetable field 29,763

Water 124,862 Corn 85,547
Grass 91,518 Poplar 68,885

Willow 197,218 Pear 986,139
Elm 19,663 Soybean 7456

Acer palmatum 296,538 Lotus leaf 27,178
White wax 276,755 Robinia 6506

Locust 44,232 Residential 26,140
Sophora japonica 372,708

Figure 6. The examples are sourced from the Xiongan New Area dataset, which includes 19 land
cover types, and among them, agricultural and forestry vegetation are the main research objects.

Evaluation metrics: training does not include ground truth identities. We assessed
the effectiveness of the JCL method using established training/test segmentation and
evaluation protocols. We adopted two standard metrics, namely cumulative matching
characteristic (CMC) [40] and mean average precision (mAP).

4.2. Implementation Details

ResNet-50 [41], pre-trained by ImageNet [42], is adopted as the backbone encoder
for the feature extraction, and all input images are resized to 256 × 128. Upon layer 4, we
removed all layers and introduced global average pooling (GAP), a batch normalization
layer [43], and an L2-normalization layer, resulting in the generation of 2048 dimensional
features. When conducting testing, we utilize the features extracted from GAP to compute
the distance. We calculate the Jaccard distance [3] and employ DBSCAN [44] algorithms
to generate pseudo labels, and the thresholds are set as 0.55 on Market-1501 [38] or 0.6 on
DukeMTMC-reID [39]. Regarding training images, we perform random horizontal flipping,
random erasing, and random cropping. Each mini-batch comprises 256 images representing
16 pseudo identities, with each person having 16 instance samples. We utilize an Adam
optimizer to facilitate the training of the model, employing a weight decay of 5 ×10−4.
The initial learning rate is established at 3.5 ×10−4 and then decreases to 1

10 of its prior
value every 20 epochs spanning 60 epochs.
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4.3. Comparison with Existing Methods

We conducted a comparative analysis between our method and several of the newest
unsupervised methods, which roughly fall into two categories: (1) UDA methods, (2) PU
methods. Table 2 presents the performance metrics of these approaches on two distinct
datasets. Our method achieves 73.3% in mAP and 83.7% in rank-1 accuracy on DukeMTMC-
reID and 85.0% in mAP and 93.3% in rank-1 accuracy on Market-1501.

Table 2. Comparison with the state-of-the-art unsupervised Re-ID methods on Market-1501 and
DukeMTMC-reID, employing ResNet-50 as the backbone model. Bold indicates the best performance.

Method
Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

Domain Adaptation Methods

MMT [12] ICLR20 87.7 94.9 96.9 71.2 78.0 88.8 92.5 65.1
MMCL [11] CVPR20 84.4 92.8 95.0 60.4 72.4 82.9 85.0 51.4
JVTC [45] ECCV20 83.8 93.0 95.2 61.1 75.0 85.1 88.2 56.2
SpCL [6] NeurIPS20 89.7 96.1 97.6 77.5 82.9 90.1 92.5 68.8
JGCL [15] CVPR21 90.5 96.2 97.1 75.4 81.9 88.9 90.6 67.6
JNTL [10] CVPR21 90.1 - - 76.5 79.5 - - 65.0
MET [14] TIFS22 92.7 97.5 98.6 82.3 82.4 91.2 93.7 69.8
P2LR [13] AAAI22 92.6 97.4 98.3 81.0 82.6 90.8 93.7 70.8
RESL [46] AAAI22 93.2 96.8 98.0 83.1 83.9 91.7 93.6 72.3

Purely Unsupervised Methods

BUC [18] AAAI19 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5
MMCL [11] CVPR20 80.3 89.4 92.3 45.5 65.2 75.9 80.0 40.2
HCT [47] CVPR20 80.0 91.6 95.2 56.4 69.6 83.4 87.4 50.7
SpCL [6] NeurIPS20 88.1 95.1 97.0 73.1 81.2 90.3 92.2 65.3
RLCC [48] CVPR21 90.8 96.3 97.5 77.7 83.2 89.2 91.6 69.2
CCL [17] CVPR21 92.3 96.7 97.9 82.1 84.9 91.9 93.9 72.6
CAP [8] AAAI21 91.4 96.0 97.7 79.2 81.1 89.3 91.8 67.3
SECRET [49] AAAI22 93.1 - - 82.9 82.0 - - 69.2
HCL [19] ACPR22 92.1 - - 79.6 82.5 - - 67.5
GATE [50] ICME22 91.5 96.7 97.9 78.8 81.1 89.2 90.1 68.4
CACL [31] TIP22 92.7 97.4 98.5 80.9 82.6 91.2 93.8 69.6
O2CAP [9] TIP22 92.5 96.9 98.0 82.7 83.9 91.3 93.4 71.2
STS [51] TIP22 93.0 97.5 - 82.4 84.9 92.3 - 72.2
RPE [52] TMM23 92.6 97.1 97.9 82.4 77.8 89.3 91.7 71.5
LESL [53] TIFS23 92.9 97.1 97.8 83.4 83.9 91.0 93.0 72.7

JCL This paper 93.3 97.6 98.6 83.7 85.0 92.0 93.9 73.3

Comparison with UDA methods. Due to the ability to leverage information from
labeled source domain datasets, UDA methods (e.g., SPCL [6], MMCL [11], and MET [14])
usually exhibit better performance than PU methods. The results displayed in Table 2
highlight the exceptional efficacy of our proposed approach even without any identity
annotations, surpassing the UDA method utilizing labeled source domain data. As an
illustration, our approach achieves 0.1% improvement for Rank-1, a 0.6% increase for mAP
on Market-1501, and delivers 1.1% Rank-1 and 1.0% mAP enhancement on DukeMTMC-
reID compared to second-ranked approach RESL.

Comparison with PU methods. We evaluated the efficacy of our approach by comparing
it to several PU methods. As shown in Table 2, our proposed method significantly outperforms
all compared PU methods (e.g., CCL [17], CAP [8], P2LR [13], CACL [31], O2CAP [9]). As an
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illustration, our method achieves a minimum of 0.2% and 0.1% increase in Rank-1 and 0.3%
and 0.6% improvement in mAP on Market-1501 and DukeMTMC-reID, respectively.

4.4. Ablation Study

We aim to showcase the efficacy of various modules within our proposed approach
by conducting a series of ablation experiments on two datasets. We adopted the SPCL [6]
model as our baseline, and the results of the ablation experiments are presented in Table 3.
It is evident that our complete model outperforms the baseline on all datasets. We present
visual representations of the retrieval outcomes achieved by both the baseline and JCL
methods. As shown in Figure 7, the gallery instances retrieved are indicated by green
bounding boxes if they match the query instances. On the contrary, the ones denoted
with red bounding boxes represent individuals with identities distinct from the query
instances. It is evident that our approach can differentiate between visually similar images,
a capability not exhibited by the baseline.

Table 3. Ablation studies on different modules. ILL denotes instance-level contrastive loss; CLL denotes
cluster-level contrastive loss; JCL denotes joint contrastive loss; WAM denotes the WaveBlock attention
module; COM denotes the cluster optimization module. Bold indicates the best performance.

Variant
Market-1501 DukeMTMC-ReID

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

(a) Baseline 88.1 95.1 97.0 73.1 81.2 90.3 92.2 65.3
(b) Baseline + ILL 90.7 96.2 97.2 79.7 83.7 91.3 93.1 71.2
(c) Baseline + CLL 92.3 96.7 97.9 82.2 84.2 91.5 93.7 72.2
(d) Baseline + JCL 92.8 97.4 98.4 82.9 84.6 91.6 93.7 72.7
(e) Baseline + JCL + WAM 93.1 97.6 98.4 83.2 84.7 92.0 93.7 72.9
(f) Baseline + JCL + WAM + COM 93.3 97.6 98.6 83.7 85.0 92.0 93.9 73.3

Figure 7. Comparing the top-5 ranking lists between baseline and our method on Market-1501. Images
with green borders indicate correct matches, while those with red borders signify incorrect matches.
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Effectiveness of joint contrastive learning module. Our proposed JCL module aims
to comprehensively consider cluster-level and instance-level information through joint
contrastive learning. When we compare the outcomes of (d) and (a) in Table 3, it becomes
evident that the efficacy of the JCL module is clear. From variant (b) and variant (c), when
we only use ILL or CLL, the performance is still better than the baseline on all datasets.

Effectiveness of the WaveBlock attention module. Our model employs WAM to
obtain more discriminative features in images to enhance the accuracy of clustering re-
sults. Upon reviewing the comparative outcomes between variant (e) and variant (d) in
Table 3, it becomes evident that our introduced WAM module has a beneficial impact
on the model’s performance across all datasets. This confirms the essential role of the
WAM module. We achieve a 0.3% increase in Rank-1 and 0.3% improvement in mAP on
Market-1501. Additionally, there is a 0.1% improvement in Rank-1 and 0.2% increase in
mAP on DukeMTMC-reID.

Effectiveness of the cluster optimization module. In order to prove the superiority of
the cluster optimization module (COM), we compare the efficacy of the model after adding
COM. The results are shown in rows (e) and (f) of Table 3, we obtain 0.5% mAP gain on
Market-1501 and 0.4% mAP gain on DukeMTMC-reID, which indicates that the COM is
effective for screening reliable instances.

The influence of batch size. To investigate the influence of varying batch sizes, we
conducted training experiments using batch sizes that ranged from 32 to 256. Based on the
experimental findings presented in Figure 8a, our proposed method achieves the highest
accuracy for two datasets when a batch size of 256 is selected.

Figure 8. Ablation study with different settings of (a) batch size and (b) hyperparameter on Market-1501.
The batch size refers to the amount of data selected by the model for processing during the training
process, while the hyperparameter is used to control the impact of the loss function.

The influence of hyperparameter. The hyperparameter µ serves as a balancing factor,
ranging from 0 to 1, and its main role is to affect the weight between CLL and ILL. Figure 8b
shows the experimental results under various µ. When µ is 0, the model is only trained by
ILL, which hampers the acquisition of generalized features. Meanwhile, the noise pseudo
labels, for instance, have a great impact on the model. On the contrary, when µ is 1, only
CLL is used. While it is possible to diminish the impact of noise, retaining only a single
feature for each cluster leads to a loss of intra-class feature diversity. We obtain the best
performance when the two losses are combined, and µ is set as 0.5.
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The influence of the clustering threshold. As shown in Table 4, the clustering threshold
significantly influences the number of pseudo-labels generated and thus has a profound
influence on the overall performance of our methods. Setting the threshold too high
results in multiple samples being grouped into the same cluster, leading to an abundance
of erroneous pseudo-labels. Conversely, if the threshold is established exceedingly low,
samples attributed to the equivalent person ID will fragment into numerous diminutive
clusters, which does not contribute favorably to model enhancement. To identify the most
suitable threshold value, we conduct ablation experiments on two datasets, as illustrated
in Tables 5 and 6. The highest performance is attained on the Market-1501 dataset with a
threshold of 0.55, while on DukeMTMC-reID, the optimal outcome is attained when setting
a threshold of 0.6. The difference in clustering thresholds is due to the large size of the
DukeMTMC-reID dataset, the large number of cameras, and the more complex background
environment, making it more difficult to recognize person images than in Market-1501.
This will result in a lower similarity between the same person image features, so setting a
larger threshold will increase the constraint distance between instances in the clustering
process, and more instances will be merged into one cluster to achieve better performance.

Table 4. The quantity of pseudo-labels produced at under various clustering thresholds on Market-
1501, where the number of pseudo labels represents the number of clusters after clustering.

Threshold 0.4 0.45 0.5 0.55 0.6

Number 708 664 633 590 559

Table 5. The influence of various clustering thresholds on Market-1501. Showing the values of rank-r
and map (%). The best results are in bold.

Threshold Rank-1 Rank-5 Rank-10 mAP

0.4 92.2 97.1 98.0 82.2
0.45 92.8 97.3 98.2 82.6
0.5 92.9 97.6 98.4 83.2

0.55 93.3 97.6 98.6 83.7
0.6 93.2 97.6 98.5 83.4

Table 6. The influence of various clustering thresholds on DukeMTMC-reID. Showing the values of
rank-r and map (%). The best results are in bold.

Threshold Rank-1 Rank-5 Rank-10 mAP

0.4 78.8 88.0 90.4 65.5
0.45 82.8 90.8 93.0 69.7
0.5 83.6 91.9 94.0 71.6

0.55 84.6 92.0 94.3 72.3
0.6 85.0 92.0 93.9 73.3

The influence of IBN-ResNet and Generalized Mean Pooling. Furthermore, we also
investigate the influence of several commonly employed tricks on our method, such as IBN-
ResNet and generalized mean (GeM) [42] Pooling. As illustrated in Table 7, our proposed
JCL’s performance can be enhanced further by incorporating IBN-ResNet and GeM [42] on
two datasets.
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Table 7. The impact of different tricks on our proposed method JCL on two real-world person Re-ID
datasets. ’IBN’ indicates the use of IBN-ResNet50. ‘GeM’ indicates the generalized mean pooling
layer. The best results are in bold.

Method Market-1501
Rank-1 Rank-5 Rank-10 mAP

ResNet-50 93.3 97.6 98.6 83.7
GeM 94.3 97.8 98.7 85.7

GEM + IBN 94.7 97.8 98.7 87.4

Method DukeMTMC-reID
Rank-1 Rank-5 Rank-10 mAP

ResNet-50 85.0 92.0 93.9 73.3
GeM 86.0 93.0 94.7 75.7

GEM + IBN 86.5 92.6 94.5 75.9

4.5. Experiments in Remote Sensing Dataset

To highlight the flexibility of our methodology, we perform experiments on the exten-
sive airborne person Re-ID dataset PRAI-1581 [23], encompassing 39,461 images portraying
1581 person identities. The dataset comprises images captured by two UAVs during flight,
encompassing a wide range of real UAV surveillance scenarios.

As a result of the UAV’s varying flight altitudes, the camera’s adjustable tilt angle,
and the fuselage’s ability to freely rotate, people exhibit a wide range of resolutions,
perspectives, and poses within the dataset. The complexity of the overall situation is further
elevated. Figure 9 shows some example images in the PRAI-1581, and the remote sensing
person images are more challenging than those captured by traditional fixed cameras.

Figure 9. Example images in the Market-1501 and PRAI-1581 datasets. Compared to the Market-1501
dataset, the PRAI-1581 dataset contains rich scale diversity, including low resolution, partial occlusion,
different perspectives, person posture, and UAVs flying at different altitudes.

Then, we conducted supervised experiments on the PRAI-1581 to demonstrate the
generalization ability of our method, as shown in Table 8. Our method achieves 43.5% in
mAP and 55.4% in rank-1 accuracy on PRAI-1581, which is 1.0% higher than OSNET [54] in
rank-1. The outcomes indicate that our method performs effectively, even when handling
intricate datasets with authentic labels. This further validates the efficacy and generalization
capabilities of our approach for person Re-ID, whether supervised or unsupervised, remote
sensing images or normal images. In addition, we illustrate the search outcomes of JCL
and OSNET [54] on the PRAI-1581 dataset. As shown in Figure 10, the gallery instances
retrieved are indicated by green bounding boxes if they match the query instances. On the
contrary, the ones denoted with red bounding boxes represent individuals with identities
distinct from the query instances. The outcomes from the initial query instance suggest
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that, despite occasional occlusion and variations in person posture, the JCL method can
accurately retrieve a person with the same ID.

Table 8. Comparison with the Re-ID methods on PRAI-1581. ID denotes identification loss, TL
denotes triplet loss, SP denotes subspace pooling. Bold indicates the best performance.

Method PRAI-1581
Rank-1 mAP

ID 42.6 31.4
TL 47.4 36.4

TL + SP [23] 49.7 39.5
OSNET [54] 54.4 42.1

Ours 55.4 43.5

Figure 10. Comparing the top-5 ranking lists between baseline and our method on PRAI-1581. Images
with green borders indicate correct matches, while those with red borders signify incorrect matches.

Meanwhile, we conducted experiments on the Xiongan New Area dataset. Figure 11
shows the visualization effect of our method on the Xiongan New Area dataset. It is evident
that our WAM module excels in identifying the region of interest, underscoring its ability to
adeptly capture crucial information within the image. As an illustration, consider the first
image depicted in Figure 11. In this instance, we effectively identify and retrieve the water
body segment within the image. Subsequently, we assign increased weights to facilitate the
model in extracting more distinctive features. This further substantiates the effectiveness of
our model, showcasing its proficiency not only in accurately detecting a person but also
in demonstrating commendable generalization capabilities when identifying buildings,
woodlands, and various other objects. In addition, we visualize the search results of JCL
on the Xiongan New Area dataset. As shown in Figure 12, the gallery instances retrieved
are indicated by green bounding boxes if they match the query instances. On the contrary,
the ones denoted with red bounding boxes represent individuals with identities distinct
from the query instances.



Remote Sens. 2024, 16, 422 17 of 20

Figure 11. Grad-CAM visualization of feature maps extracted by our model in the Xiongan New
Area dataset. The red box represents the original image, and the green box represents the heatmap.

Figure 12. Our model obtains the top-3 ranking lists for Xiongan New Area dataset. Images with
green borders indicate correct matching, while images with red borders indicate incorrect matching.

5. Conclusions

In this paper, we propose a new joint contrastive learning framework designed for
purely unsupervised person Re-ID. Specifically, our model takes into account both cluster
and instance-level information in acquiring more discriminative features so as to achieve
good recognition results. Our proposed model incorporates WAM and a cluster-filtering
approach to capture more distinctive features of a person and diminish the influence of back-
ground. The experimental results demonstrate the effectiveness of our proposed method.
In addition, our approach demonstrates commendable performance on remote sensing
datasets, highlighting its excellence in feature extraction and model generalization ability.

As local information contributes to effective representation learning, our model has
scope for further performance enhancement. In the future, we aim to integrate local
information as important clues for identifying people to alleviate the adverse effects of
pseudo-label noise.
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