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Abstract: The sustainable provision of ecological products and services, both natural and man-made,
faces a substantial threat emanating from invasive plant species (IPS), which inflict considerable
economic and ecological harm on a global scale. They are widely recognized as one of the primary
drivers of global biodiversity decline and have become the focal point of an increasing number of
studies. The integration of remote sensing (RS) and geographic information systems (GIS) plays
a pivotal role in their detection and classification across a diverse range of research endeavors,
emphasizing the critical significance of accounting for the phenological stages of the targeted species
when endeavoring to accurately delineate their distribution and occurrences. This study is centered
on this fundamental premise, as it endeavors to amass terrestrial data encompassing the phenological
stages and spectral attributes of the specified IPS, with the overarching objective of ascertaining the
most opportune time frames for their detection. Moreover, it involves the development and validation
of a detection and classification algorithm, harnessing a diverse array of RS datasets, including satellite
and unmanned aerial vehicle (UAV) imagery spanning the spectrum from RGB to multispectral and
near-infrared (NIR). Taken together, our investigation underscores the advantages of employing an
array of RS datasets in conjunction with the phenological stages, offering an economically efficient
and adaptable solution for the detection and monitoring of invasive plant species. Such insights
hold the potential to inform both present and future policymaking pertaining to the management of
invasive species in agricultural and natural ecosystems.

Keywords: invasive plant species; remote sensing; automatic segment-based classification; unmanned
aerial vehicles; neophytes; Heracleum mantegazzianum; Fallopia spec.; Bunias orientalis

1. Introduction

The introduction of non-indigenous species into previously undisturbed ecosystems is
recognized as a primary threat to global biodiversity, leading to the homogenization of flora
and fauna through competition and habitat modification [1,2]. In the specific context of
agriculture, the presence of IPS can have detrimental consequences, including reduced crop
yields, elevated management expenses, and potential threats to food security, as indicated
in several studies [3–7]. Furthermore, the encroachment of IPS into agricultural areas can
also result in adverse ecological impacts, such as alterations in soil properties and nutrient
cycling [8]. The monetary cost of invasive species in Germany alone is estimated to be a
substantial $829.11 million, with $213.95 million attributed to plants [9]. Despite the gravity
of this issue, there remains a significant gap in comprehending the full extent of IPS spread
in agricultural landscapes and the implementation of effective management strategies to
control them [9]. In this context, the development of innovative tools for their detection

Remote Sens. 2024, 16, 500. https://doi.org/10.3390/rs16030500 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16030500
https://doi.org/10.3390/rs16030500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0002-6251-8887
https://orcid.org/0009-0005-1621-3187
https://orcid.org/0000-0002-3836-2723
https://doi.org/10.3390/rs16030500
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16030500?type=check_update&version=2


Remote Sens. 2024, 16, 500 2 of 16

and monitoring in agricultural areas is of paramount importance. RS techniques such as
classification algorithms of datasets including aerial and satellite imagery, have exhibited
remarkable potential for providing a cost-effective and efficient means of monitoring the
spread of IPS over vast geographical areas [10–13].

The primary objective of this study was twofold: (1) to identify the phenological traits
of specific IPS that might be suitable for RS classification approaches and (2) to design
a novel tool for the automated processing of RS data to enable the precise mapping of
the spatial distribution of IPS in agricultural areas. While terrestrial mapping approaches
can deliver highly precise datasets on a small scale, analyzing large-scale distributions
necessitates the utilization of RS data and methodologies due to constraints related to time,
cost, and personnel [14]. The assessment of RS data is a well-established and effective
methodology in biotope mapping and biodiversity research, offering consistent data cover-
age over extensive areas when calibrated via terrestrial mapping [15,16]. The detection and
mapping of plant species, including IPS, have been demonstrated using datasets such as
aerial photography, hyperspectral RS data, and radar data [17–20]. Furthermore, the utiliza-
tion of UAVs for efficient IPS detection is on the rise [11,21–24]. For instance, a combination
of UAV imagery and classification software such as eCognition Developer 9.0 was used
to determine the suitability of such for the detection of Asian knotweed (Fallopia japonica,
Fallopia × bohemica), determining that it is possible that this specific IPS can be satisfactorily
mapped and monitored via RS [21]. However, systematic studies on the suitability of mul-
tisensory and multiscale RS datasets and RS approaches for the detection and mapping of
invasive neophytes on agricultural land in Germany have yet to be conducted. To address
this gap, study areas were selected based on known occurrences of nine relevant neophytes
for central Germany. These study areas were meticulously surveyed, to collect ground
control data to train and validate our classification algorithm. We employed segment-based
classification approaches to evaluate high-resolution aerial and satellite imagery, as well as
multispectral and NIR cameras. For each neophyte, optimal time frames for their detec-
tion based on RS sensitive phenological traits were determined and evaluated [25]. This
knowledge enables the adaptation of the optimal detection time frame and classification
parameters used in our approach for varying climatic conditions and landscapes. Addi-
tionally, this study yielded fundamental knowledge regarding the minimum spectral and
geometric requirements necessary for the detection and classification of the researched IPS.

The significance of our study is founded in the necessity of the early detection and
monitoring of IPS on agricultural land to prevent the displacement of native species
and associated negative impacts such as erosion [26]. Once IPS such as Giant hogweed
(Heracleum mantegazzianum) become established in an ecosystem, their removal becomes
increasingly challenging [26,27]. Moreover, these species can be easily transported from
one region to another, often unintentionally. A small quantity of seeds or rhizomes in
contaminated soil material can facilitate the rapid spread of species such as Asian knotweed
(Fallopia japonica) or Turkish warty cabbage (Bunias orientalis) over large distances [28].
Therefore, the prevention, detection, monitoring, and management of IPS are vital for the
preservation of biodiversity and ecological services, and RS, particularly the utilization of
UAVs, holds significant promise for future sustainable management strategies [21,25,29].

2. Materials and Methods
2.1. Research into Critical Neophytes for Agriculture in Germany

The European Commission bears the responsibility of publishing the Union list, which
formally designates invasive animal and plant species capable of posing a threat to bio-
diversity across Europe [30]. This Union list carries the weight of legal obligation and is
devised with the overarching goals of averting, identifying, monitoring, and managing
such species, thereby mitigating their potential repercussions on the natural and man-made
ecosystems and ecological services of Europe [31]. As it currently stands, this list encom-
passes 88 distinct species, at least 48 of which, comprising 22 plant species and 26 animal
species, are confirmed to be present within the territory of Germany [30,32,33]. One source
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of IPS occurrence reports for parts of Germany is the KORINA database, a repository of
location-based data drawing from various sources [34]. Furthermore, the project’s website
and mobile application serve as platforms for registered users to contribute location-based
sightings of neophytes [34]. To streamline our list of potential species, we intersected these
occurrence reports with geospatial data containing agricultural areas, thereby distilling
the roster to those IPS that are confirmed to occur in significant numbers and possess the
potential to significantly impact agricultural lands not only in Germany but also across the
broader European context. These nine neophytes are succinctly enumerated in Table 1.

Table 1. List of the relevant invasive plant species present on agricultural land for Germany.

Common Name Scientific Name German Name EPPO-Code

Giant Hogweed Heracleum mantegazzianum Riesenbärenklau HERMZ
Japanese Knotweed Fallopia spec. Staudenknöterich-Arten FOPSS

Turkish Warty-Cabbage Bunias orientalis Orientalisches Zackenschötchen BUNOR
Russian Olive Elaeagnus angustifolia Schmallblättrige Ölweide ELGAN

Boxelder Maple Acer negundo Eschen-Ahorn ACRNE
Glandular Globe-Thistle Echinops sphaerocephalus Drüsenblättrige Kugeldistel ECPSP

Jimsonweed Datura stramonium Weißer Stechapfel DATST
Velvetleaf Abutilon theophrasti Samtpappel ABUTH

Yellow Nutsedge Cyperus esculentus Erdmantel CYPES

2.2. Setting up the Study Areas

The foundation for identifying suitable study areas was established through the
intersection of occurrence reports from the KORINA database and the national plant atlas
FloraWeb with data related to agricultural regions and land use in the federal state of
Saxony-Anhalt [35,36].

In this process, specific criteria were applied to select these study areas. These crite-
ria included the frequency of occurrence reports per site, the specific land use categories
associated with individual agricultural areas (such as grassland, arable land, organic farm-
land, etc.), and the regional landscape type in which the area was situated. The objective
was to encompass as wide a spectrum of morphological and ecological scenarios as possi-
ble. Following this initial pre-selection of prospective study areas, on-site field inspections
were conducted. This step was imperative, as the occurrence reports could potentially
be outdated, necessitating verification of the continued presence of the targeted IPS in
sufficient numbers. Additional criteria for this selection phase included the uniformity
of the vegetation stand and the precise location of individual plants, with an emphasis
on minimizing obstructions like canopy cover. For sites meeting these stringent criteria,
precise measurements were taken using a sub-meter accurate GNSS to ensure the precise
spatial assignment of neophytes within the RS datasets. Furthermore, these study areas
depicted in Figure 1 were subdivided into training and control sites situated near each other,
facilitating comparability between them. For each IPS, a minimum of five training sites and
five control sites were selected, ensuring a comprehensive and balanced dataset for our
analysis. It is noteworthy that, in some instances, substantial neophyte populations were
not found in the field. This was the case for three specific species, namely Cyperus esculentus,
Abutilon theophrasti, and Datura stramonium. For these species, it was necessary to simulate
a plant stand model within controlled spring barley and maize fields to gather extensive
data concerning their phenological characteristics and suitability for deployment within an
RS-based classification model.
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Figure 1. Geographical distribution of the selected study sites across Saxony-Anhalt, illustrating the
diverse range of agricultural landscapes and neophyte occurrences.

2.3. Data Collection

The terrestrial dataset, integral for validating the classification algorithm and establish-
ing the optimal time frames for RS detection based on the phenological stages, encompasses
a multitude of variables we measured during our surveys of each study area. These vari-
ables include the dimensions and geographical coordinates of training or control sites, the
predominant land use within the surveyed area, the prevailing environmental conditions
during the survey, the collective coverage of both shrub and herbaceous layers as well as
the extent of open ground coverage, the mean and maximum vegetation heights, the extent
of neophyte coverage, an inventory of the plant species present along with information on
species richness, and meticulous observations pertaining to the phenology of each neophyte.
The latter factor proves particularly pivotal in the process of detecting and classifying these
species, enabling their distinction from other plants. Furthermore, alongside the terrestrial
surveys of each study area, we carried out photographic documentations to acquire both
full-view and detailed imagery of the occurring plant species and their phenotype. For the
species Cyperus esculentus, Abutilon theophrasti, and Datura stramonium, this documentation
proved necessary due to the necessity of simulating occurrences using a plant stand model
causing the absence of suitable RS datasets such as satellite imagery. Using a ladder and a
Nikon D3100 RGB camera, high-angle imagery was captured at regular intervals, resulting
in a comprehensive dataset documenting the phenological changes and traits for these
three IPS.

In our preliminary investigations concerning the presence of neophytes on agricultural
land in Germany, we delved into the selection of suitable RS datasets and methodologies.
The suitability of a particular dataset for the classification approach hinged significantly
on the occurrence of detectable phenological traits of the surveyed IPS. To streamline
our data accusation approach, we hierarchically organized suitable RS datasets based on
their presumed utility for detecting the targeted neophytes, following this order: airborne
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digital orthophotos (DOP) > WorldView02 (WV02) and WorldView03 (WV03) satellite
imagery > RGB and hyperspectral camera (HySpex) gyrocopter datasets > RGB datasets
acquired via unmanned aerial vehicles (UAVs). If a given dataset was unavailable or
the occurrence of detectable phenological traits proved unsatisfactory, the subsequent
data source (according to this hierarchy) was selected as a substitute. Table 2 depicts the
RS data source used for each species and highlights a unique challenge when dealing
with highly time-sensitive attributes such as phenological characteristics. Matching the
occurrence of the phenological traits of an IPS with the availability of suitable data proved
difficult for the preferred data sources: DOP and satellite imagery. For instance, only
two of the nine neophytes were significantly represented in DOP or satellite imagery due
to unsatisfactory weather conditions or a misalignment of the acquisition date of these
datasets and the necessary occurrence of RS sensitive phenological traits. To ensure the
latter, while minimizing temporal discrepancies between the terrestrial surveys and the
acquisition date of the RS datasets, we attempted to align them as closely as possible. This
further necessitated the inadequacy of specific datasets such as satellite imagery for the
detection of these highly time-sensitive traits.

Table 2. Overview of the remote sensing sensors used, their relevant technical parameters, and the
detected species.

Sensor Technical Parameters Detected Species

Airborne Digital Orthophotos Spatial resolution: Bunias orientalis,
(DOP) 0.2–0.4 m Elaeagnus angustifolia

Spectral Resolution:
400–1000 nm

Satellite WorldView02 (WV02) Spatial resolution: Bunias orientalis,
and WorldView03 (WV03) WV02: 0.46 m and 1.84 m Elaeagnus angustifolia

WV03: 0.31 m and 1.24 m
Spectral resolution:
WV02: 400–900 nm

WV03: 400–1040 nm

Gyrocopter RGB camera and Spatial resolution: Acer negundo,
hyperspectral camera 0.24 m (0.05 m) Echinops sphaerocephalus,

(HySpex) Spectral resolution: Fallopia spec.,
400–1000 nm Heracleum mantegazzianum

UAV (drone) RGB camera 1/2.3′′ CMOS Sensor Bunias orientalis,
Yuneec Typhoon H Lens: 14 mm f/2.8 Datura stramonium,

Spectral resolution: Echinops sphaerocephalus
400–700 nm

Nikon D3100 RGB camera Camera cut out: Abutilon theophrasti,
1 × 1.2 m Cyperus esculentus,

Focal length: Datura stramonium
50 mm

Spectral resolution:
400–700 nm

2.4. Detection Algorithm and Field Application

Our research, driven by the initial studies and the aspiration to establish a standardized
classification methodology for the identification of neophytes using high-resolution RS
data, prompted our exploration of software solutions capable of aggregating individual
pixels into segments sharing similar spectral properties. Throughout the course of this
study, we devised two distinct methodologies. The first method relied on eCognition, a
versatile software capable of analyzing a diverse range of geospatial data, including satellite
imagery, aerial photography, and LiDAR data [25,37]. Our preference for a segment-based
classification approach over a pixel-based one was influenced by the former’s general
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tendency to yield greater accuracy and enhanced resilience to errors [38]. Pixel-based
approaches traditionally employ individual pixels for training the classification model.
However, it is essential to recognize that an object is not singularly represented by a solitary
pixel, and the spectral signals of these individual pixels may exhibit subtle variations while
still constituting parts of the same object [39,40]. In contrast, segmentation classification
groups pixels with alike spectral properties into segments before executing the image
classification [39,40]. This segmentation strategy enhances the precision and robustness
of the classification results by mitigating noise, a characteristic especially pertinent to
high-resolution datasets, characterized by a dense pixel distribution and intricate details,
which can pose challenges for pixel-based approaches [39].

As depicted in Figure 2, our eCognition approach entailed several steps. Initially,
we selected training areas and identified suitable RS datasets. Using eCognition, these
datasets, such as satellite imagery, were segmented into coherent structures characterized
by analogous spectral properties. Drawing from our predefined training areas and the
information gathered about the phenology and distinctive plant features of each neophyte,
we designated spectral and structural object classes and constructed classification trees.
Possible classes were water, agricultural land, trees, grassland, and the targeted neophyte.
After defining and training these classes, object- and segment-based classification were
carried out. Using QGIS 2.8.0 and the ground truth data acquired through our terrestrial
surveys the classification accuracy was calculated. These classification results were further
validated using the control areas to verify the detection results based on the segment-
based classification in size and position with real occurrences and to ascertain possible
causes such as casted shadows for misclassifications. If necessary, we further optimized
the classification trees inside of eCognition for species such as Heracleum mantegazzianum
by adjusting the segmentation parameter and the spectral class thresholds. Detected
misassignments can be easily excluded from a class when using a segment-based approach.
For instance, Figure 3 depicts the classification result of a HySpex image for the targeted
class Fallopia spec. highlighted in red. The two objects outlined in red on the right-hand side
represent misassignments identified as tree species, which were excluded in the described
post-processing steps to further improve the classification algorithm.

Figure 2. General workflow of the classification approach.
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Figure 3. Classification result of a HySpex image targeting Fallopia spec. highlighted in red. Objects
outlined in red represent misassignments identified as different species (trees).

This streamlined process as depicted in Figure 2 served as the foundation of our
workflow for each of the nine neophytes. Given consistent input datasets and sensors,
this classification approach can be readily transferred to various regions, facilitating swift
application. To validate this claim, we employed our trained segmentation classification
automatically on a grassland area in the federal state of Thuringia where large occurrences
of Bunias orientalis were reported.

3. Results

As expounded upon by researchers such as Müllerová et al. and others, the effective-
ness of utilizing RS datasets for the detection of invasive plant species is intricately tied to
the assessment of their phenological attributes [25,41–44]. Throughout our field surveys,
comprehensive data regarding the phenological traits of each neophyte were gathered to
ascertain the most appropriate features for the RS classification methodology. Additionally,
we identified and researched the temporal window during which these botanical charac-
teristics ought to be discernible within the RS datasets. By aligning the data acquisition
process with the optimal time frame for detecting RS-applicable phenological character-
istics, we aim to achieve the highest possible level of discrimination between invasive
and indigenous species. The crucial findings stemming from our terrestrial surveys and
remote sensing investigations are succinctly summarized in Table 3. For each neophyte,
Table 3 depicts the most suitable phenological traits and their corresponding optimal and
sub-optimal detection time frame for RS classification. Note that these results are based on
our segmentation approach and are highly dependent on the used RS datasets depicted in
Table 2.

Table 3. Overview of the neophytes, their RS suitable phenological characteristics and the optimal
time frame to detect these.

Scientific Name Plant Feature Suitable for RS Classification Optimal and Sub-Optimal 1 Detection
Time Frame

Heracleum mantegazzianum Blossoms Optimal: June–July

Fallopia spec. Unfolded leaf surface, Optimal: June–August
Concentric growth Sub-optimal: May–August

Bunias orientalis Blossoms, Optimal: May–JuneCompact structure of the inflorescence
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Table 3. Cont.

Scientific Name Plant Feature Suitable for RS Classification Optimal and Sub-Optimal 1 Detection
Time Frame

Elaeagnus angustifolia Unfolded leaves under sunny circumstances Optimal: May–July
Sub-optimal: May–September

Acer negundo Unfolded leaves Optimal: May–August

Echinops sphaerocephalus Blossoms Optimal: June–August

Datura stramonium Blossoms Optimal: June–July

Abutilon theophrasti Leaves Optimal: June–July
Sub-optimal: June–August

Cyperus esculentus Leaves Optimal: June|September–October
Sub-optimal: June–October

1 Time frame were it might be possible to still detect some of the RS suitable features.

3.1. Heracleum mantegazzianum

The biennial to perennial Heracleum mantegazzianum can attain heights ranging from 2
to 5 m, exhibiting leaves with lengths spanning 1 to 3 m [45]. The blossoms are white and
undergo flowering from the middle of June to August [46,47]. In the absence of available
DOP or suitable satellite imagery, we conducted an aerial survey employing a gyrocopter.
This survey was carried out around the outset of August, by which time the Heracleum
mantegazzianum stands had concluded their flowering period. Nevertheless, these stands
remained distinctly discernible within the dataset and were amenable to segmentation into
homogenous clusters. In our initial endeavor, the segment-based classification approach
yielded an overall accuracy of 72%, which was subsequently enhanced to 83%. While
surveying Fallopia spec. with a gyrocopter, we identified hitherto unknown occurrences
of Heracleum mantegazzianum in full bloom. Employing the automated segment-based
classification approach for this plant stand yielded an accuracy of 84% without necessitating
post-processing (see Figure 4). Based on these discoveries, the most suitable phenological
characteristic for remote sensing is evidently the inflorescence in full bloom, characterized
by diameters of up to 80 cm and a white coloration. This culminates in an optimal detection
time frame from the latter half of June to the first half of July.

Figure 4. Result of the automatic segment-based classification of Heracleum mantegazzianum and
Fallopia spec. in the Wülperode study area from a Gyrocopter HySpex dataset.
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3.2. Fallopia spec.

The genus Fallopia includes several species, among which Japanese knotweed (Fal-
lopia japonica), bastard knotweed (Fallopia x bohemica), and Sakhalin knotweed (Fallopia sacha-
linensis) were simultaneously subject to analysis during the survey due to their shared
morphological traits. The survey encompassed extensive stands representing various age
stages, with data acquisition conducted via a gyrocopter. These stands, distinguished by
their robust vitality and a high proportion of fully extended leaf mass, exhibited a vivid
yellow hue in the RGB imagery and displayed a distinctive concentric growth pattern. Our
segment-based classification algorithm demonstrated exceptional performance, achieving
a classification accuracy of 93%. The most relevant phenological attributes for RS purposes
are the unfolded leaf surface combined with the concentric growth pattern of the plants.
The optimal window for detection spans from June to the early days of August.

3.3. Bunias orientalis

For Bunias orientalis, three distinct datasets were available and subjected to rigorous
testing. The most significant phenological feature suitable for RS applications was identified
to be the inflorescence, characterized by its semi-rosette formation and conspicuous bright
yellow pigmentation. Leveraging DOPs, our classification approach exhibited the capability
to identify Bunias orientalis with a commendable accuracy of 92% within a grassland test
site. However, it is noteworthy that at the peripheries of these densely populated stands
individual plants were occasionally not reliably detected. Considering the infrequent
availability of appropriate DOP or satellite imagery, we explored the suitability of UAV
survey strategies. Control points were meticulously measured with high-precision GPS
technology to rectify the image data. The segment-based classification method excelled in
detecting Bunias orientalis stands across varying coverages, extending down to individual
plants, and achieved a remarkable accuracy of 95%. Additionally, an assessment was
conducted using satellite imagery from WV02. Utilizing the classification algorithm, the
stands of Bunias orientalis were observable with an accuracy of 78%. It is imperative to
note that predominantly compact Bunias orientalis stands were discernible in the satellite
images, attributable to the comparatively lower geometric resolution of the dataset. In
summation, the detection of Bunias orientalis is feasible through the examination of fully
expanded inflorescences. The most favorable detection time frame corresponds to the
latter half of May to the early days of June, coinciding with the conclusion of the rapeseed
blooming period and the commencement of the Bunias orientalis blooming season. Further
spectral overlaps were identified with Sisymbrium species such as Sisymbrium loeseli and
Sisymbrium altissimum. Despite these spectral overlaps, it is possible to distinguish between
these species by harnessing the spectral data encapsulated within the RGB datasets.

To further validate the accuracy of our segmentation classification approach, we
employed the trained model of Bunias orientalis on a previously unknown area, located
in the federal state of Thuringia. Figure 5 depicts a DOP imagery before (left side) and
after (right side) running the previously trained classification model unsupervised. The
classification result for Bunias orientalis is highlighted in red. The overall accuracy achieved
for this DOP is 90%. Shadows cast by surrounding buildings and trees had a slight negative
impact on the overall accuracy.
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Figure 5. DOP captured in May near Ebeleben in Thuringia depicting occurrences of Bunias orientalis
visible as yellow spots on the left side and highlighted in red after the automated segmentation
classification on the right side.

3.4. Elaeagnus angustifolia

Elaeagnus angustifolia, originating from Asia [48], has been extensively planted in
central Germany, primarily for the purpose of rehabilitating post-mining landscapes and
along highways. This versatile species is known to thrive in various forms, manifesting as
either a tree or a shrub, capable of attaining heights ranging from 8 to 15 m [49]. Elaeagnus
angustifolia’s distinctive features include leathery leaves, measuring between 4 to 8 cm in
length, characterized by their narrow and lanceolate shape. Of significance, this neophyte
is demonstrating invasive tendencies by colonizing grassland areas. Within the study
area, an open-cast mining site rehabilitated for alternate use, this species was observed in
patchy distributions across agriculturally utilized grassland areas. These patches exhibit
variations in densities, ages, and growth heights. DOP imagery facilitated the distinction
of this neophyte from other tree species. Our segment-based classification approach
yielded an accuracy rate of 83%. The availability of numerous datasets spanning different
years and the constant landscape alterations induced by agricultural activities such as
grazing and mulching have enabled us to periodically repeat this classification process.
This multitemporal analysis has afforded us the opportunity to trace the spread and
development of the species over time. In addition to DOP, we explored the use of satellite
imagery, specifically WV03 data. Among the 12 satellite imagery scenes scrutinized, only
one proved suitable for our intended use. Regrettably, the application of the segment-
based classification approach for detecting Elaeagnus angustifolia was thwarted by weather
conditions. The night before the data recording, rainfall occurred, leaving the leaves of
the target species in a damp state. As a result, the typical silvery green hue of Elaeagnus
angustifolia leaves, a remotely sensed characteristic chiefly attributed to the hairy leaf surface,
was absent from the scene. Consequently, the leaves of Elaeagnus angustifolia no longer
exhibited stark distinctions from those of other tree species. Based on our comprehensive
surveys, the optimal window for detection falls between the end of May and the beginning
of July, with suboptimal opportunities extending up to the beginning of October. These
time frames present the most favorable conditions for the accurate detection of Elaeagnus
angustifolia within the specified region.

3.5. Acer negundo

The tree species Acer negundo, native to North America, exhibits a considerable height
range, typically growing from 6 to 25 m [45]. It is important to note that currently, there are
no large-scale occurrences of Acer negundo reported on agricultural land within Saxony-
Anhalt. Instead, the species is primarily found within windbreaks, hedges, and tree
lines. Given the absence of Acer negundo on agricultural land, our study shifted its focus
to a grassland site. Data acquisition for this endeavor was conducted via a gyrocopter.
However, the segment-based classification approach yielded unsatisfactory results. The
spectral composition of Acer negundo’s leaf surfaces closely resembled the surrounding
grassland, hindering effective differentiation (see Figure 6).
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Figure 6. Spectra from the RGB dataset dated 2 August 2018, for the Wittenberg study area (grayscale
value determination: average values from 10,000 pixels/class).

Nevertheless, it was possible to distinguish Acer negundo from other tree species in the
vicinity. Additionally, attempts were made to detect Acer negundo using a WorldView-03
scene. However, the limited geometric resolution of this satellite dataset rendered it impos-
sible to detect and classify the target species accurately. Instead, a visual photointerpretation
of the RGB dataset enabled the successful detection of Acer negundo during the optimal
detection window, spanning from the end of May to the beginning of August.

3.6. Echinops sphaerocephalus

Echinops sphaerocephalus, a shrub species, typically exhibits heights ranging from
50 to 200 cm, with leaves capable of growing up to 40 cm in length [50]. Its defining
feature is the presence of distinctive spherical inflorescences, which are gray–blue and
can attain diameters of up to 6 cm. The flowering period for this species commences
in June and concludes in August. Echinops sphaerocephalus is known to occur in loose
stands, making the use of satellite imagery or DOP for detection challenging. Instead, our
approach incorporated the utilization of a gyrocopter and a UAV system. Regrettably, when
employing the inflorescence as the remote sensing plant characteristic, our classification
method failed to yield satisfactory results. This outcome was primarily attributed to a
substantial spectral overlap between our target species and the dry reed and wheat in
the surrounding environment. Additionally, the vegetation in the study area had already
been severely affected by an extended period of drought. However, by implementing
a knowledge-based visual interpretation approach, we successfully achieved favorable
results. Subsequently, we conducted a UAV survey at a height of 14 m, but, once again, this
dataset was exclusively suitable for the visual interpretation approach.

3.7. Datura stramonium

Datura stramonium, an annual plant known to reach heights of up to 2 m, typically
blooms in Germany between June and October [51]. Notably, within the KORINA database,
no occurrence reports on agricultural land were found, with the limited available reports
primarily focusing on urban areas. Consequently, our study aimed to assess the detectabil-
ity of this species using a plant stand model. Our experimental findings indicate that Datura
stramonium can be readily distinguished from wheat, especially shortly before the harvest,
leveraging leaves as the detection characteristic. During this period, wheat assumes a
yellowish appearance, while Datura stramonium appears green in RGB imagery. In the plant
model experiment, Datura stramonium exhibited competitive growth with spring barley in
terms of height, rendering it detectable through remote sensing. Subsequently, we serendip-
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itously discovered occurrences of Datura stramonium within various crops on the arable
land of an organically managed farm. To test the detectability of these occurrences, we
conducted a UAV survey in combination with our segment-based classification approach.
However, due to the similarity in spectral characteristics between the targeted species and
others, the classification yielded a high error rate. This limitation could potentially be
mitigated through the application of a high-end UAV system equipped with more precise
sensors. In parallel with the segment-based classification, we also implemented a visual
knowledge-based approach to the dataset, successfully identifying 49 individual plants
within a 27 square meter area. The optimal window for detection of Datura stramonium
falls between the end of June and throughout July, aligning with its typical growth and
flowering period.

3.8. Abutilon theophrasti

Similar to Datura stramonium, isolated occurrence reports for Abutilon theophrasti on
agricultural land in Saxony-Anhalt are limited. Consequently, we conducted tests to assess
its detectability using a modeled plant stand within maize and spring barley crops. Our
research revealed that the successful detection of Abutilon theophrasti was only achievable
through knowledge-based visual approaches, as segment-based classifications proved
unreliable under these conditions. It is worth noting that Abutilon theophrasti typically does
not coexist with maize, barley, or wheat. Instead, it poses more of a problem in root crop
fields, such as potato and sugar beet fields. The potential for detecting Abutilon theophrasti
within such crops using satellite imagery, differential optical pathlength spectroscopy
(DOP), or UAV systems remains plausible. However, this could not be tested, as such
stands were not present in the field for our study.

3.9. Cyperus esculentus

Cyperus esculentus presented a unique challenge, as we had to simulate its occurrence in
other crops. According to the KORINA database, this species is relatively rare in Germany.
Like Abutilon theophrasti, we grew the targeted species alongside maize and spring barley.
This experiment aimed to identify the plant characteristics suitable for Cyperus esculentus
detection. From this experiment, we deduced two potential optimal detection windows.
The first window occurs in crops sown during spring, characterized by a lengthy time for
the canopy to close. The second window lies between harvest and tillage. Notably, Cyperus
esculentus did not develop beyond the formation of a maximum of nine broad leaves in
either experiment when under competition. Consequently, no other remotely detectable
traits, such as flowers, were available. Images from Switzerland, where this species has
already impacted extensive cropland areas, suggest a high potential for detection using
remote sensing datasets based on leaf color and dispersal patterns. Furthermore, we identify
significant potential in detection using UAV systems. These platforms enable timely aerial
surveys during the brief optimal windows of opportunity for Cyperus esculentus detection,
spanning from the end of June to the end of September and the beginning of October.

4. Discussion

To effectively manage the proliferation of IPS within agricultural landscapes, the critical
role of early detection cannot be overstated [52]. Endeavors to avert, identify, monitor, and
manage IPS and their negative impact on natural and man-made ecosystems and ecological
services as stated by the European Commission [31] are most effective on small infestations
and become less effective the further an IPS can increase in number [52,53]. However,
traditional manual monitoring approaches are labor-intensive and cost-prohibitive [14],
necessitating the adoption of contemporary methodologies and the research into the role of
the phenology of IPS on the quality and accuracy of RS detections [25].

In this study, building upon antecedent studies [42–44,54], we focused on the assess-
ment of RS sensitive phenological traits pertaining to the nine most prevalent IPS relevant
to agriculture in Germany and Europe. Our investigation delved into the identification
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of optimal windows for detecting these traits and validated the suitability of a trained
object-based segmentation classification approach for this purpose. Notably, the systematic
assessment of plant features amenable to RS classifications, along with the identification
of their optimal detection time frames, has not hitherto constituted a focal point within
IPS management practices in Germany. Leveraging the acquired insights, we employed a
segment-based classification algorithm to assess the appropriateness of multiple widely
used RS datasets. Simultaneously, our emphasis was directed towards achieving compre-
hensive coverage over extensive geographical areas. Monitoring IPS nationwide is only
feasible using datasets such as DOP and satellite imagery [29]. However, the deployment
of these datasets proved challenging due to adverse weather conditions or untimely data
acquisition dates [25]. Suitable DOP or satellite datasets were only available for two of the
nine targeted IPS. Despite these challenges, employing suitable DOPs yielded promising
results, achieving accuracies of 92% for Bunias orientalis and 83% for Elaeagnus angustifolia.
Considering the infrequent availability of suitable DOP and satellite imagery, our focus
shifted towards the data acquisition leveraging gyrocopter and UAV systems. On a local
scale, the challenges associated with satellite imagery and DOPs can be mitigated through
the deployment of UAVs and gyrocopters, which can offer enhanced spatial and temporal
resolutions [55]. For instance, deploying a gyrocopter for the classification and detec-
tion of Heracleum mantegazzianum and Fallopia japonica resulted in accuracies of 83% and
93%, respectively. Comparable studies, employing similar classification approaches using
UAV datasets achieved remarkably high classification accuracies for these species of up to
100% [25]. To further emphasize the advantages of employing gyrocopters and UAVs, our
classification results of Bunias orientalis are noteworthy. Even in the presence of rapeseed, a
species with a similar spectral signature (both develop bright yellow inflorescence), our
classification algorithm achieved an accuracy of 95% when leveraging UAV imagery. To
finalize the evaluation of the applicability of our methodology, we implemented it in a
heretofore unexplored region within the federal state of Thuringia. This approach was
undertaken with the intention of verifying the transferability of our approach. Using the
pretrained classification model for Bunias orientalis a classification accuracy of 90% could be
achieved. The successful implementation of our methodology in the unexplored region of
Thuringia further supports the transferability of our approach (at least for Bunias orientalis),
showcasing its potential applicability in diverse geographical contexts.

Looking ahead, the integration of artificial intelligence (AI) technology, particularly
deep learning methodologies, emerges as a promising avenue for the automated IPS
classification and detection [54,56]. Leveraging diverse datasets, including UAV, aerial,
and satellite imagery, in conjunction with a nuanced understanding of optimal temporal
windows, holds great potential for significant advancements in IPS surveillance method-
ologies. As AI technology continues to evolve, future research endeavors should capital-
ize on these advancements to enhance the efficiency and accuracy of IPS detection and
management strategies.
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