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Abstract: Traditional radar detection methods heavily rely on the signal-to-clutter ratio (SCR);
a variety of feature-based detection methods have been proposed, providing a new way for radar
detection and the recognition of weak targets. Existing feature-based detection methods determine
the presence or absence of a target based on whether the feature value is within the judgment region,
generally focusing only on the distribution of features and making insufficient use of inter-feature
chronological information. This paper uses the autoregressive (AR) model to model and predict
the time sequence of radar echoes in the feature domain and takes the chronological information of
historical frame features as the prior information to form new features for detection on this basis.
A classification method for floating small targets based on the Doppler spectrum centroid sequence is
proposed. By using the AR model to fit the Doppler spectrum centroid feature sequence of the target,
the model coefficients are regarded as the secondary features for target identification. The measured
data show that the correct classification and identification rate of this method for ship targets and
floating small targets can reach over 92% by using 50 centroid features.

Keywords: radar detection; floating small target; autoregressive (AR) model; doppler spectrum
centroid sequence; classification method

1. Introduction

Marine radar serves as a principal sensor for detecting maritime objects by processing
the electromagnetic scattering echoes to identify and locate targets at sea; thus, studying
the electromagnetic scatter reflections on the sea surface holds significant importance [1].
Currently, the objectives of studying the signals from radar electromagnetic scattering
echoes off the sea surface are twofold: first, to extract marine environmental parameters
such as wave height, wave direction, and wind direction from the sea echo signals, thereby
discerning environmental background information through radar echoes; and second, to
detect objects such as ships, channel buoys, and floating ice from the complex sea echo
signals, where the maritime electromagnetic scatter reflection signals act as interference,
commonly referred to as sea clutter [2]. The precise definition of sea clutter is the backscatter
of radar-transmitted electromagnetic waves by the sea surface. The physical mechanisms
forming sea clutter are highly complex and are influenced by various factors, including
maritime environmental conditions, radar operational parameters, and radar working
modes [3,4]. The main difficulties faced in the detection of weak targets within sea clutter
are as follows: First, the complex characteristics of sea clutter make it challenging to model
and suppress. With the proliferation and development of radars with high ranges and
high Doppler resolutions (a “dual-high” system), the target is prone to diffusion in terms
of distance and Doppler frequency; traditional models such as Gaussian distribution are
no longer applicable. Sea clutter exhibits notable non-Gaussian, nonstationary, and non-
homogeneous features, increasing the difficulty of understanding and suppressing clutter.
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Under high-resolution, low-grazing angle, and high-sea state conditions, sea spikes are
prone to occur, and the amplitude features of sea spikes and targets are extremely similar,
resulting in a significant number of false alarms when utilizing energy domain detection
methods. Second, establishing a target model is challenging. The interaction between
maritime objects and the sea surface is complex, and due to the stochastic nature of sea
motion, the movement of the targets also exhibits considerable randomness. The complex
characteristics of target echoes make it difficult to describe all target echoes using a unified
parameter model [5–8].

Feature detection methods represent an emerging category of radar target detection
techniques, signifying a requisite transition toward the era of intelligent detection. On
the one hand, these methods can effectively utilize the rich echo information provided
by “dual-high” system radars, and on the other hand, they can transform the radar target
detection problem into a classification problem, simplifying the complexity of target detec-
tion. Consequently, feature detection methods constitute an effective avenue for addressing
the aforementioned issues [9,10]. Moreover, the approach to feature detection can also be
applied to the identification of marine environmental background information, reducing
the difficulty of extracting oceanic parameters such as wave height.

In 1993, LO T et al. first applied the single-scale fractal dimension for maritime target
detection [11]. A single fractal parameter can only describe the fractal characteristics of the
ensemble as a whole and is unable to reflect the details at different scales. To address this,
Kaplan and others investigated the extended self-similar properties of fractional Brownian
motion [12], seeking to improve the signal-to-clutter ratio in the time domain and enhance
the distinction between sea clutter and target echoes in terms of fractal characteristics.
Substantial research has been undertaken on the fractal properties of sea clutter in the
transformation domain, leading to the proposition of numerous transformation domain
fractal features. To effectively leverage the advantages of coherent accumulation and fractal
theory, Liu Ningbo et al. combined fast Fourier transform with the fractional Brownian
motion model, proposing a target detection method based on frequency domain fractal
features [13].

Time–frequency analysis methods, serving as primary tools for analyzing non-stationary
random processes, are extensively employed to analyze the non-stationary characteristics of
sea clutter. Given the noticeable differences in the normalized time–frequency distributions
between sea clutter and target echoes, reference [14] introduced three features, the ridge
accumulation, maximum connected region size, and number of connected regions, to
characterize this difference, converting the target detection problem into a classification
issue in a three-dimensional feature space. An enhanced convex hull learning algorithm
was utilized to determine the judgment region, and the effectiveness of the classifier
based on three time–frequency features was validated using real data. Reference [15]
modeled sea clutter as a compound Gaussian model (CGM) and proposed a block whitening
method to suppress sea clutter, further introducing a time–frequency ridge-guided Hough
transformation for extracting differential features and utilizing the computed peak values
as features for target detection. To increase the utilization rate of echo information, current
feature detection methods are progressing toward multidomain, multidimensional, and
multifeature directions. Shui Penglang et al. introduced an improved convex hull one-class
classifier by establishing a framework for three-feature detection, providing a research idea
for multidimensional feature recognition [16].

Polarization information serves as a valuable indicator of the scattering characteris-
tics and physical attributes of echoes. The advent of full-polarization radar technology
has spurred increased attention toward echo polarization properties, leading to the in-
troduction of several polarization features for target detection based on the polarization
scattering matrix [17]. Guanjian et al. extracted three fundamental features, peak value,
centroid frequency, and spectrum width, from the diagonal integral bispectrum. These
features are obtained by integrating current frame data with historical frame data, resulting
in the accumulation of three cumulative features: cumulative peak, total variation, and



Remote Sens. 2024, 16, 505 3 of 17

cumulative spectrum width. This cumulative approach effectively enhances the perfor-
mance of feature detection methods, particularly under conditions necessitating short-term
accumulation [18].

Furthermore, various other feature categories have been introduced sequentially for
target detection within sea clutter, including graph features [19,20], phase domain [21], and
singular spectrum domain features [22].

Despite the substantial and profound developments in radar feature detection meth-
ods, certain limitations persist. Practical applications often encounter challenges such as
the omission of small targets and a high incidence of false alarms originating from clutter.
In multiple fields, weak target detection is gradually gaining attention [23–25]. Common
small targets on the marine surface typically encompass anchored small fishing boats,
navigational buoys, and similar entities. These objects often possess distinctive structures
and physical dimensions compared with larger vessel targets such as cruise ships, cargo
ships, and Ro-Ro ships. High-resolution radar systems can provide the one-dimensional
range profile features of targets, which reflect the distribution of strong scatterers along
the distance. This attribute is critical for distinguishing between small floating targets and
larger vessels [26].

However, the efficacy of one-dimensional range profile features is closely tied to ob-
servation angles. When radar beams illuminate along the side of a ship, both vessel targets
and small floating targets exhibit similar one-dimensional range profile characteristics. This
similarity significantly hampers identification performance. Additionally, identifying small
floating targets without relying on supplementary information is particularly challenging
when using low-resolution radar systems. This difficulty arises from the weak echoes
emitted by small floating targets and the fact that large maritime vessel targets typically
exhibit substantial radar cross-sectional areas, making them more easily detectable. Fast-
moving aerial targets have higher Doppler frequencies, enabling effective radar detection.
In contrast, slow-moving or floating entities such as small boats and floating ice have
minimal radar cross-sections, resulting in feeble echo energy. This makes it challenging to
achieve the minimum detectable signal-to-clutter ratio required by energy domain detec-
tion methods. Furthermore, the low velocities of these targets result in smaller Doppler
frequencies, which are often overshadowed by the substantial Doppler bandwidth of sea
clutter, further complicating target detection in the frequency domain.

By addressing this challenge from the perspective of feature dissimilarity and by
thoroughly exploring the distinguishing characteristics between ship targets and small
floating targets, it becomes possible to facilitate accurate classification. This classification
can aid in determining specific categories, purposes, and threat levels, holding significant
implications for both military and civilian applications. Notably, ship targets typically
exhibit higher density masses than small floating targets, resulting in relatively stable states
under general sea conditions. In contrast, small floating targets frequently oscillate with
the waves. Recognizing these differences in fluctuation characteristics through feature
detection offers an effective method to distinguish between the two.

It is worth noting that existing feature detection methods typically determine the
presence of targets based on whether feature values fall within a predefined decision re-
gion, primarily focusing on the distribution of features. However, they often lack in-depth
research into target classification. Additionally, the limited utilization of temporal informa-
tion between features results in inadequate effective feature lengths for the development
of target detection and classification methods. In reality, the marine environment is in
a continuous state of evolution, leading to dynamically changing backgrounds for sea
radar detection. This dynamic nature means that the background information across the
entire detection area is not uniform. To achieve robust target detection amidst sea clutter,
it becomes necessary to perform a fine-grained dynamic identification of background in-
formation across a large detection area. This can be achieved by dividing the detection
area into multiple subareas and utilizing temporal information from echo signals. This
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approach is of significant importance for target detection and identification, ultimately
enhancing the overall performance.

It is not realistic to store radar echoes for a long time during the target recognition
stage. If the storage of raw radar echo data is transformed into the storage of feature values,
long-term target characteristics can be accumulated. In this context, this paper employs
an autoregressive (AR) model to conduct temporal modeling and forecasting of radar echoes
within the feature domain, which leverages temporal information from historical frame
features as prior knowledge to create new features, thereby extending the effective length
of the feature sequence. On this basis, a floating small target classification and identification
method based on Doppler spectral centroid time series information is proposed for target
recognition. Verification using actual data has indicated that this method achieves a correct
classification and identification rate exceeding 92% for both ship targets and small floating
targets when using 50 consecutive centroids.

2. Target Discrepancy Feature Extraction
2.1. Extraction of Doppler Spectrum Centroid Sequence

Assume that the maritime radar is conducting surveillance for sea surface targets and
receives a pulse string x(n), n = 1, 2, . . . , N of length N on a certain target distance unit,
which is the intermediate frequency data collected by ADC and compressed through pulse
compression. The pulse string is segmented into non-overlapping short vectors ui with
a length of I as follows:

[x(1), x(2), · · · , x(N)]T = [u1, u2, · · · , uN/I ]
T (1)

Separately calculate the Doppler spectrum of each short vector ui, and extract the
characteristics of the Doppler spectrum centroid. In this chapter, the power spectrum is used
as the Doppler spectrum, adopting non-parametric methods in modern signal spectrum
analysis for estimating the average and short-time Doppler spectrum. To effectively reduce
sidelobes, a windowing treatment is used during estimation.

The Doppler spectrum estimation method is as follows: assume that the length of
a single data segment is L; for the ϕ(ϕ = 1, 2, . . . , N/I) data segment, the short-time
Doppler spectrum estimation value is represented as:

F̂ϕ( fi) =
1√
L∆

∣∣∣∣∣ L

∑
n=1

ω(n)c(ϕ)(n) exp(−j2π fiTn)

∣∣∣∣∣ (2)

Ŝϕ( fi) =
1

L∆

∣∣∣∣∣ L

∑
n=1

ω(n)c(ϕ)(n) exp(−j2π fiTn)

∣∣∣∣∣
2

(3)

fi =
i

LT
, i = − L

2
, · · · ,

L
2
− 1 (4)

where ϕ represents the sequence number of the data segment; fi represents the frequency

point;
∧
Fϕ( fi) and

∧
Sϕ( fi) denote the short-time amplitude spectrum and the short-time

power spectrum, respectively; w(n) represents the time-domain window function; T stands
for the pulse repetition period (PRP); c(ϕ)(n), n = 1, 2, . . . , L denotes the radar echo se-
quence of the ϕ data segment; and ∆ is the power of the window function, represented as:

∆ =
1
L

L

∑
n=1

|ω(n)|2 (5)
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Average the short-time Doppler spectrum along the frequency dimension to obtain
the mean Doppler spectrum estimation value, denoted as:

Ŝ( fi) =
1
Φ

Φ

∑
ϕ=1

Ŝϕ( fi) (6)

The Doppler centroid fC delineates the degree of Doppler shift pertaining to the target,
and its estimation method is formulated as:

f̂C(ϕ) =
1

Q(ϕ)

L/2−1

∑
i=−L/2

fiŜϕ( fi) (7)

where Q(ϕ) illustrates the power level of the short-time Doppler spectrum for the ϕ data
segment, defined as:

Q(ϕ) =
L/2−1

∑
i=−L/2

Ŝϕ( fi) (8)

Following the aforementioned methodology, calculate the Doppler spectrum for each
short vector ui individually and extract the features of the Doppler spectrum centroid.
Consequently, one can acquire the Doppler spectrum centroid sequence X1, X2 · · · XN/I of
a certain maritime target.

Experiments were conducted using Datasets A and B to extract the Doppler spectrum
centroid sequences of ship targets and buoys (representing floating small targets), enabling
the observation of distinctions between these two target categories. A comprehensive
introduction to the data is provided in Section 3. The computation of a Doppler spectrum
was performed once every 256 pulses, followed by the extraction of centroid features. The
resulting typical Doppler spectrum centroid sequences for ship targets and floating small
targets (buoys) are visually represented in Figure 1.
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Figure 1. Centroid sequences of the Doppler spectrum of the ship and the buoy: (a) buoy; (b) ship.

It is evident that the Doppler spectrum centroid sequences of ship targets and floating
small targets exhibit significantly different patterns of variation. The centroid sequences of
ship targets predominantly cluster at approximately 0 Hz and demonstrate relative stability
with minimal fluctuations. In stark contrast, the centroid sequences of floating small targets
exhibit substantial oscillations, approximating a certain periodicity. Consequently, it is
feasible to distinguish between ship targets and floating small targets by analyzing the
temporal evolution patterns of these centroid sequences.

2.2. Rectification of Anomalous Values in Centroid Sequences

During radar operations, the presence of random disturbances such as co-frequency
interference, noise, and electromagnetic waves of unknown origin often affect the reliability
of the signals. These disturbances can induce anomalous values in the extracted Doppler
spectrum centroid sequences from the original echo signals. This section introduces a dual-
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threshold method to amend the Doppler spectrum centroid sequences, fostering smoother
trends and mitigating the effects of these anomalies. The process of employing the dual-
threshold method to treat the Doppler spectrum centroid sequences X1, X2 · · · XN/I of
a specific sea surface target is delineated as follows:

(1) Initialization: Based on the general trend of fluctuations in the centroid sequence,
establish two judgment thresholds: standard1 and standard2. When the centroid is dimen-
sioned as a normalized frequency, the value range for standard1 is set between 0.03 and
0.15, and for standard2, it lies within the range of 0.05 to 0.3. For instance, standard1 might
be assigned a value of 0.03 and standard2 a value of 0.05.

(2) Processing of X1: Determine whether |X1 − mean([X2, X3])| is less than standard1,
where the symbol mean(·) represents the mean operation and || denotes the absolute value
function. If |X1 − mean([X2, X3])| < standard1, the value X1 is deemed normal; otherwise,
X1 is deemed an outlier and set to X1 = mean([X2, X3]).

(3) Processing of X2: Determine whether |X2 − X1| is less than standard1. If |X2 − X1| <
standard1, then X2 is classified as a normal value; otherwise, X2 is identified as an anoma-
lous value and consequently defined as X2 = mean([X1, X3]).

(4) Processing of X3, X4, . . . XN/I−1: Ascertain whether Xi − Xi−1 is less than stan-
dard1, where i ∈ {3, 4, . . . , N/I − 1}. If |Xi − Xi−1| < standard1, Xi is categorized as a nor-
mal value; otherwise, Xi is deemed an outlier and needs further evaluation if |Xi−1 − Xi+1|
is less than standard2. If |Xi−1 − Xi+1| < standard2, Xi is identified as a discontinuous
outlier and set to Xi= mean([Xi−1 − Xi+1]); otherwise, it is set to Xi = mean([Xi−2, Xi−1]).

(5) Processing of XN/I: Determine whether |XN/I − XN/I−1| is less than standard1. If
|XN/I − XN/I−1| < standard1, then XN/I is classified as a normal value; otherwise, XN/I is
identified as an anomalous value and consequently defined as XN/I = mean([XN/I−1, XN/I−2]).

This procedure can likewise be employed to rectify aberrant values in other common
feature sequences.

Experimental procedures were conducted using Dataset D. For each batch of
256 pulses, a Doppler spectrum was computed, and centroid features were extracted.
Subsequently, the dual-threshold method was applied to correct any anomalies present in
the data. In order to demonstrate the effectiveness of the rectification, Figure 2 compares
the Doppler spectrum centroid sequences before and after correction. It is evident that
the dual-threshold method proposed in this section is capable of achieving noteworthy
smoothing effects on anomalous values, effectively addressing the issue of continuous
anomaly correction.
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Figure 2. Centroid sequences of the Doppler spectrum of the ship and the buoy before and after
anomaly correction: (a) buoy; (b) ship.

2.3. AR Modeling and Secondary Feature Extraction of Centroid Sequences

In this section, the AR modeling of the Doppler spectrum centroid sequence X1, X2, . . . ,
XN/I for a specific marine target is utilized as an illustrative example, delineating the pro-
cess of conducting AR modeling on the centroid sequences X1, X2, . . . , XN/I and extracting
the secondary features of the centroids, essentially encapsulating the temporal information



Remote Sens. 2024, 16, 505 7 of 17

of the centroid sequences. The centroid feature sequences are fitted using a centralized
AR(p) model, the results of which are as follows:

Xt = c1Xt−1 + . . . + cpXt−p + εt (9)

In this scenario, the model order p is a known quantity, while the model parame-
ters c =

(
c1, c2, . . . , cp

)T act as parameters awaiting estimation; their moment estimates
∧
c =

( ∧
c1,

∧
c2, . . . ,

∧
cp

)T
can be calculated utilizing Equation (10):


∧
ρ1
ρ2
...
∧
ρp

 =


1
∧
ρ1
...
∧

ρp−1

∧
ρ1
1
...
∧

ρp−2

· · ·
· · ·

· · ·

∧
ρp−1
∧

ρp−2

1




∧
c1
∧
c2

∧
cp

 (10)

Herein,
∧
ρ represents the estimated value of the autocorrelation coefficient, and Equation (10)

is referred to as the parameter estimation method utilizing the Yule–Walker equations. The
moment estimate of the white noise variance is depicted as follows:

∧
σε

2
=

∧
γ0 −

p

∑
j=1

∧
cj

∧
γj (11)

where
∧
σε

2
represents the moment estimate of σ2

ε ,
∧
γ0 signifies the variance of the centroid

feature sequence, and
∧
γj represents the autocovariance function with a defined interval j.

Equation (9) presents the AR model fitting results for a certain marine surface target
centroid sequence. The order of the AR model p is generally set to 3; consequently, the

estimated coefficients of the AR model are denoted as
∧
c =

( ∧
c1,

∧
c2,

∧
c3

)T
, typically noted

as AR(1), AR(2), and AR(3). These constitute the secondary features corresponding to the
centroid sequence of a marine surface target, effectively capturing the temporal information
embodied in the centroid sequence. Therefore, this chapter adopts this approach for
portraying the time series information of the centroid sequence, utilizing it for classification
and distinction between ship targets and floating small targets.

Experiments employing Dataset D were conducted, where a Doppler spectrum was
computed once every 256 pulses and centroid features were extracted. A sequence of
50 continuous centroids was modeled using the AR(3) model in one instance, depicting
the distribution of ship targets and floating small targets (buoys) within the AR coefficient
domain of the centroid sequence; as clearly illustrated in Figure 3, the AR coefficient domain
of the centroid sequence exhibits commendable separability between two kinds of targets.
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2.4. Construction of the Classifier and Classification and Identification of Floating Small Targets

After extracting the secondary features AR(1), AR(2), and AR(3) corresponding to the
Doppler spectrum centroid sequences of different target echoes, the identification problem
essentially translates to a classification problem within a three-dimensional feature space.
This chapter situates this problem within the anomaly detection framework and utilizes the
convex hull learning algorithm to design a one-class classifier, facilitating the classification
and identification between ship targets and floating small targets.

A one-class classifier allows for training solely based on a sample set from one category
of data, namely, solely relying on the feature vector set S of ship target echoes processed
with labeling. In the three-dimensional feature space, a convex hull encompassing ship
target echoes is gradually trained according to a preset probability of erroneous judgment Pf
concerning ship targets, thereby effectively mitigating the issue of class imbalance between
two types of samples. Adhering to the minimum volume criterion [16], it is prerequisite
to apply standard deviation normalization to the set S, preventing the extensive range of
variation in the one-dimensional feature value from adversely affecting the classification
and identification efficacy of other features. It is presupposed that the training set is
represented as:

S0 = [AR(1)0, AR(2)0, AR(3)0] (12)

where AR(1)0, AR(2)0, AR(3)0 constitute column vectors formed by the secondary features
AR(1), AR(2), and AR(3) values of the centroid sequences from a substantial number of ship
target units. The length of the vector is denoted as Q. Consequently, the standard deviation
of each feature component can be estimated according to Equation (13):

σAR(1) =

√
1

Q−1

Q
∑

q=1

(
AR(1)q − mean(AR(1)0)

)2

σAR(2) =

√
1

Q−1

Q
∑

q=1

(
AR(2)q − mean(AR(2)0)

)2

σAR(3) =

√
1

Q−1

Q
∑

q=1

(
AR(3)q − mean(AR(3)0)

)2

(13)

where AR(1)q, AR(2)q, and AR(3)q denote the q eigenvalues of the feature vector AR(1)0,
AR(2)0, AR(3)0, respectively, and mean(·) represents the operation of taking the mean.
Consequently, the normalized sample set can be represented as:

S =
[

AR(1)0
σAR(1)

, AR(2)0
σAR(2)

, AR(3)0
σAR(3)

]
= [AR(1), AR(2), AR(3)]

(14)

where AR(1), AR(2), and AR(3) each represent column vectors constituted by the respective
normalized features.

Clearly, the samples of ship targets and floating small targets should congregate in
distinct regions within the three-dimensional feature space. Consequently, during the
training process, the closer that a feature point in the convex hull formed by the ship target
samples approaches the aggregation area of the floating small target samples, the higher
the likelihood of it being identified as an outlier and being subsequently removed. Thus,
the procedure of forming the classifier decision region is delineated as follows:

(1) Initialization: Set the number of feature vectors of the ship target echoes as W,
and compute the number of abnormal points of ship targets by Fnum = W · Pf , wherein P
denotes the preset erroneous decision probability of ship targets. Let l = 0.

(2) Identify the maximum AR (1) feature, as well as the minimum values for AR (2) and
AR (3) features within the set S, thereby establishing new spatial vertices
v0 = [max(AR(1)), min(AR(2)), min(AR(3))].
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(3) Generate the current data point’s convex hull CH(S), with the vertices being
denoted as {v1, v2, · · · vr}. Count the quantity of feature points falling within the convex
hull CH(S) and assign it as nall .

(4) Calculate the Euclidean distance from all feature points to the vertices v0, identify-
ing and removing the feature point vi at the greatest distance.

(5) Construct a new convex hull CH(S-{vi}) and then determine the number of feature
points located within this new hull, designating it as nq.

(6) Let S-{vi} = S, l + nall − nq = l.
(7) If l < Fnum, revert to step (2) to proceed with the removal of the next vertex.

Otherwise, terminate the removal process and output the final decision region Ω = CH(S).
Upon the completion of the convex hull single-class classifier training, the collected tar-

get echo samples [AR(1), AR(2), AR(3)] are input to achieve classification and identification,
adhering to the rules detailed below:{

Ship Target if [AR(1), AR(2), AR(3),] ∈ Ω
Floating Target if [AR(1), AR(2), AR(3),] /∈ Ω

(15)

2.5. Methodology for Floating Small Target Classification and Identification Based on Doppler
Spectrum Centroid Temporal Information

Integrating the aforementioned procedures, this chapter proposes a method for floating
small target classification and identification grounded on the temporal information of
Doppler spectrum centroids. This method delineated in this chapter encompasses two
integral components: training and classification identification. Prior to commencing the
formal identification work, it is necessary to gather a substantial dataset of ship target echo
data, from which the Doppler spectrum centroid sequences are extracted. Following the
removal of outliers, a refined centroid sequence is obtained. This sequence is then modeled
using the AR (3) framework, facilitating the extraction and normalization of a plethora
of secondary features AR (1), AR (2), and AR (3). Ultimately, by employing the convex
hull learning algorithm in accordance with a predetermined ship target misjudgment rate,
a decision region is established. During the classification and identification phase, the
target echo data slated for categorization are processed through the same procedure to
acquire normalized secondary feature vectors of the centroid sequence. Classification
and identification are achieved by assessing the position of these vectors relative to the
established decision region. The block diagram of the method is shown in Figure 4.
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3. Description of the Experimental Data

In this study, the radar measurement data utilized originate from the self-measured
dataset available within the “Radar Marine Detection Data Sharing Program,” hosted
by the Naval Aeronautical University. This dataset stands as one of the public datasets
commonly employed for maritime target detection research in contemporary studies.
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Its objective is to conduct phased and batched marine exploration experiments using
X-band solid-state phased-array radar. These experiments involve data collection on
targets and sea clutter under various marine conditions, resolutions, and grazing angles.
Simultaneously, the dataset gathers authentic marine meteorological and hydrological
data, along with the actual positions and trajectories of targets. This comprehensive
collection of sea clutter measurement data aids in furthering our understanding and
suppression of sea clutter characteristics and in the development of target detection and
recognition technologies. Relevant data can be obtained from the Journal of Radars website
(https://radars.ac.cn/web/data/getData?dataType=DatasetofRadarDetectingSea, accessed
on 1 January 2024).

The radar utilized in the experiments is an X-band solid-state power amplifier surveil-
lance/navigation radar renowned for its high distance resolution and consistent perfor-
mance. It has the capability of transmitting both single-carrier frequency signals and linear
frequency modulation (LFM) signals, meeting the requirements for navigation and coastal
surveillance. The dataset primarily encompasses sea clutter and target echo data captured
under varying sea states. The radar is located near the first bathing beach in Yantai and is
mounted at a height of 80 m. Under different sea state conditions, targets at sea are detected
by adjusting the antenna direction, and data on sea clutter and target echoes are collected
at various sea state levels. The primary marine targets of interest in this article are floating
objects such as navigational buoys and vessels, including fishing boats and passenger ships.
During data collection, the radar operated in a staring mode, employing HH polarization
with a PRF of approximately 1700 Hz, a distance resolution of approximately 6 m, and
a range sampling rate of 60 MHz. Throughout the experimental phase, the test subjects
comprised maritime ship targets (large passenger ships) and sea-surface floating objects
(channel buoy targets), with the raw echo data being delineated in Figure 5.
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Figure 5. Echoes of two kinds of targets: (a) echoes of ships; (b) echoes of buoys.

The data used in this article encompass four distinct datasets, each of which is de-
tailed in Table 1. For ease of reference, Dataset A is assigned to the dataset labeled as
20221103085038_001_stare_HH_data, Dataset B corresponds to 20221103095714_001_stare
_HH_data, Dataset C is denoted as data_2022-08-25 10-43-44_39-41, and Dataset D is
identified as data_2022-08-25 10-43-09_38.

Table 1. The introduction to the data collected by our research group.

Label File Name Type of Target

1 20221103085038_001_stare_HH_data Data of buoy and sea clutter
2 20221103095714_001_stare_HH_data Data of ship and sea clutter
3 data_2022-08-25 10-43-44_39-41 Data of ship, buoy, and sea clutter
4 data_2022-08-25 10-43-09_38 Data of ship, buoy, and sea clutter

https://radars.ac.cn/web/data/getData?dataType=DatasetofRadarDetectingSea
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4. Performance Analysis

In this section, we employ the self-measured dataset from our research group to test
the actual performance of the floating small target classification and identification method
proposed in this paper, which is based on the time series information of the Doppler
spectrum centroid.

During computations, a Doppler spectrum was calculated with 256 pulses, and cen-
troid features were extracted. A sequence of 50 consecutive centroids was modeled using
the AR (3) model once, wherein the AR model coefficients AR (1), AR (2), and AR (3)
derived from the modeling of the ship’s centroid sequence served as secondary feature
samples. When training a convex hull single classifier, the misidentification rate for ship
targets was set at 0%, and decisions were made on buoy target samples using an indicative
diagram; as illustrated in Figure 6, this achieves a buoy correct identification rate of 100%.
It is evident that ships and buoys possess excellent distinguishability in the AR coefficient
domain of the centroid sequence, and under certain parameter conditions, the convex hull
classifier trained with ship samples can achieve a classification accuracy of 100% for both
ships and buoys. Experiments using Data A, Data B, and Data C also attained a favorable
distinguishing effect, wherein the results, as displayed in Figures 7 and 8, indicate buoy
correct classification identification probabilities of 99.27% for experiments with Data A and
B and 92.35% for the experiment with Data C, which are shown in Table 2.
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Table 2. The recognition rate of measured data.

Data A Data B Data C Data D

Recognition rate 99.27% 99.27% 92.35 100%

It is clear that in the four datasets, with the extraction of the Doppler spectrum centroid
feature with 256 pulses and one-time modeling using the AR (3) model for a sequence of
50 continuous centroids, the correct classification identification rate for ship targets and
floating small targets (buoys) can exceed 92%.

Utilizing Data D, we altered the number of pulses used for calculating the Doppler
spectrum centroid and the number of features (centroid sequence length) used in a single
AR modeling to verify the effect of parameter selection on the classification identification
results. The results are provided in Table 3, and the outcomes are shown in Figures 9 and 10,
exhibiting correct buoy classification identification rates of 80.14% and 100% for pulse
numbers of 128 and 256, respectively (the ship target misidentification rate is variable).
When the number of pulses for calculating the spectrum centroid was fixed at 256 and the
number of features for a single AR model was set to 10, 20, and 50, the results (as depicted
in Figures 11 and 12) demonstrate correct buoy classification identification rates of 75.11%,
96.71%, and 100%, respectively.

Table 3. The recognition rate in different conditions.

Number of Pulses
Number of Features

10 20 50

128 59.6% 68.5% 80.14%
256 75.11% 96.71% 100%

Generally, both increasing the number of pulses for calculating centroids or augment-
ing the number of features for AR modeling can effectively enhance the distinguishability
between ships and buoys in the AR model coefficient domain of the centroid sequence. In
fact, when the observation time is short, in order to display the time–frequency spectrum
as much as possible, overlapping data will be used between adjacent data segments when
calculating the Doppler frequency of each data segment; let us discuss the impact of the
overlapping pulses between adjacent centroids on the distinguishing effect. Utilizing Data
D, with a set of 256 pulses for calculating the Doppler spectrum centroid and 128 over-
lapping pulses used between adjacent centroids in a continuous sequence of 50 centroids



Remote Sens. 2024, 16, 505 13 of 17

modeled once using the AR (3) model, the ship target misidentification rate was set at
0.2%. The resultant data, illustrated in Figures 13 and 14, reveal a correct buoy classifica-
tion identification rate of 69.4%. It is apparent that increasing the number of overlapping
pulses used for adjacent features significantly reduces the distinguishability between ships
and buoys in the centroid sequence’s AR model coefficient domain, primarily due to the
alteration of the temporal structure information of the centroid sequence, subsequently
affecting the AR modeling coefficients and reducing the distinguishability between ships
and buoys.
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5. Conclusions

This study has introduced a method for the classification and identification of floating
small targets, relying on the time series information of Doppler spectrum centroids. We
have provided a comprehensive outline of the specific steps involved in this method,
which encompass the extraction of Doppler spectrum centroid sequences, the correction of
anomalous values in centroid sequences, AR modeling, and the extraction of secondary
features from the centroid sequence. Furthermore, we have discussed the construction of
classifiers and the subsequent classification and identification of floating small targets.

Utilizing the self-collected data from our research group, we conducted empirical
testing of this approach. The analysis of the empirical data reveals that when employing
256 pulses to calculate a Doppler spectrum centroid feature once and utilizing the AR
model to model a sequence of 50 consecutive centroid features once, this method can
achieve a correct classification and identification rate exceeding 92% for both ship targets
and floating small targets. Moreover, increasing the number of pulses used for calculating
centroid features or augmenting the number of features in a single AR modeling session
can effectively enhance its performance.

Moving forward, we intend to explore other classification methods to further delineate
the distinctive features between the two categories of targets. This exploration aims to
enhance the accuracy of identification in our ongoing research efforts.
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