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Abstract: Dynamic topography (DT) refers to the time-varying component of the sea surface height
influenced by factors like ocean currents, temperature, and salinity gradients. Accurate estimation of
DT is crucial for comprehending oceanic circulation patterns and their impact on climate. This study
introduces two approaches to estimating DT: (1) utilizing satellite altimetry to directly observe sea
surface height and (2) considering the steric and non-steric components of sea level anomalies. The
steric term is calculated using salinity and temperature data obtained from local buoy data, Argo
observations, and the World Ocean Atlas model. The non-steric term is calculated using GRACE
Satellite gravimetry data. To estimate the assimilated DT, four methods are utilized, including
variance component estimation (VCE), Bayesian theory, Kalman filter, and 3D variational (3DVAR).
These methods assimilate the two aforementioned schemes. The validity of the estimated DT is
assessed by comparing the calculated sea surface current, derived from the obtained DT, with
observations from local current meter stations. The results indicate that the VCE method outperforms
other methods in determining the final DT. Furthermore, incorporating the steric and non-steric
terms of sea level in determining DT in coastal areas enhances the accuracy of estimating sea surface
currents.

Keywords: assimilation; dynamic topography; geodetic data; satellite altimetry; sea surface height;
steric and non-steric

1. Introduction

Dynamic topography (DT) represents the variation of the sea surface height due to
ocean circulation and currents, as well as other factors, such as tides and atmospheric
pressure [1]. DT plays a significant role in oceanographic studies, affecting ocean circu-
lation, heat transport, and the distribution of marine resources. Traditional approaches
to computing DT rely on fixed reference surfaces, thus neglecting important temporal
variations [2]. By incorporating in situ hydrography observations and geodetic data such as
satellite altimetry through data assimilation approaches, a more accurate representation of
DT may be achieved. Data assimilation is a technique used to combine multiple sources of
data. Each type of observation provides valuable but limited information about the ocean’s
state and DT. By assimilating these diverse data sources, the strengths of each observation
can be leveraged while compensating for their individual limitations. This can lead to a
more complete and accurate estimation of DT [3]. By accurately estimating DT, we can
gain valuable insights into these processes, further enhancing our comprehension of the
intricate interplay between the ocean and the broader climate dynamics [4,5].

DT can be obtained via hydrographic data and the Gravity Recovery and Climate
Experiment (GRACE). The computation of DT involves adding the sea level anomaly
(SLA) to the mean dynamic topography (MDT), expressed as DT = SLA + MDT. The SLA
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comprises two components—namely, the steric and non-steric components—which can be
combined to derive the SLA [6]. The steric component of sea level can be determined using
observed temperature and salinity data, as well as data from the global array of profiling
floats (ARGO) and the World Ocean Atlas (WOA) model. Local sampling platforms may
provide high-precision information, but there are limitations in accessing these areas, and
currently, there is a lack of long-term and consistent data [7,8]. On the other hand, the
non-steric component of sea level can be derived from observations obtained from GRACE
twin satellites [9,10]. The MDT (MDT = MSS − N), representing the permanent stationary
component of DT, is calculated as the difference between the local or global sea surface
height (SSH) averaged over an extended period (referred to as the mean sea surface (MSS),
which is available from global or regional models [11]) and the geoid undulation (N).

Altimetry observations can serve as an alternative dataset for computing DT and
evaluating surface currents [12]. In this approach, DT can be obtained simply by subtracting
the geoid undulation from the SSH measured by altimeter satellites with respect to the
reference ellipsoid (DT = SSH − N). N can be extracted from marine gravity models
derived from satellite-based gravity field models. Therefore, the precise determination
of the geoid plays a crucial role in calculating DT in previous studies [13–15]. Although
satellite altimetry missions estimate the sea surface height with high accuracy, there are
still some issues that need to be considered in the preprocessing of SSH determination.
One of the problems is radial errors, which are caused by the lack of precise modeling
of environmental and geophysical corrections, as well as satellite orbit errors, requiring
calibration [7]. Another issue in satellite altimetry missions is in coastal regions. The
accuracy of satellite altimetry measurements in coastal regions relies on the waveform [16].
In oceans and open waters, the waveforms follow a model called Brown, but in coastal areas,
enclosed waters, and rivers, due to factors such as shallow depth, surface fluctuations, ice
cover, and unbalanced atmospheric conditions, this model changes because the transmitted
wave interacts with a more complex surface, leading to errors in calculating the range,
which is the distance among the satellite and the sea surface that requires waveform
retracking corrections [17].

Thus, the estimation of DT is a complex task due to various factors, such as the limited
spatial and temporal resolution of the data, errors and biases in the data, uncertainties in
models, limited data coverage, and nonstationary signals [18].

In this paper, we focus on determining DT using satellite altimetry and hydrographic
observations, as well as the assimilation of these two different schemes using data assim-
ilation techniques to improve the estimation of DT in the study area and overcome the
aforementioned problems. We aim to explore the potential of this assimilation technique
for enhancing our understanding of the oceanographic dynamics in these regions, as well
as its implications for various applications. By assimilating these datasets, we can improve
our ability to monitor and predict changes in sea surface topography, contributing to better
oceanographic modeling and management efforts in the study area.

The research conducted in this study specifically targets the Persian Gulf and the
Oman Sea as its primary areas of focus. The Persian Gulf and the Oman Sea, located in
the southwestern part of Asia, are two interconnected bodies of water that hold significant
hydrographic features and play a vital role in the region’s oceanographic dynamics. Un-
derstanding the dynamic characteristics and variations of the sea surface topography in
these regions is of great importance for various applications, including navigation, climate
studies, and coastal management [19].

The connection between DT and sea surface currents arises from the fact that the
flow of water in the ocean, driven by currents, contributes to the generation of DT. As
currents move water masses, they induce variations in SSH, resulting in spatial gradients
in DT. This relationship is complex and plays a significant role in understanding the
dynamics of the ocean system [12,19]. Certain studies have explored the estimation of
surface currents using geodetic or hydrographic observations. Knudsen et al. (2011)
computed a global MDT and ocean circulation using a preliminary gravity field and steady-
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state ocean circulation explorer (GOCE) data. Their findings indicated that calculating
global geostrophic surface currents from the MDT led to improvements in major current
systems, such as the Gulf Stream, Labrador Current, and Greenland Current, particularly
in the North Atlantic [14]. Bingham et al. (2014) utilized GOCE measurements to obtain
steady-state surface circulation in the North Atlantic and compared it with drifter-based
estimates. They discovered that, with proper filtering, GOCE could recover around 70% of
the Gulf Stream strength compared with the best drifter-based estimates [20]. Additionally,
Chang et al. (2016) estimated global surface and subsurface geostrophic currents using
satellite altimetry and hydrographic data. The results demonstrated that combining satellite
altimetry and hydrographic data for geostrophic current estimation yielded good agreement
with in situ current meter observations, particularly in the meridional and North Atlantic
regions [21]. Hence, in this study, akin to previous research [13,22], the utilization of in
situ current meter data has been employed to identify the most effective data assimilation
methods for estimating DT. Therefore, the current meter data serves as a fitting source for
this purpose.

2. Materials and Methods
2.1. Data Description

The dataset consists of satellite altimetry measurements, the gravity field model used
to determine geoid height, the GRACE satellite data, temperature and salinity observations
obtained through direct measurements, and the World Ocean Atlas (WOA) model, as well
as Ekman currents data. Table 1 presents the data source for satellite altimetry employed to
calculate the sea surface height (SSH). The SSH computation relies on altimetry observations
from multiple missions, specifically utilizing the sensor geophysical data record (SGDR),
which contains valuable along-track waveform information. The altimeter waveforms may
experience corruption near coastal regions, leading to biases in range measurements. To
address this issue, a waveform retracking method known as the adaptive leading edge
sub-waveform (ALES) is applied to correct the range observations [16]. Additionally,
inherent uncertainties exist in satellite altimetry measurements, including errors introduced
by geophysical and environmental factors, which are typically addressed through global
or local modeling techniques [23,24]. Moreover, the systematic errors, such as radial
error [24], present in the satellite altimeter datasets require calibration, which is considered
as described in [25]. Given the limited spatial resolution of satellite altimetry in the cross-
track direction, despite the utilization of multiple repeat-track or multi-mission data, there is
a chance that certain regions may still be overlooked or not adequately captured in satellite
altimetry measurements [26]. This limitation arises from the nadir measurement principle
and the orbital characteristics of altimeter satellites, and it should not be disregarded [16].
To address this drawback, a least square collocation algorithm, as described in [25], is
employed to interpolate SSH values at the missing points. The interpolation method
employed in this study proves to be effective in generating missing sea surface height
(SSH) values with an accuracy of 3–5 cm, which aligns with the typical nominal accuracy
of satellite altimetry [19,27]. This indicates that the interpolated values closely match the
expected precision of the satellite altimetry measurements.

Table 1. Description of altimeters used in this study.

Missions Cycles Periods Sources Accuracy Value

Jason 1 001-259 15 January 2002–16 January 2009 NASA, AVISO about 4 cm
Jason 2 001-303 4 July 2008–1 October 2016 AVISO about 4 cm
Jason 3 001-050 18 February 2016–12 June 2017 AVISO about 4 cm
Envisat 008-093 23 July 2002–18 October 2010 ESA about 3 cm

Saral 001-035 14 March 2013–16 June 2016 AVISO about 8 cm
Sentinel3A 001-083 16 March 2016–3 January 2023 ESA about 3 cm
Sentinel3B 001-057 4 June 2018–13 January 2023 ESA about 3 cm
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In the following, six gravity models are examined for determining the geoid height
and calculating DT. The specifications of these gravity models are provided in Table 2. The
datasets utilized in model development are summarized in a data column, with the symbol
“S” representing satellite data (such as GRACE, GOCE, and LAGEOS), “A” denoting
altimetry data, and “G” indicating ground data (including terrestrial, shipborne, and
airborne measurements). Additionally, the GRACE and GRACE Follow-On satellite data,
respectively, for the time periods of 2002 to 2017 and 2018 to 2022 are used to determine
the non-steric component of sea level; these data are obtained from the GFZ website. By
utilizing the error propagation toolbox pioneered by [28], the errors related to the geoid
heights in the study area are estimated at various spatial resolutions, following the Gaussian
error propagation method [14,20]. The estimation is based on the full error covariance
matrices of the gravity models. The XGM2019e geoid model exhibits the lowest error,
particularly at higher resolutions. Consequently, this model is chosen to calculate the
geoid height within the study area. The MDT and its derived DT are determined using the
MSS-IR01 model, which is the local MSS utilized for this purpose. The MSS-IR01 model
was developed by the National Cartography Center (NCC) of Iran, as outlined by [24].

Table 2. Gravity models description.

Numbers Models Produced Year Degree Count Data Source References

1 SGG-UGM-1 2018 2159 EGM2008, S(GOCE) [29]

2 EIGEN-6S4 (v2) 2016 300 S(GOCE), S(GRACE), S(LAGEOS) [30]

3 GOCO05c 2016 720 A, G, S [31]

4 GGM05C 2015 360 A, G, S(GOCE), S(GRACE) [32]

5 EIGEN-6C4 2014 2190 A, G, S(GOCE), S(GRACE),
S(LAGEOS) [33]

6 XGM2019e 2019 5399 A, G, S(GOCO06s), T (Topography) [34]

The steric component of sea level, which is influenced by salinity and temperature, is
primarily determined using data from hydrographic measurements, the ARGO instrument,
and the WOA model. Salinity and temperature data for coastal waters around the Bushehr
Peninsula (12 stations from 28.7◦N to 29◦N and 50.65◦E to 50.95◦E) from July 2011 to July
2012, Chabahar Bay (25 stations from 25.2◦N to 25.4◦N and 60.4◦E to 60.6◦E) from January
2007 to March 2010, and Pozm Bay (17 stations from 25.2◦N to 25.4◦N and 60.4◦E to 60.6◦E)
from October 2011 to August 2012 were obtained from the Iranian National Institute for
Oceanography (INIO) hydrographic measurements.

Quality control procedures, in line with the Intergovernmental Oceanographic Com-
mission (IOC) method, are applied to ensure data reliability. The ARGO data, available
from the official ARGO website, consists of salinity and temperature profiles collected by a
network of profiling buoys. The temperature and salinity measurements from Argo floats
and buoys typically have an accuracy of around 0.002 degrees Celsius (◦C) and, typically,
around 0.01 practical salinity units (PSU), respectively. These buoys capture both seasonal
and transient signals and cover a portion of the Sea of Oman from 2002 to 2016. In cases
where salinity and temperature data are unavailable from hydrographic measurements
or ARGO, the study makes use of the WOA model, which was developed by the Ocean
Climate Laboratory of the National Oceanographic Data Center. The WOA model offers
monthly gridded data points of temperature and salinity covering the years 2002 to 2022.
These data points are computed using the international equation of state for seawater [35].
The WOA model can be accessed through the website of the National Oceanographic Data
Center.

Furthermore, the assimilation methods used to determine dynamic topography (DT)
are validated by incorporating local current meter observations from various stations. The
specifications of these current meter stations are presented in Table 3. The data from these
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stations are acquired from the Ports and Maritime Organization (PMO) of Iran. The ADCP
has an accuracy of approximately 6 cm/s [36].

Table 3. Current meter station description.

Number Region Equipment Locations
(Lat, Lon) Periods Sources

1 Khuran ADCP 26.7, 55.45 30 August 2005–10 April 2005 INIO
2 Konarak ADCP 25.37, 60.43 21 August 2006–9 March 2007 PMO
3 Chabahar ADCP 25.29, 60.47 21 August 2006–9 March 2007 PMO
4 Bushehr ADCP 28.97, 50.66 15 June 2010–26 July 2011 PMO
5 Taheri ADCP 27.63, 52.36 23 August 2008–24 September 2009 PMO
6 Nayband Gulf ADCP 27.42, 52.65 5 November 2009–7 December 2009 PMO
7 Nakhl Taghi ADCP 27.49, 52.57 22 August 2008–24 September 2009 PMO
8 Kangan ADCP 27.83, 52.04 23 August 2008–25 September 2009 PMO
10 Jask ADCP 25.65, 57.76 16 July 2010–23 January 2011 PMO
11 Larak ADCP 26.82, 56.37 10 June 2009–10 December 2010 PMO
12 Googsar ADCP 25.60, 57.77 7 December 2010–28 October 2010 PMO
13 Rajaei ADCP 27.07, 56.08 10 December 2009–1 December 2010 PMO

Thorough quality control measures have been implemented on all the data utilized in
this study, ensuring the removal of erroneous observations and conducting outlier analysis,
among other techniques. For detailed information regarding the specific methods employed
for quality control of the observations, please refer to the work of [37].

2.2. Determination of DT Using Two Different Schemes

As previously stated, satellite altimetry is a method employed to calculate DT. The
corresponding equation, as presented by [19], is as follows.

DT(λ, φ, t) = SSH(λ, φ, t)− N(λ, φ) (1)

Here, SSH is the sea surface height that refers to the elevation of the ocean’s surface
relative to a reference ellipsoid and N is the geoid height.

Another method of estimating DT involves utilizing the steric and non-steric compo-
nents of sea level anomaly, as outlined in the subsequent equation [38]. Figure 1 illustrates
the relationship between Equations (1) and (2) in determining DT.

DT(λ, φ, t) = SLA(λ, φ, t) + MDT(λ, φ)
MDT(λ, φ) = MSS(λ, φ)− N(λ, φ)

(2)
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In the provided equation, SLA denotes sea level anomaly, MDT signifies mean dynamic
topography, and MSS corresponds to the mean sea surface. The determination of SLA
involves the combination of steric and non-steric components, expressed mathematically as
depicted [10]. The steric component of sea level refers to changes in seawater density caused
by variations in salinity and temperature. On the other hand, the non-steric component
is primarily associated with the movement of water masses across oceans, land, and the
atmosphere [6,9].

SLA(φ, λ, t) = SLSteric(φ, λ, t) + SLmass(φ, λ, t)
SLSteric(φ, λ, t) = 1

ρ0

∫ 0
−h

[
ρ(φ, λ, t, S, T, P)− ρ(φ, λ, S, T, P)

]
dz

SLmass(φ, λ, t) = aeρe
3ρw

96
∑

n=0

n
∑

m=0

(2n+1)
(1+kn)

WnPnm(sin φ)×{
[∆Cnm(t) + ∆CGAD

nm (t)− ∆CGAA
nm (t)] cos(mλ) + [∆Snm(t) + ∆SGAD

nm (t)− ∆SGAA
nm (t)] sin(mλ)

}
(3)

Here, ρ0 is the mean seawater density (1028 kg/m³), h is the maximum depth, ρ is the
density as a function of geographical latitude (φ) and longitude (λ), t is the observational
epoch, S is the salinity, T is the temperature, and P is the pressure (for more details, refer
to [11]). ρ, S, T, and P represent the mean seawater density, mean salinity, mean tempera-
ture, and mean pressure, respectively. Additionally, ae represents the Earth’s radius, ρe is
the mean density of the Earth (5517 kg/m3), ρw is the density of freshwater (1000 kg/m3),
∆Cnm and ∆Snm are the dimensionless Stokes coefficients, ∆CGAD

nm and ∆SGAD
nm are the

satellite-derived oceanic pressure coefficients, ∆CGAA
nm and ∆SGAA

nm are the satellite-derived
geopotential coefficients for nontidal atmospheric effects, Pnm is the associated Legendre
polynomial of degree n and order m, kn is the degree (n) of the Love number, and Wn is the
Gaussian smoothing filter with a radius of 300 km to mitigate the correlation of north–south
stripes and short-wavelength noise in the Stokes coefficients [39].

In the next sections, the four approaches used to combine DT derived from two
different methods using hydrography and altimetry data are explained. The focus is on
the algorithms, statistical techniques, and mathematical models utilized in the assimilation
process. Furthermore, any essential preprocessing steps needed to effectively integrate the
datasets are presented.

2.3. Assimilation Using Variance Component Estimation (VCE)

Given the availability of two different types of DT obtained from the aforementioned
observations (Equations (1) and (2)), it is advantageous to statistically combine these two
representations. One approach involves treating the calculation of DT as a least squares
problem, where the DT is determined by assigning weights to the observations and employ-
ing the least squares variance component estimation method. This method proves effective
in estimating the variance of observation [19]. By enhancing the estimation of the observa-
tion covariance matrix (Ql), the least squares variance component estimation method aims
to estimate the solution of the least squares parameter equation. The observation equations,
which combine Equations (1) and (2), can be expressed as follows:

SSH1 − N1
SLA1 + MDT1

SSH2 − N2
SLA2 + MDT2

.

.
SSHn − Nn

SLAn + MDTn


︸ ︷︷ ︸

L

=



1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
.
.

.

.
.
.

.

.
0 0 . . . 1
0 0 . . . 1


︸ ︷︷ ︸

A


DT1
DT2

.

.
DTu


︸ ︷︷ ︸

X

(4)

In the given context, L represents the observation vector, A is the design matrix, and
x denotes the vector of unknown parameters (grid points of DT). Notably, salinity and
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temperature data are accessible as grid points at the regional level using hydrographic
observations, Argos observations, and the WOA model. At the same time, SSH observations
are limited to the satellite track passing through the study area, meaning the number of SSH
observations may not align with SLA observations. To generate the observations suitable
for least squares estimation and DT calculation, we generate SSH observations at other
points using the Kriging algorithm [25] and then incorporate them into the observation
equations to construct the grid points of DT. For the estimation of least squares variance
components, Ql is defined as the observation covariance matrix as follows [19,40]:

Ql =
2

∑
k=1

σ2
k Qk (5)

where Qk represents the covariance matrices that are determined based on the variances
and covariances of the observations. The coefficients σk(k = 1,2) are the unknown covariance
components that need to be determined using the least squares method [40]. The unknown
coefficients σk are called variance components and are calculated accompanied by the DT
as unknown parameters in the least squares process. The variance components reflect the
effects associated with the dynamic topography obtained from altimetry (with variance σ2

Alt)
and the DT determined by the combination of steric and non-steric sea level anomalies (by
variance σ2

Steric+Non−Steric) in the observation vector. Therefore, assuming we can write [19]:

Ql = σ2
1 QAlt + σ2

2 QSteric+non−Steric

QAlt =


σ2

SSH1 + σ2
N1 0 . . . 0

0 σ2
SSH2 + σ2

N2 . . . 0
. . . .
0 0 . σ2

SSHn + σ2
Nn


n×n

QSteric+non−Steric =


σ2

SLA1 + σ2
MDT1 0 . . . 0

0 σ2
SLA2 + σ2

MDT2 . . . 0
. . . .
0 0 0 σ2

SLAn + σ2
MDTn


n×n

(6)

To create a covariance matrix for QAlt, time series of SSH are generated at each satellite
altimetry observation point considering the altimetry repeat cycle, and the mean SSH is
subtracted from them. Afterward, σ2

SSH is designated as the standard deviation of the
residual signal at each individual point and added to the value of σN

2 obtained from
the Balmino error toolbox [28]. For QSteric+non−Steric, time series of SLA are shaped and
monthly means are taken from them (e.g., mean of January from January), and the desired
standard deviation of the residual signal represents σ2

SLA. The variance of MDT can be
computed based on the variances of MSS and N. Additionally, it is presupposed that
the cross-covariance between errors is negligible. Nonetheless, this assumption is not
implausible, given that the covariance components are relatively small [25].

To apply this method, one should start with an initial guess for the variance compo-
nents (σ2

Alt and σ2
Steric+Non−Steric). Through an iterative process, the variance components

and, subsequently, the covariance matrix of observations (Ql) are computed until the differ-
ences between the initial approximation and the estimated variance components [40] tend
toward zero. Afterward, DT and its corresponding covariance matrix are determined as
described below [40]:

x̂ = (ATQ−1
l A)

−1
ATQ−1

l l
Cx̂ = (ATQ−1

l A)
−1 (7)

2.4. Assimilation Using Bayesian Theory Method

Bayesian theory is a mathematical framework used to combine two types of data.
In this theory, it combines prior information with new data to generate the final result.
Bayesian theory uses Bayes’ rule to adjust the probability of an event based on previous
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evidence. In the context of data assimilation, Bayesian theory can update posterior prob-
abilities by taking into account prior probabilities. Each type of data is weighted based
on prior probabilities. The posterior probability obtained from Bayes’ rule can be used to
estimate the combined data. The combined data can be calculated by weighted summation
or by using a probabilistic model that includes posterior probabilities. Combining data
using Bayesian methods provides a logical framework for combining and decision-making
based on all available data. This approach is useful when dealing with incomplete or
conflicting information as it allows for consistent combination and decision-making based
on all available data. Generally, the combination of two types of data by Bayesian theory is
as follows [41].

Pr1 = L1 × P1
Pr2 = L2 × P2
DTf inal = Pr1 × DTALT + Pr2 × DTSteric+non−steric

(8)

Here, P1 represents the prior or initial event for the first data (DT obtained from
satellite altimetry), L1 is the likelihood of the first data, P2 represents the prior or initial
event for the second data (DT obtained from steric and non-steric of SLA), L2 is the
likelihood of the second data, Pr1 represents the posterior event for the first data, Pr2
represents the posterior event for the second data, DTALT is the DT obtained from satellite
altimetry, DTSteric+non-steric is the DT obtained from steric and non-steric SLA, and DTfinal is
the combined dynamic topography.

2.5. Assimilation Using Kalman Filter (KF)

The Kalman filter theory is another method that can be used to combine two types of
data. The Kalman filter theory operates based on two main steps: prediction and correction.
The equations associated with the combination of two types of data using the Kalman filter
in an iterative process are as follows [42].

Prediction step
x̂ = Sx
J = SJS′ + D

Update step
K = JH′ (HJH′ + (QALT + QSteric+non−steric)

−1

J = (I − KH) J
L = [DTALT ; DTSteric+non−steric]
x̂ = x̂ + K (L − Hx̂)
DTf inal = x̂

(9)

where x represents the state vector, S is the state matrix, D is the covariance matrix of
noise, I is the identity matrix, J is the covariance matrix of the state, H is the observation
operator, K is the Kalman gain matrix, and L is the observation vector, x which represents
the unknown estimate.

2.6. Assimilation Using 3DVAR (3D Variational) Method

The 3DVAR method serves not only as a data assimilation technique but also possesses
the capability to integrate diverse data from multiple sources. This method establishes
an objective function, taking into account existing errors, and minimizes it to achieve the
optimal solution. The resulting solution, obtained by minimizing the objective function, is
expressed as follows [19,43].

B = (I + H′ (QALT + QSteric+non−steric) H)−1

x̂ = B (B DT′
Alt + H′ QALT DT′

Alt + H′ QSteric+non−steric DT′
Steric+non−steric)

(10)



Remote Sens. 2024, 16, 527 9 of 19

In the above equation, B is the covariance matrix of the model or background that is
derived by utilizing the covariance matrices estimated through the VCE method, and H is
the observation operator [44]. H is a mathematical function that maps the model’s state
variables to the space of observations. Therefore, here the matrix H is derived from matrix
A (Equation (4)).

2.7. Estimation of Total Surface Current

The total surface current is obtained via summing Ekman surface current and
geostrophic current [45]. The Ekman component is sourced from the National Oceanic and
Atmospheric Administration (NOAA). Geostrophic currents are derived by computing
the zonal (u) and meridional (v) velocity components through the horizontal gradient of
the DT, as described by [38,45]. These components can be calculated using the following
equations:

u = − g
f

∂ζ
∂y

v = g
f

∂ζ
∂x

(11)

where g represents the acceleration of gravity (9.832 m/s²), ζ is DT, f = 2Ωsinφ repre-
sents the Coriolis force, φ and Ω are geographical latitude and the Earth’s rotation speed,
respectively [38].

Finally, the total surface current can be estimated as follows [19,38]:

uTotal = uGeostrophic + uEkman, vTotal = vGeostrophic + vEkman

WTotal =
√

uTotal
2 + vTotal

2 (12)

3. Results

In this section, the emphasis is on presenting and analyzing the results. The assimila-
tion technique is evaluated by comparing it with independent measurements. The influence
of assimilation hydrography observations and altimetry data into the estimation of DT
accuracy is emphasized, and any potential uncertainties or limitations are addressed.

As previously stated, the objective of this section is to calculate DT by utilizing satellite
altimetry data along with the steric and non-steric terms of SLA. To accomplish this, we
follow a series of steps to derive the final DT:

1. DT is determined by employing satellite altimetry and integrating the steric and
non-steric components of sea surface anomalies.

2. Two different types of estimated DT are assimilated using the aforementioned ap-
proaches.

3. The final DT is validated by comparing it with local current meter data.

The initial step in determining DT involves the estimation of the mean dynamic
topography (MDT) and geoid height in the study area, employing Equations (1) and (2).
To evaluate the accuracy of the geoid height calculations, Figure 2 presents the errors
associated with gravity models employed in this study. Notably, the XGM2019e model
exhibits the lowest error, particularly at higher resolutions, for deriving the geoid height
from gravity models.

Within the spatial scale of 80-100 km (equivalent to spherical harmonic degree
n = 200–250), the geoid derived from this model demonstrates a nominal error of less
than 1 cm (Figure 2). Overall, both the XGM2019e gravity model and the EIGEN_6C4
gravity model yield superior outcomes when compared with other gravity models. Figure 3
visually depicts the geoid height obtained from the XGM2019e gravity model in the Persian
Gulf and the Sea of Oman. In this particular region, the geoid height ranges from 82 to
−1 m, with the minimum value situated in the southeastern part of the Sea of Oman near
India and the highest value is situated in the northwestern boundaries of the Persian Gulf.
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Figure 3. Geoid height of XGM2019e gravity model.

The MDT for the study area has been estimated as gridded points with a geographical
resolution of 0.25 degrees in longitude and latitude. This estimation is based on the
difference in the geoid height between the XGM2019e model and the mean sea surface
(MSS-IR01) model. Figure 4a provides a visual representation of the spatial pattern of the
unfiltered MDT in the study area. It is important to note that the MDT contains noise due to
the disparity in resolutions between the geoid data and the MSS model. In order to reduce
this noise, a spatial filter is implemented on the MDT. Prior studies have utilized Gaussian
filters with various radii. For instance, [14] employed a Gaussian filter with a 140 km
radius, [46] used a 125 km radius Gaussian filter, and [38] applied a 100 km radius filter.
Additionally, [47] estimated the size of the MDT filter derived from data obtained from
the gravity field and steady-state ocean circulation explorer (GOCE) satellite, suggesting a
range of 100 to 125 km for global applications. Taking into account these studies, we have
chosen to employ a Gaussian filter with a 100 km radius, considering the geoid height error
(less than 1 cm in 100 km resolution) in the XGM2019e model. The filtered MDT is depicted
in Figure 4b. The MDT exhibits a range of values spanning from 42 to 78 cm, with higher
values predominantly observed toward the southeast and east. Meanwhile, there are lower
values observed in the vicinity of the northwestern and western regions.
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Figure 4. (a) Unfiltered MDT; (b) filtered MDT.

The calculated MDT, derived from the respective errors of MSS-IR01 and XGM2019e,
exhibits an error range of mainly 1.2 to 3.4 cm. To assess the accuracy of our MDT model,
we compare it with the MDT-CNES-CLS2018 model. The results indicate that both models
depict a very similar pattern of MDT within the study area, with variations occurring along
the coastlines. Figure 5 provides a visual representation of the MDT-CNES-CLS2018 model
and the discrepancy comparing the estimated MDT and the MDT-CNES-CLS2018 model.
It is evident that the dissimilarities between the two models arise from the utilization of
different gravity models and MSS data. It is essential to highlight that, in the context of this
study, we employed the local MSS-IR01 model to calculate the MDT.
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The calculation of the MDT and geoid within the study area has been completed,
serving as crucial components in determining DT through Equations (1) and (2). It is
important to note that satellite altimetry observations in coastal regions exhibit lower
accuracy compared with offshore areas, even by applying retracking correction. Hence, to
achieve a suitable balance between observations, hydrographic observations (steric term)
and GRACE satellite data (non-steric term) are employed in determining DT. This entails
assigning a relatively higher weight to hydrographic and GRACE satellite observations
in coastal areas compared with satellite altimetry observations, while satellite altimetry
observations carry greater weight in offshore regions during the final determination of the
DT.

Figure 6a,b presents the standard deviation of satellite altimetry observations before
and after retracking correction, respectively. As depicted, the standard deviation increases
in coastal regions and decreases in offshore regions. Upon comparing Figure 6a,b, it
is evident that applying the retracking correction results in a decrease in the standard
deviation of satellite altimetry observations in coastal regions. Figure 7 displays the
standard deviation of steric and non-steric sea surface height anomaly observations. These
standard deviations are employed to construct the initial covariance matrix (QAlt and
QSteric+non-Steric) in the determination of the final DT, utilizing the methods described in
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later sections. Moreover, Figure 8 illustrates the SLA for a specific location in the Sea of
Oman, using satellite altimetry observations as well as steric and non-steric observations.
Notably, the steric and non-steric SLAs exhibit good agreement with satellite altimetry
observations. As an example, Figure 9 displays the DT obtained from satellite altimetry
data and the combination of hydrographic (steric) and GRACE (non-steric) data for January
2002. The DT data points are generated at a monthly temporal resolution and a spatial
resolution of 0.25 degrees. Our current objective is to determine the final DT by utilizing
these two types of observations.
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Figure 9. (a) DT of altimetry; (b) DT of steric + non-steric.

For the subsequent step, the observation equations can be expressed in grid points
for assimilation, employing methods discussed in the previous section, including VCE,
Bayesian theory, Kalman filter, and 3DVAR. Figure 10 provides an example of the DT de-
rived from satellite altimetry observations, as well as steric and non-steric sea surface height
anomaly observations. It also showcases the final DT obtained through the application of
the aforementioned methods. Most of the methods successfully achieved a satisfactory
combination of the two types of data. However, it is challenging to determine the precise
optimal method in this particular case.

Remote Sens. 2024, 15, x FOR PEER REVIEW 15 of 22 
 

 

  

(a) (b) 

Figure 9. (a) DT of altimetry; (b) DT of steric + non-steric. 

For the subsequent step, the observation equations can be expressed in grid points 

for assimilation, employing methods discussed in the previous section, including VCE, 

Bayesian theory, Kalman filter, and 3DVAR. Figure 10 provides an example of the DT 

derived from satellite altimetry observations, as well as steric and non-steric sea surface 

height anomaly observations. It also showcases the final DT obtained through the appli-

cation of the aforementioned methods. Most of the methods successfully achieved a satis-

factory combination of the two types of data. However, it is challenging to determine the 

precise optimal method in this particular case. 

  
(a) (b) 

Figure 10. The DT resulting from the assimilation of two types of observations using various meth-

ods: (a) represents the entire sample of the DT while (b) shows a specific portion of it. 

To validate and determine the suitable method for integrating the two types of ob-

servations in the determination of the final DT, local current meter observations (as de-

scribed in Section 2.1, Table 3) are utilized. The validation process involves computing the 

total surface currents using the final DT obtained from the previously mentioned methods 

and comparing them with the local current meter observations. The method that yields 

the lowest root-mean-square error (RMSE) is chosen as the preferred method. Table 4 pro-

vides the RMSE values (in meters per second) between the estimated total surface currents 

obtained using different DT methods and the current meter observations for the absolute 

velocity of the oceanic currents. As an illustration, Figure 11 exhibits the surface geo-

strophic currents derived from the final DT utilizing the aforementioned methods, along 

with the surface currents at the Konarak station for the surface currents’ east–west and 

north–south components. 

Figure 10. The DT resulting from the assimilation of two types of observations using various methods:
(a) represents the entire sample of the DT while (b) shows a specific portion of it.

To validate and determine the suitable method for integrating the two types of obser-
vations in the determination of the final DT, local current meter observations (as described
in Section 2.1, Table 3) are utilized. The validation process involves computing the total
surface currents using the final DT obtained from the previously mentioned methods and
comparing them with the local current meter observations. The method that yields the
lowest root-mean-square error (RMSE) is chosen as the preferred method. Table 4 provides
the RMSE values (in meters per second) between the estimated total surface currents ob-
tained using different DT methods and the current meter observations for the absolute
velocity of the oceanic currents. As an illustration, Figure 11 exhibits the surface geostrophic
currents derived from the final DT utilizing the aforementioned methods, along with the
surface currents at the Konarak station for the surface currents’ east–west and north–south
components.
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Table 4. The RMSE values (cm/s) between the estimated total surface currents and the current meter
observations for the absolute velocity.

Station Name VCE Bayesian Kalman Filter 3DVAR

Khoran 12.15 12.25 17.30 23.65
Konarak 12.01 11.14 13.22 16.15

Chabahar 18.23 16.33 12.41 30.41
Bushehr 13.33 17.53 14.57 41.26
Taheri 17.21 23.34 20.43 38.55

Nayband 12.41 27.35 16.46 31.62
Nakhl-Taghi 10.42 12.23 10.34 26.75

Kangan 11.44 15.32 15.30 40.54
Jask 18.32 11.12 20.43 22.19

Larak 11.47 22.52 16.55 50.53
Googsar 16.43 13.51 20.51 44.79

Rajaei 14.20 10.36 11.52 37.31
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Figure 11. Examining the comparison between the estimated total surface currents and the local
surface currents specifically at the Konarak station, focusing on: (a) the east–west component of the
surface currents; (b) the north–south component of the surface currents.

Through the comparison of RMSE values calculated between the local current meter
observations and the currents estimated using the DT obtained from the four aforemen-
tioned methods, it is generally observed that the VCE method exhibits lower RMSE values
compared with the other methods at most stations. However, it is worth noting that other
methods also performed well at specific stations. As an illustrative example, Figure 12
showcases the final DT obtained utilizing the VCE method for January 2002.
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To further examine the impact of integrating steric and non-steric SLA data in de-
termining DT and, subsequently, the total surface currents, we investigate the effect of
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combining GRACE and hydrographic data with altimetry observations using the VCE
method. The following comparative analysis is conducted:

(i). Initially, the estimation of total surface currents solely relies on the DT obtained from
altimetry observations, without incorporating GRACE and hydrographic data. Then,
the estimated currents are compared against the measurements from the current
meter.

(ii). Subsequently, the total surface currents are obtained by utilizing the DT derived
from the combined datasets, which include altimetry satellites as well as GRACE
and hydrographic data. Furthermore, the estimated currents are compared with the
observations from the current meter.

In general, the findings of the study suggest that incorporating both GRACE and
hydrographic data into the analysis improves the agreement between the estimated ocean
currents and the local observations. Specifically, the VCE approach demonstrates higher
accuracy in estimating the currents compared with alternative methods. This indicates that
the assimilation of GRACE data and hydrographic measurements enhances the reliability
and precision of current estimations. Figure 13 illustrates the differences between the
surface current components and the local current meter data in January when considering
only altimetry data (without GRACE and hydrographic data) for DT estimation. Conversely,
Figure 14 demonstrates the differences comparing the surface current components and the
local current meter data in January, taking into account the incorporation of GRACE and
hydrographic data for DT estimation. By comparing Figures 13 and 14, it can be observed
that the inclusion of the second dataset significantly enhances the determination of the
surface currents. In this study, the local current meter stations are located in close proximity
to the coast. Acknowledging the well-known limitations of altimetry measurements in
coastal regions, the incorporation of GRACE and hydrographic data serves to compensate
for these shortcomings, enhancing the accuracy and reliability of the overall analysis.
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4. Discussion

The Persian Gulf and the Sea of Oman hold strategic importance as crucial routes for
the transportation of petroleum energy to different parts of the world. Consequently, con-
ducting studies on DT in these regions becomes vital for acquiring a deeper comprehension
of the regional climate, environment, maritime transportation, and the dynamics of oil and
non-oil pollutants.

The study introduces a novel approach that combines altimetry data with GRACE
and hydrographic data, utilizing assimilation methods. This integrated approach aims to
estimate DT with higher precision in both coastal and offshore regions, thereby addressing
the challenges associated with accurate measurements in coastal areas. The methodology
developed in this study exhibits its effectiveness by assigning suitable initial weights to the
altimetry and GRACE + hydrographic data, leading to a more dependable estimation of
DT. In nearshore, where satellite altimetry observations are known to be less accurate, the
GRACE + hydrographic data are given greater weight to compensate for the limitations
of altimetry in DT computation. On the other hand, in offshore areas where altimetry
performs well, more emphasis is placed on the altimetry data by assigning the data a higher
weight. This adaptive weighting strategy ensures that the strengths of each dataset are
leveraged appropriately to enhance the overall reliability of DT estimation.

To validate the assimilation methods, the estimated ocean current velocity is compared
with and without the inclusion of GRACE (representing the non-steric term of sea level
anomalies) and hydrography (representing the steric term of sea level anomalies) data,
using in situ current meter data as a reference. The results indicate that incorporating
both steric and non-steric terms of sea level anomalies improves the estimation of DT. By
combining altimetry and GRACE + hydrographic data through assimilation methods, this
study provides a robust framework for obtaining more accurate and reliable estimates of
DT, particularly in coastal regions where altimetry observations alone may not suffice.

5. Conclusions

The aim of this study is to propose a data-driven approach that determines DT in
the Persian Gulf and the Sea of Oman. The proposed method offers the advantage of
combining various geodetic data and hydrography observations, such as radar altimetry,
GRACE, geoid undulation, salinity, and temperature, using assimilation methods. This
approach accurately models the spatial and temporal variations of DT. The DT is then
converted into a total surface current by calculating the horizontal gradient (geostrophic
current) and incorporating the effects of the Ekman currents to find the appropriate data
assimilation method for DT determination.
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One of the key conclusions drawn from this study is that the evaluation of different
assimilation methods for surface current determination based on DT evaluation reveals
that the VCE method outperforms other assimilation approaches, exhibiting lower root-
mean-square error (RMSE) by comparing with in situ current meter data. The utilization of
the VCE method, which combines altimetry and GRACE + hydrography data, significantly
improves the estimated surface currents in coastal and offshore regions.

Another main conclusion is that the inclusion of both the steric and non-steric com-
ponents of SLA improves the accuracy of DT estimation. Integrating both GRACE and
hydrographic data in the analysis enhances the agreement between the estimated ocean cur-
rents and the local observations, surpassing the results obtained when only altimetry data
are utilized. This suggests that assimilating GRACE data and hydrographic measurements
enhances the reliability and precision of current estimations (refer to Figures 13 and 14).

Another key finding is that the MDT and geoid are computed, serving as crucial
elements in the determination of DT using Equations (1) and (2). To reduce the noise
present in the MDT, a spatial Gaussian filter with a radius of 100 km is applied, yielding
favorable results when calculating DT and comparing the estimated MDT with the MDT-
CNES-CLS 2018 model. Furthermore, the XGM2019e gravity model demonstrates superior
performance in geoid determination compared with other gravity models within the
specified spatial scale.

These findings significantly contribute to our understanding of oceanic currents and
their dynamics. The proposed method can be applied in future studies and applications
that require precise and reliable estimations of surface currents. By improving our ability to
monitor and model ocean currents, this research opens up possibilities for advancements
in various fields related to oceanography. Future research may focus on refining the as-
similation methods used in this study to further improve the accuracy of DT estimation.
Exploring the applicability and performance of the proposed method in different geograph-
ical regions and under diverse environmental conditions would provide valuable insights.
Additionally, ongoing efforts to validate and enhance the accuracy of gravity models and
their compatibility with other data sources and models are essential for advancing DT
estimation techniques.
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