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Abstract: Rapid global changes are altering regional hydrothermal conditions, especially in ecologi-
cally vulnerable areas such as coastal regions, subsequently influencing the dynamics of vegetation
growth. However, there is limited research investigating the response of vegetation in these regions
to extreme climates and the associated time lag-accumulation relationships. This study utilized a com-
bined approach of gradual and abrupt analysis to examine the spatiotemporal patterns of vegetation
dynamics in the coastal provinces of China from 2000 to 2019. Additionally, we evaluated the time
lag-accumulation response of vegetation to extreme climate events. The results showed that (1) ex-
treme high temperatures and extreme precipitation had increased over the past two decades, with
greater warming observed in high latitudes and concentrated precipitation increases in water-rich
southern regions; (2) both gradual and abrupt analyses indicate significant vegetation improvement
in coastal provinces; (3) significant lag-accumulation relationships were observed between vegetation
and extreme climate in the coastal regions of China, and the time-accumulation effects were stronger
than the time lag effects. The accumulation time of extreme temperatures was typically less than
one month, and the accumulation time of extreme precipitation was 2–3 months. These findings
are important for predicting the growth trend of coastal vegetation, understanding environmental
changes, and anticipating ecosystem evolution.

Keywords: lag-accumulation effects; climate change; gradual and abrupt analysis; coastal vegetation

1. Introduction

As a critical link between solar and biotic energy, vegetation significantly contributes to
ecosystems by enhancing soil conditions, maintaining ecosystem stability, regulating carbon
balance, supporting hydrological cycles, and mitigating greenhouse gas emissions [1–3].
The changes in vegetation structure and function are driven by a combination of climate and
environmental variations, as well as anthropogenic activities such as land use changes [4].
Climate change primarily affects terrestrial ecosystems, mainly by altering critical processes
such as plant respiration, photosynthesis, growing seasons, and soil formation, which
can have long-term repercussions on the spatial distribution patterns of vegetation [5].
Current reports and forecasts indicate a consistent trend of global warming, underscoring
the increased likelihood of more frequent and intense extreme climate events [6]. Different
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countries and regions around the world have experienced more frequent and intense ex-
treme weather events such as droughts and heatwaves [7,8]. The responses of vegetation to
climate are often intricate, and long-term climate changes result in gradual alterations in
vegetation distribution and dynamics, while extreme climatic events exert significant rapid
impacts on vegetation [9]. Hence, unveiling substantial alterations in global climate con-
ditions, comprehending the influence of extreme climatic events on vegetation dynamics,
and assessing the mechanisms behind these interactions are all crucial for understanding
the uncertainties associated with vegetation growth and ecosystem carbon sequestration in
response to climate change.

The vegetation status is a crucial indicator reflecting the evolution of the natural ecolog-
ical environment. Conducting vegetation change monitoring is a fundamental requirement
for evaluating the quality and suitability of the ecological environment [10]. Previous
research has highlighted that vegetation indices based on “greenness” observations, such
as the normalized difference vegetation index (NDVI), can only detect the “potential photo-
synthesis” of plants [11]. They may fail to capture variations in photosynthesis for certain
vegetation types such as evergreen forests, as “greenness” and photosynthesis are occa-
sionally decoupled [12]. Inaccurate estimation of vegetation growth based on “greenness”
can introduce substantial uncertainty in estimating vegetation productivity and carbon
sequestration [13,14]. The emergence of satellite-based solar-induced chlorophyll fluo-
rescence (SIF) offers an unprecedented opportunity for more accurate tracking of actual
vegetation growth [15,16]. Unlike canopy reflectance products, SIF is a by-product of
vegetation photosynthesis and is tightly coupled with the photosynthetic process, allowing
it to reflect changes in vegetation physiology at the onset of change, making it a more
sensitive method of detecting vegetation photosynthetic physiology than traditional vege-
tation indices [17]. It can better capture the growth status of evergreen vegetation and arid
ecosystems, especially in the early stages of vegetation stress [18,19].

Characterizing temporal changes in vegetation primarily involves two types: gradual
and abrupt [20]. Gradual changes can be determined using linear trends or Sen’s trends,
with the slope value indicating the direction and rate of vegetation change over time [21].
Gradual analysis assumes that the vegetation change trend remains constant throughout
the period. However, growth processes may not always rise or fall steadily in the long-term
trend of vegetation change; instead, they are likely to undergo various, potentially opposite,
phase trends due to the impact of drought, high temperatures, and afforestation [22,23].
This can lead to certain uncertainties in gradual analysis when assessing the changing
characteristics of time-series vegetation indices, potentially obscuring vital abrupt change
information [24]. Therefore, it is especially crucial to effectively extract and identify break-
point types and trends in vegetation growth stages [25]. The breaks for additive season
and trend (BFAST) method is widely applied for detecting trend changes in long-time se-
ries [26]. It can segment the overall trend into multiple segments. As a result, in monitoring
vegetation growth dynamics, it is necessary to combine gradual and abrupt analysis to
avoid overlooking the true vegetation trends and fluctuations due to inadequate focus on
either gradual or abrupt characteristics.

The growth status of vegetation is closely related to climate change patterns, and
plants typically exhibit non-linear responses to climate change [27,28]. Climate change
only induces inevitable vegetation changes when it accumulates beyond the environmental
carrying capacity or the vegetation’s tolerance. This suggests that climate change processes
involve a time lag in vegetation dynamics in response to climate [29]. Damage to growth
only occurs when climate passes a critical threshold. Compared to average climate change,
extreme climatic events possess characteristics of suddenness, unpredictability, and destruc-
tiveness [30]. Extreme climates typically have the potential to impact terrestrial ecosystems
in various ways, such as reducing primary productivity and altering carbon budgets. They
can also force species to adapt to changing environments and, in some cases, increase the
risk of local species decline or even extinction [31]. The impacts of extreme climates on
the ecological environment are more direct and severe [32]. Therefore, understanding the
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relationship between extreme climates and vegetation is crucial for assessing the adapt-
ability and vulnerability of vegetation to extreme climates, and promoting adaptation and
mitigation strategies for extreme climates. Many researchers have assessed the impact of
extreme climate events (heatwaves, droughts, extreme precipitation) on vegetation from
various perspectives [33,34]. However, in most previous studies, the focus has been pre-
dominantly on examining the correlation between vegetation indices and extreme climate
indices, using the magnitude of the correlation coefficient to determine the extent of the
impact of extreme climate on vegetation [35,36]. Nevertheless, there has been relatively
little attention given to the analysis of the lag-accumulation effects of extreme climate
events on vegetation. Lag effects or temporal cumulative effects may exist in the interaction
between vegetation and climate change [37]. When climate changes exceed the vegetation’s
tolerance threshold, vegetation responds through feedback mechanisms. In other words,
the dynamic response of vegetation to climate variability may not be immediate [38]. Lag
effects refer to the impact of climate conditions changing at a specific time on the current
vegetation, implying that the influence of climate changes a few months earlier is more
significant for current vegetation growth [39]. Time accumulation effects indicate that
vegetation growth is notably influenced by the cumulative climate conditions from the past
few months, including the current month [40]. The response of vegetation to climate change
exhibits characteristics across multiple time scales, involving not only monthly lags but also
potentially seasonal and annual delays [41,42]. Previous research at the global scale has
revealed that the time lag effects on various vegetation forms and climate factors differ [43].
Specifically, the time lag-accumulation patterns in vegetation responses to climate within
the same ecosystem may vary, while the time lag-accumulation patterns in vegetation
responses to climate across different ecosystems may be similar. For instance, the time
lag for plant communities in response to monthly maximum temperatures in mid-high
latitude regions (such as the Qinghai-Tibet Plateau and the Brazilian Plateau) is relatively
long (>12 months) [44].

To date, numerous studies have identified coexisting time lag or cumulative effects
of climate factors and extreme climates on vegetation [45–49]. However, research on the
time lag-accumulation effects of extreme climates on SIF remains limited, especially in
the climatically complex and ecologically diverse coastal regions of China. This limita-
tion restricts our ability to assess and attribute extreme surface phenomena, introducing
uncertainty when predicting vegetation growth and ecosystem carbon sequestration re-
sponses to climate change [50]. Based on this, this study examines the spatiotemporal
characteristics of vegetation activity and its response to extreme climates in the coastal
provinces of China from 2000 to 2019. The innovation here lies in bridging the gap in our
understanding of how extreme climate events impact sensitive coastal vegetation areas
over time. Specifically, this study seeks to (1) explore the spatiotemporal evolution of
vegetation activities in the coastal provinces of China using Global OCO-2 SIF dataset
(GOSIF) data, in conjunction with gradual and abrupt change analyses; (2) clarify the
interannual variability of trends and spatial patterns of extreme climate time series changes;
and (3) estimate the relationship between extreme climate and vegetation at the pixel level,
and investigate their lag-accumulation effects. This study aims to address knowledge gaps
regarding the temporal lag effects of extreme climates on vulnerable coastal vegetation. The
outcomes will establish a foundation for forecasting trends in coastal vegetation growth,
understanding environmental shifts, and anticipating ecosystem evolution.

2. Materials and Methods
2.1. Study Area

The coastal province of mainland China is situated between approximately 104◦26′

and 125◦78′E longitude and between 18◦16′ and 43◦48′N latitude. This region experiences
an annual precipitation of around 888.44 mm and an average temperature of approxi-
mately 16.50 ◦C (source: http://data.cma.cn, accessed on 1 January 2024). The study
area is delineated based on provincial administrative boundaries, with the inclusion of 14

http://data.cma.cn
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regions along with their respective maritime zones and islands, including Liaoning, Hebei,
Tianjin, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Taiwan, Guangdong, Hong Kong
Special Administrative Region, Macau Special Administrative Region, Guangxi Zhuang
Autonomous Region, and Hainan Province. Taiwan is excluded from this study due to
data availability limitations. Although Beijing is situated inland, it is relatively close to
the coast, surrounded by two coastal provinces and municipalities, Hebei and Tianjin. To
ensure the spatial integrity of the study area and to facilitate a comprehensive and detailed
understanding of the coastal regions of mainland China, Beijing has been included in the
research scope [51], as shown in Figure 1a.
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Figure 1. (a) Background information of coastal China. (b) Distribution map of meteorological
stations. (c) Multi-year average SIF distribution map.

This study area presents diverse and intricate natural conditions that transition from
land to sea, with significantly varying climate types and characteristics from north to
south [52]. It is markedly influenced by monsoon climates. The northern part falls within
the temperate and warm-temperate zones, while the southern part is classified under
subtropical and tropical zones. Winters in most regions are characterized by cold and
arid conditions, while summers enjoy ample sunshine and abundant rainfall [53]. The
natural vegetation types in the study area region mainly consist of temperate deciduous
broadleaf forests, temperate deciduous shrublands, subtropical and tropical evergreen
needleleaf forests, subtropical evergreen broadleaf forests, and tropical evergreen broadleaf
rainforests [54]. In recent years, due to the accelerating pace of global climate change and
rapid socioeconomic development in coastal areas, significant changes have occurred in
regional vegetation.

2.2. Data Introduction

Meteorological stations in the coastal provinces of China, illustrated in Figure 1b, cover
a geographic expanse of 25 latitudinal and 21 longitudinal degrees. Long-term data from
751 stations (2000–2019) sourced from the National Meteorological Science Data Center
(http://data.cma.cn, accessed on 1 January 2024) underwent rigorous quality control,
involving data cleansing, outlier detection, and gap-filling methods. These stations furnish
vital parameters such as average temperature (TEM), maximum temperature (TEMmax),

http://data.cma.cn
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minimum temperature (TEMmin), and daily precipitation (PRE). Spatial interpolation
methods were employed for obtaining raster data. The densely and uniformly distributed
stations ensure high representativeness for analyzing extreme climatic conditions in the
study area.

SIF, a measure of light emitted by plant chlorophyll molecules, is highly correlated
with the actual photosynthetic activity of vegetation [55]. To capture vegetation responses
to extreme climate events in this study, we utilized the GOSIF dataset spanning from
2000 to 2019 (http://globalecology.unh.edu/, accessed on 1 January 2024). This dataset
was developed using a machine learning algorithm, combining surface reflectance from
MODIS and solar-induced fluorescence (SIF) data from the Orbiting Carbon Observatory-2
(OCO-2), along with meteorological reanalysis data [56]. The GOSIF dataset used in this
study is characterized by a spatial resolution of 0.05◦ and an 8-day temporal resolution
under clear-sky conditions, covering the period from 2000 to 2019. This dataset was selected
to mitigate the limitations of discontinuity and coarse resolution present in OCO-2 SIF
products. GOSIF data have been widely applied in previous studies related to productivity
assessment, carbon cycling, and drought monitoring [57,58]. We extracted monthly mean
GOSIF data to match the monthly scale of extreme climate indices.

2.3. Methods
2.3.1. Extraction of Extreme Climate Indices

Considering the time lag and cumulative effects of climate indices on vegetation, this
study selected twenty monthly climate indices from the extreme climate indices defined by
the Expert Team on Climate Change Detection and Indices (ETCCDI), which encompass
eight precipitation factors and twelve temperature factors (Table 1). These twenty indices
encompass both average climate indices (PRE, TEM) and extreme climate indices calculated
using the RClimDex. These extreme climate indices can reflect the changes associated with
extreme climate events and are characterized by low extremeness, high significance, low
noise, ease of interpretation, and widespread use [59].

Table 1. Description of the 20 climatic indices.

ID Name Definition Unit

TEM TEM Average temperature: Monthly average value of daily
average temperature

◦C

TEMmax Tmax Monthly average value of daily maximum temperature ◦C
TEMmin Tmin Monthly average value of daily minimum temperature ◦C

DTR Temperature duration Monthly mean value of the difference between daily maximum and
minimum temperature

◦C

TN10p Cold nights Number of days when TN < 10th percentile Days
TX10p Cold days Number of days when TX < 10th percentile Days
TN90p Warm nights Number of days when TN < 90th percentile Days
TX90p Warm days Number of days when TX < 90th percentile Days
TNn Min Tmin Monthly minimum value of daily minimum temperature ◦C ◦C
TNx Max Tmin Monthly maximum value of daily minimum temperature ◦C ◦C
TXn Min Tmax Monthly minimum value of daily maximum temperature ◦C ◦C
TXx Max Tmax Monthly maximum value of daily maximum temperature ◦C ◦C
PREF PRE Precipitation: Monthly total amount of precipitation mm
LR Light rainfall Monthly total amount of daily precipitation in the range of 0–10 mm mm
MR Moderate rainfall Monthly total amount of daily precipitation in the range of 10–25 mm mm
HR Heavy rainfall Monthly total amount of daily precipitation in the range of 25–50 mm mm
TR Torrential rainfall Monthly total amount of daily precipitation over 50 mm mm
RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm
RX5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm

SDII Daily precipitation intensity The ratio of the total amount of precipitation ≥ 1 mm to the number
of precipitation days mm/day

http://globalecology.unh.edu/
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We interpolated the climate indices to a 5 km spatial resolution, matching the spa-
tial resolution of the GOSIF data, using the R package Machisplin (https://github.com/
jasonleebrown/machisplin, accessed on 1 January 2024). The Machisplin method combines
the advantages of spatial interpolation and machine learning algorithms and can incorpo-
rate topographical data such as elevation as covariates for simulating predictions [60]. This
approach minimizes the influence of topographical and other factors on climate data inter-
polation. In the Machisplin model, elevation, aspect, and slope are used through machine-
learning ensembling to interpolate climate data using up to six algorithms: boosted regres-
sion trees (BRT), neural networks (NN), generalized additive model (GAM), multivariate
adaptive regression splines (MARS), support vector machines (SVM), and random forests
(RF) [61]. This R package interpolates noisy multivariate data through machine-learning
ensembling, combining the strengths of up to six algorithms [62].

2.3.2. Gradual Analysis

The Sen’s slope method calculates the general trend of vegetation SIF and extreme
climate in the coastal areas of China from 2000 to 2019. This method employs the median
value to mitigate the impact of noise [63]. The Mann–Kendall nonparametric test method
is advantageous because it does not rely on a specific probability distribution for the
sample, making it less affected by outliers [64]. This approach is suitable for testing trend
significance in non-normally distributed time series data. The formula for calculating Sen’s
trend (β) is as follows:

β = median
( xj − xi

j − i

)
, 1 < i < x < j (1)

In this formula, the median function represents the median, and xi and xj are the
values of the i and j years in the time series. β indicates the degree of Sen’s trend, reflecting
the rising or falling trend of the series. When β < 0, it signifies a downward trend, with
smaller values indicating a more pronounced downward trend. When β > 0, it signifies an
upward trend, with larger values indicating a more pronounced upward trend. The test
statistic S is computed as

S = ∑n−1
i=1 ∑n

j=i+1 sign
(
xj − xi

)
(2)

where

sign
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(3)

where xi and xj represent the values of years i and j in the time series, respectively. Sign is
the sign function. The variance of S is computed as:

Var =
n(n − 1)(2n + 5)

18
(4)

S is normalized to obtain the statistical test value ZMK:

ZMK =


S−1√
Var(S)

, S > 0

0 , S = 0
S+1√
Var(S)

, S < 0
(5)

In this study, a trend is considered statistically significant at the 0.05 level. In other
words, if |ZMK| is greater than 1.96, the null hypothesis of no trend is rejected, indicating
a significant trend (p < 0.05).

https://github.com/jasonleebrown/machisplin
https://github.com/jasonleebrown/machisplin
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2.3.3. Abrupt Analysis

In this study, we applied the break for additive season and trend (BFAST) algorithm
at the per-pixel level to monitor and describe significant changes (breakpoints) occurring
in the vegetation time series. The BFAST algorithm utilizes an iterative approach to
decompose time series into long-term trends, seasonal components, and residuals (as
shown in Figure 2b). It characterizes vegetation features based on the direction and
amplitude of breakpoints and is used for satellite time series analysis. This method can be
directly applied to raw time series data without the need for additional standardization
and predefined phenology trajectories [26]. Additionally, BFAST incorporates phenology
harmonics models, making it effective for handling limited sample data with high accuracy
when monitoring vegetation breakpoints at the pixel level [25]. The decomposition model
is generally represented as

Yt = St + Tt + et(t = 1, . . . ,n) (6)
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Figure 2. A case study verifies the effectiveness of the BFAST algorithm for monitoring the breakpoint
on the time series. (a) BFAST method detected the stability on the pixel scale over coastal China. The
green spots in the map represent the pixels selected to verify the effectiveness of the BFAST algorithm.
(b) BFAST algorithm was used to decompose the three variables in the time series. Yt represents the
trend of vegetation during 2000–2019. St represents the seasonal component by the representative. Tt
represents the breakpoint (abrupt change) caused by the BFAST algorithm. (c) The BFAST algorithm
detected the GOSIF on the breakpoint pixel, which is gradually encroached cropland with high
greenness from the bare land with very low greenness.

Here, Yt represents the observed data at time t, St represents the seasonal component,
Tt represents the trend component, and et represents the residual component.

To detect the primary breakpoints in the SIF time series, we employed the BFAST
method using the bfast01 function in R at the pixel level from 2000 to 2019. Following
the categorization established by prior research [65], we classified changes in vegetation
growth into six categories: “monotonic increase”, “monotonic decrease”, “increase with
negative break”, “decrease with positive break”, “increase to decrease”, and “decrease to
increase”. After categorizing the different combinations of two-segment changes following
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breakpoints, it is essential to note that the trend changes in individual segments may vary
in significance. To better understand whether vegetation condition significantly changed
over a single period, the study used four types to characterize the significance of different
combinations of changes between two segments: (1) both segments were significant; (2) only
the first segment was significant; (3) only the second segment was significant; and (4) neither
segment was significant.

2.3.4. Time Lag-Accumulation Effects of Vegetation Responses to Climatic Factors

The time lag-accumulation effects of extreme climate on vegetation are characterized
by calculating Pearson correlation coefficients. Extreme climate variables are treated as
independent variables, while GOSIF, representing vegetation growth conditions, is the
dependent variable. We assess their correlation at various time scales. Previous studies
have shown that the monthly-scale lag-accumulation response of vegetation to climate
is generally less than one-fourth of the year [39,43,45,66]. Therefore, we consider a time
lag ranging from 0 to 3 months. Taking temperature as an example, the definition of
lag-accumulation climate variables is as follows:

SIFt = b × ∑k
j=0 TEMt−i−j + a (7)

Here, a and b represent regression coefficients, while i and k can take values from 0 to
3. In this context, 0 means no time effect, and 1–3 represent one to three months of lag or
accumulation. Different combinations of i and k allow for a comprehensive consideration
of time effects. In Equation (7), four scenarios can be considered:

(i) When i = 0 and k = 0, there is no time effect.
(ii) When i = 0 and k is between 1 and 3, only time accumulation effects are considered.
(iii) If i is between 1 and 3, and k = 0, only time lag effects are considered.
(iv) When both i and k are between 1 and 3, both time lag and time accumulation effects

are simultaneously considered, encompassing their combined effects. Therefore, the
fourth scenario encompasses all possible time effects.

3. Result
3.1. Gradual and Abrupt Vegetation Changes along the Coastal Areas of China

Mann–Kendall trend test and Sen’s slope analysis were employed to detect the vege-
tation gradual trends along the coastal areas of China (Figure 3). Despite a clear upward
trend in most of the vegetation from 2000 to 2019, vegetation dynamics based on SIF
exhibited significant spatial heterogeneity. In general, the northern part of the Chinese
coast had a relatively gentle growth trend, the central region displayed localized spots of
declining vegetation, especially in the Yangtze River estuary area, while the southern part
exhibited the most noticeable improvement in vegetation, as clearly illustrated in Figure 3a.
Combining trend analysis with significance test results, the coastal vegetation gradual
trends were further categorized into five types, as illustrated in Figure 3b: “significant in-
crease (sig+)”, “insignificant increase (insig+)”, “significant decrease (sig−)”, “insignificant
decrease (insig−)”, and “stable”.

Based on this classification, the coastal regions showed a significant trend of vegetation
improvement, with areas displaying an “increase” trend constituting 94.12% of the entire
study area (60.01% of which exhibited a “significant increase”). Notably, the majority of
“significant increase” was observed in the southern coastal areas. The areas with a “signifi-
cant decrease” in SIF and those with an “insignificant decrease” accounted for 0.21% and
2.68%, respectively, both smaller in extent than the areas with SIF increases. Simultaneously,
2.99% of the region exhibited minimal changes in vegetation trends, remaining essentially
“stable” (Figure 3b).
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Figure 3. The spatial patterns of (a) SIF annual change rate and (b) the strength and direction of
change trend from 2000 to 2019. The trend was classified into five types: insignificant increase (insig+),
insignificant decrease (insig−), stable, significant increase (sig+), and significant decrease (sig−).

Vegetation dynamics can be exceptionally intense and intricate. Through the BFAST
algorithm, we computed and assessed vegetation data along the Chinese coast from 2000
to 2019, resulting in spatial distribution diagrams illustrating various mutation trend types
(Figure 4). The results show that the most common mutation type is “monotonic increase”,
accounting for approximately 69.78% of the vegetation along the Chinese coast, with over
24.39% of this increase being statistically significant (Figure 4a). Conversely, the proportion
of “monotonic decreases” was less than 2.35%, and the region with a “significant monotonic
decrease” accounted for only 0.50%. Notably, there is a relatively high occurrence of
“increase with negative break” (11.77%) and “increase to decrease” (9.48%) in the vegetation
breakpoints along the Chinese coast. This indicates that the dynamics of coastal vegetation
in China are not merely characterized by straightforward increases or decreases; the changes
may be complex, varied, and characterized by fluctuation and complexity. Nonlinear trend
detection results provide a clear classification of the various types, indicating substantial
differences between them. Focusing solely on linear trend changes would not be sufficient
to assess the variations in trend occurrences. Additionally, the most prevalent trend
types are, in sequence, “monotonic increase”, “increase with negative break”, “increase to
decrease”, and “decrease to increase”, underscoring the overall improvement in vegetation
cover in most areas along the Chinese coast from 2000 to 2019. Nevertheless, there are also
regions with a trend of vegetation decrease, highlighting the potential risk of vegetation
degradation that should not be ignored.
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magnitudes before breakpoint year; (d) SIF magnitudes after breakpoint year.

As shown in Figure 4b, there is a certain regularity in the temporal distribution
of vegetation trend mutations. Mutations occurred in different years, with the greatest
concentration between 2010 and 2014 (Figure 4b). Corresponding to the mutation types,
the years of mutation occurrence were generally earlier in the northern vegetation, mostly
before 2010, and the main mutation types were monotonic increases, shifts from increase
to decrease, and shifts from decrease to increase. In contrast, the southern vegetation
experienced mutations predominantly after 2012, with the latest mutations occurring in
Fujian Province, where most mutations concentrated after 2018, primarily characterized by
monotonic increases.

The BFAST method revealed the magnitude of changes in the SIF time series before
and after breakpoints. It is noteworthy that the fundamental SIF trend did not undergo a
significant shift. Sustained growth remained the primary direction of change for coastal
vegetation in China. Before the breakpoint, SIF in coastal vegetation increased at a rate of
2.19 × 10−4 W m−2 µm−1 sr−1 month−1. After the breakpoint, the growth rate decreased
to 1.40 × 10−4 W m−2 µm−1 sr−1 month−1 (Figure 4c,d). Spatially, there are significant
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differences before and after the breakpoint. For instance, prior to the breakpoint, vegetation
in Fujian Province showed a distinct upward trend, but after the breakpoint, it began to
significantly decline. Before the breakpoint, approximately 86.97% of pixels in the study
area exhibited a positive trend, with 10.87% of pixels having a growth rate greater than
5 × 10−4. The results indicate that before the breakpoint, most pixels exhibited positive
trends, with only a small portion in the central coastal area showing negative trends. In
the later period (post-breakpoint), the growing trend covered 78.72% of all pixels, with
6.84% of pixels having growth rates exceeding 5 × 10−4. The negative trend was randomly
distributed, with no evident spatial clustering within the study area.

To elucidate the dynamic trends of vegetation in China’s coastal provinces over the
past 20 years, we compared the results of gradual analysis and abrupt analysis. The
outcomes of the gradual analysis were categorized into two classes: increase (including
significant increase) and decrease (including significant decrease). Similarly, the results
of the abrupt analysis were classified into three categories: increase (including significant
increase), shift (including increase to decrease, decrease to increase, interrupted increase,
interrupted decrease), and decrease (including significant decrease). The trend types from
both methods were then overlaid. Among the outcomes indicating a decrease in gradual
analysis, the proportions of decrease, shift, and increase in abrupt analysis were 46.09%,
52.65%, and 1.26%, respectively. Furthermore, the results indicated an increase in gradual
analysis, while the proportions of decrease, shift, and increase in abrupt analysis were 1.01%,
25.40%, and 73.58%, respectively. Overall, while the results of gradual analysis and abrupt
analysis are generally close, there are still certain differences. These differences arise from
the additional trend types in abrupt analysis, including the increase to decrease, decrease
to increase, interrupted increase, and interrupted decrease, which were not captured by
gradual analysis. The appearance of these four abrupt types of vegetation growth may be
attributed to the non-linear nature of climate change over the past 20 years, resulting in
abrupt shifts. Additionally, human-induced disturbances, such as changes in land use, may
have influenced vegetation changes, leading to various abrupt types in vegetation trends.

3.2. Temporal and Spatial Trends of Extreme Climate Indices

Based on data from 751 meteorological stations, monthly extreme climate indices for
the past two decades in China’s coastal areas were extracted (Figure 5). Analysis reveals
that among the extreme temperature indices, which represent temperature and extremely
high temperatures, TEM, TEMmax, TEMmin, TN90p, TX90p, TNn, TNx, TXn, and TXx
(Figure 5a–c,g–i) all show varying degrees of upward trends. Conversely, the indices
representing extremely low temperatures, TN10p and TX10p (Figure 5e,f), display varying
degrees of downward trends. Among them, TN90p, TEMmin, and TN10p displayed the
most significant trends (p < 0.05), with trends of 2.793% per decade, 0.2567 ◦C per decade,
and −1.317% per decade, respectively. The DTR index had the smallest amplitude of
change, with a trend of only −0.01538 ◦C per decade. Nighttime warming was more
pronounced than daytime warming, with the absolute values of the slopes for TN10p and
TN90p exceeding those for Tx10p and Tx90p. Overall, the frequency of extreme events
related to cold temperatures has significantly decreased, while the frequency of extreme
events related to warm temperatures has greatly increased. Without a doubt, extreme
temperature events in China’s coastal areas have significantly increased over the past two
decades, consistent with the expected results of global warming. Indices representing
extreme precipitation exhibited varying degrees of increasing trends (Figure 5m–t). Among
them, the most significant change was observed in monthly precipitation, with a trend of
4.991 mm per decade. The rise in RX1day and RX5day indices also indirectly reflects that
the increase in precipitation in China’s coastal areas may be concentrated in short periods
of heavy and very heavy rainfall.
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Figure 5. Changes in processes of extreme precipitation and extreme temperature in coastal China
during 2000–2019.

The spatial distribution of decadal trends in extreme climate indices along China’s
coastal areas from 2000 to 2019 is shown in Figure 6. By analyzing temperature indices,
we found that the regions with the largest increases in monthly average temperature,
monthly high temperature, and monthly low temperature were mainly concentrated in
the central and northern parts of China’s coastal region (Figure 6a–c). Among these,
the Shandong, Jiangsu, and Fujian provinces exhibited the most significant temperature
increases, with an overall rate exceeding 0.03 ◦C per decade. The diurnal temperature
range (DTR) shows substantial spatial variations (Figure 6d), with a generally increasing
trend in the north, where DTR rates are above 0.01 ◦C per decade, and a decreasing trend
in the south, indicating an increase in day–night temperature differences in northern China,
with a decrease in the southern region. Comparing the percentage of cold nights, TN10p
(Figure 6e), and warm days, TX90p (Figure 6h), it was observed that the decrease in cold
nights was more pronounced in the northern region, and the increase in warm days was
significant. Conversely, comparing the percentage of cold days, TX10p (Figure 6f), and
warm nights, TN90p (Figure 6g), revealed that the southern coastal provinces had more
cold days and fewer warm nights. Similarly, the spatial distribution trends in the lowest
daily minimum temperature (TNN) and the highest daily maximum temperature (TXX)
(Figure 6i–l) corroborate these findings, with low points in the TNN curve indicating a
smaller increase in the north and a greater increase in the south, while high points in the
TXX curve exhibit the opposite trend overall, further confirming the opposing trends in
day–night temperature variations between the northern and southern regions.

When examining precipitation indices (Figure 6m–q), the increase in precipitation is
primarily concentrated in the southern areas, particularly around the Yangtze River estuary
and the Guangdong-Guangxi region. Comparing the spatial characteristics of LR (light
rain), MR (moderate rain), HR (heavy rain), and TR (total rain) along Chinese coastal areas,
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the increase in precipitation is mainly associated with the increase in very heavy rainfall
(TR), while light, moderate, and heavy rains show no significant spatial changes. This
finding is consistent with the trends observed in RX1day and RX5day. When analyzing the
temporal and spatial trends of extreme precipitation, it is evident that the Yangtze River
Delta and the Guangdong-Guangxi regions experience significant increases in very heavy
rainfall. This suggests a potential risk of flooding and should be given close attention.
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Figure 6. Spatial variation trends of extreme climate indices in coastal China during 2000–2019.

3.3. Time Lag-Accumulation Effects of Extreme Climate on Vegetation

Figure 7 displays the spatial patterns of climate variables with lag-accumulation
months that influence the calculation of vegetation. Figure 8 and Table 2 provide the mean
values, standard deviations, and area proportions of different lag-accumulation months.
The lag time for temperature indices (TEM, TEMmax, TEMmin, DTR, TN10p, TX10p,
TN90p, TX90p, TNn, TNx, TXn, TXx) are 0.0027 ± 0.0893, 0.0022 ± 0.0811, 0.0027 ± 0.0904,
1.5455 ± 1.2681, 0.4651 ± 0.7598, 1.1385 ± 0.9464, 0.3665 ± 0.7516, 0.4420 ± 0.8489,
0.0057 ± 0.1007, 0.0034 ± 0.1006, 0.0018 ± 0.0732, and 0.0047 ± 0.0906 months, while the
accumulation periods are 0.4277 ± 0.5526, 0.5251 ± 0.6311, 0.4661 ± 0.5376, 0.8659 ± 0.8834,
1.9218 ± 0.8738, 1.3303 ± 0.8617, 1.6149 ± 0.9875, 1.7983 ± 0.9402, 0.4519 ± 0.5202,
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0.6268 ± 0.5674, 0.3891 ± 0.5278, and 1.3023 ± 0.6863 months. The combinations of lag-
accumulation months for TEM, TEMmax, and TEMmin are the same, i.e., TLA0-0 and
TLA0-1, with proportions of 61.25% and 35.79%(TEM), 55.93% and 37.15%(TEMmax), and
56.52% and 41.51%(TEMmin), respectively. This indicates that vegetation in Chinese coastal
areas responds rapidly to temperature changes, typically producing positive feedback
within the same month or the following month. The combinations that have the most signif-
icant impact on vegetation for TN90p and TX90p are mainly TLA0-3. This suggests that the
increase in daytime and nighttime temperatures both exhibits a potentially longer positive
feedback effect on vegetation. As for DTR, the primary combinations for lag-accumulation
months are TLA2-1 and TLA3-0. DTR is the only temperature index where the proportion
of lag effects is greater than the proportion of cumulative effects. Therefore, the cumulative
effects of temperature on coastal vegetation in China tend to be more substantial than the
lag effects in general.
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Table 2. Mean values, standard deviations, and proportions of areas for different lag accumulation.

Climatic Indices
Mean Values and Standard Deviations Proportions of Areas for Different Lag-Accumulation Times

Lag Accumulation TLA0-0 TLA0-1 TLA0-2 TLA0-3 TLA1-0 TLA1-1 TLA1-2 TLA2-0 TLA2-1 TLA3-0

TEM 0.0027 ± 0.0893 0.4277 ± 0.5526 61.25 35.79 2.84 0.04 0.00 0.00 0.00 0.00 0.00 0.09
TEMmax 0.0022 ± 0.0811 0.5251 ± 0.6311 55.93 37.15 6.64 0.20 0.00 0.00 0.00 0.00 0.00 0.07
TEMmin 0.0027 ± 0.0904 0.4661 ± 0.5376 56.52 41.51 1.84 0.04 0.00 0.00 0.00 0.00 0.00 0.09

DTR 1.5455 ± 1.2681 0.8659 ± 0.8834 9.16 16.53 4.38 6.00 0.01 0.57 9.90 0.12 20.50 32.83
TN10p 0.4651 ± 0.7598 1.9218 ± 0.8738 4.07 16.80 18.35 30.42 0.09 2.95 13.60 0.71 11.89 1.12
TX10p 1.1385 ± 0.9464 1.3303 ± 0.8617 8.30 10.88 4.89 12.56 0.22 4.91 14.85 3.15 36.33 3.90
TN90p 0.3665 ± 0.7516 1.6149 ± 0.9875 11.59 28.62 13.55 25.42 0.05 1.48 5.83 0.26 11.83 1.36
TX90p 0.4420 ± 0.8489 1.7983 ± 0.9402 5.96 19.03 23.21 28.01 0.04 2.98 5.50 0.06 11.35 3.88
TNn 0.0057 ± 0.1007 0.4519 ± 0.5202 56.76 41.78 1.03 0.03 0.33 0.00 0.00 0.00 0.00 0.07
TNx 0.0034 ± 0.1006 0.6268 ± 0.5674 43.13 52.70 3.95 0.11 0.00 0.00 0.00 0.00 0.00 0.11
TXn 0.0018 ± 0.0732 0.3891 ± 0.5278 64.08 33.93 1.90 0.03 0.00 0.00 0.00 0.00 0.00 0.06
TXx 0.0047 ± 0.0906 1.3023 ± 0.6863 10.17 58.14 26.13 5.23 0.00 0.07 0.21 0.00 0.00 0.06

PREF 0.0128 ± 0.1298 1.6167 ± 0.8086 5.67 48.71 27.17 17.35 0.01 0.00 0.99 0.00 0.03 0.06
LR 0.0498 ± 0.2238 2.3987 ± 0.6819 4.18 9.21 33.20 48.72 0.00 0.00 4.61 0.01 0.03 0.03
MR 0.1166 ± 0.5052 2.0966 ± 0.7961 3.17 17.73 39.62 33.48 0.03 0.21 2.47 0.01 1.21 2.06
HR 0.5641 ± 1.0148 1.7889 ± 0.9679 4.49 12.95 30.56 26.66 0.40 0.51 3.58 0.07 12.16 8.62
TR 0.0131 ± 0.1294 1.6071 ± 0.8057 5.87 48.76 27.39 16.84 0.00 0.00 1.05 0.00 0.04 0.05

RX1day 0.0038 ± 0.0998 1.4442 ± 0.7478 7.55 54.63 27.33 10.34 0.01 0.00 0.01 0.00 0.04 0.08
RX5day 0.0047 ± 0.1117 1.3921 ± 0.7992 11.43 52.27 25.39 10.71 0.00 0.00 0.04 0.00 0.04 0.11

SDII 0.0024 ± 0.0790 1.4296 ± 0.7094 6.63 56.30 28.31 8.66 0.00 0.00 0.00 0.01 0.03 0.05
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Figure 8. (a) Mean values and standard deviations of different lag accumulation, red represents ex-
treme temperatures, while blue represents extreme precipitation. (b) Proportions of areas for different
lag-accumulation times (0–3 months) of climatic indices influencing vegetation in coastal China.

Precipitation indices (PRE, LR, MR, HR, TR, RX1day, RX5day, SDII) have lag times
of 0.0128 ± 0.1298, 0.0498 ± 0.2238, 0.1166 ± 0.5052, 0.5641 ± 1.0148, 0.0131 ± 0.1294,
0.0038 ± 0.0998, 0.0047 ± 0.1117, and 0.0024 ± 0.0790 months (mean ± standard devi-
ation), and accumulation periods of 1.6167 ± 0.8086, 2.3987 ± 0.6819, 2.0966 ± 0.7961,
1.7889 ± 0.9679, 1.6071 ± 0.8057, 1.4442 ± 0.7478, 1.3921 ± 0.7992, and 1.4296 ± 0.7094
months, respectively. Among the eight precipitation indices, PRE, TR, RX1day, RX5day,
and SDII predominantly exhibit the combinations of TLA0-1 (0 months lag and 1 month
accumulation) and TLA0-2, accounting for 48.71% and 27.17% of the total vegetation grid
cells (PRE), 48.76% and 27.39% (TR), 54.63% and 27.33% (RX1day), 52.27% and 25.39%
(RX5day), and 56.30% and 28.31% (SDII). The remaining three indices, LR, MR, and HR,
show mainly combinations of TLA0-2 and TLA0-3, with proportions of 33.20% and 48.72%
(LR), 39.66% and 33.48% (MR), and 30.56% and 26.66% (HR). This indicates that the cumula-
tive effects of light rain, moderate rain, and heavy rain on vegetation occur with a delay of
approximately 2–3 months, which is slower than the extremely heavy rainfall (1–2 months).
In summary, the time accumulation effects of precipitation indices are significant, while
the lag effects are not significant. These results indicate that climate factors have both lag
and cumulative effects on vegetation growth in the Chinese coastal region, thus supporting
our hypothesis.

4. Discussion
4.1. Response of Climate Change in Chinese Coastal Areas to Global Changes

In the context of climate change, temperatures have been increasing in most parts of
the world, with higher latitudes experiencing greater warming compared to lower lati-
tudes [67,68]. Coastal China spans a wide range of latitudes, with significant zonal and
regional variations in factors affecting plant growth, such as temperature, humidity, and
surface substrates [53]. Overall, extreme high-temperature indices in the Chinese coastal
region have been on the rise, while extreme temperature indices have been declining. Spa-
tial differences in the trends of extreme precipitation indices are also observed, particularly
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in the area around the Yangtze River estuary and the Guangdong-Guangxi region, where
extreme precipitation events are more frequent and intense. This implies an increased risk
of flash floods, urban flooding, and landslides in these areas. Conversely, the northern
parts of China are experiencing a decreasing trend in extreme precipitation, aligning with
previous research on different regions of China [69–72].

Alexander et al. noted in global research on extreme climate change that 70% of the
world’s land areas show a consistent decrease in cold nights and an increase in warm nights.
In this study, we found that in the Chinese coastal region, nights are colder and days are
hotter in the north [73]. Surprisingly, in the southern coastal provinces, there are more cold
days and fewer warm nights, resulting in a conclusion opposite to the northern findings.
The potential cause for this phenomenon might be the distinct atmospheric circulation
zones between high and low latitudes. High-latitude regions are typically influenced by the
polar jet stream and temperate climate zones, whereas low-latitude regions are influenced
by tropical climate zones. Changes in these atmospheric circulation systems could result in
opposite temperature trends in different regions.

It is worth noting that the warming trend in the Chinese coastal region may have
various ecological and environmental impacts, including influencing phenological phe-
nomena of vegetation, potentially disrupting ecological balances and species interactions,
leading to shifts in ecological niches of vegetation, and affecting the distribution ranges
of certain plant species [74,75]. It may also have significant implications for soil moisture
and water resource distribution, subsequently impacting the water cycle. Additionally,
the Chinese coastal region, as a transition zone between the ocean and inland areas, is
profoundly affected by various large-scale climatic factors such as monsoons, atmospheric
circulation, and ocean currents [76]. These factors have a profound impact on precipitation
and its extreme events. The spatial heterogeneity of precipitation and the suddenness of
extreme events will further exacerbate differences in extreme precipitation events between
regions [77,78]. This poses challenges for urban planning and infrastructure development,
especially in coastal cities.

4.2. Comparison of Gradual Analysis and Abrupt Analysis

Gradual analysis can reveal long-term trends in vegetation, identifying relatively
stable changes. This is crucial for monitoring the health of ecosystems and assessing the
long-term impacts of human or climatic factors on vegetation [25,65]. However, the gradual
analysis does not provide information about specific time points and is unable to capture the
nonlinear and non-stationary characteristics of vegetation time series induced by climate
change and human activities, which limits its utility in understanding the impact of abrupt
events [26,79,80]. In contrast, abrupt analysis (utilizing the BFAST algorithm) can reveal
different types of changes and distinguish “when”, “where”, and “what type” breakpoints
in a time series at a higher level of precision, rectifying the shortcomings of gradual analysis
in vegetation monitoring [81,82]. This method is instrumental in determining the presence
of certain abrupt events, such as extreme droughts, pest outbreaks, or abrupt vegetation
changes due to human disturbances.

Based on this, we applied the pixel-based BFAST algorithm to detect dynamic vege-
tation breakpoints in the Chinese coastal region. Among the abrupt types in vegetation
time series, the proportion of “monotonic increase” is the largest at 69.78%. This indicates
that the Chinese coastal region has experienced an overall increase and partial degradation
over the past 20 years. The overall increase may be attributed to the overall warming
and humidification trend in the Chinese coastal region and the carbon fertilization effect
resulting from the increase in atmospheric CO2 concentration. The reasons for vegetation
breakpoints in the Chinese coastal region are diverse and complex, involving both succes-
sional and disturbance-related factors. The increase in the southern coastal region is greater
than that in the northern region, possibly due to a higher daytime biological accumulation
rate in the south than in the north, while the nighttime temperature difference between the
two regions is smaller, leading to similar nighttime respiration rates in the Chinese coastal
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region [83]. Areas with a “monotonic decrease” are concentrated in regions with significant
urbanization pressure, such as the Yangtze River estuary, over the past few decades [84]. In
general, before and after the breakpoints, the overall change in vegetation at the pixel level
is improved (see Figure 4a), which aligns with the results of gradual analysis and confirms
the findings of previous research by [54].

In conclusion, BFAST provides distinct advantages in monitoring extreme vegetation
changes. It can detect subtle alterations caused by human activities, forest fires, and
other factors that disrupt vegetation growth, which linear and Mann–Kendall tests cannot
provide. In future analyses of spatiotemporal evolution, combining gradual analysis with
abrupt analysis will help comprehensively understand vegetation changes, capture the
multidimensional nature of vegetation dynamics, and assist scientists and policymakers in
better comprehending how vegetation responds to external factors.

4.3. Temporal Effects of Extreme Climate on Coastal Chinese Vegetation

This study emphasizes the temporal effects of extreme climatic factors on vegetation.
Different temperature and precipitation indices impact vegetation growth at various tempo-
ral scales, revealing the sensitivity of vegetation growth to climate change and its dynamic
responses [37]. Vegetation can adapt to climate changes within its tolerance limits. However,
when climate changes exceed critical thresholds, it can stress vegetation, leading to a halt in
growth [85]. Therefore, climate effects on vegetation may exhibit temporal dynamics [86].

This study investigates the temporal effects of extreme climate on coastal vegetation
in China at the pixel level. The results demonstrate that changes in coastal vegetation are
not only influenced by current climate conditions but also by historical climate conditions
(Figures 7 and 8). Previous global vegetation dynamics studies suggest that vegetation
response to temperature is mainly direct, consistent with our findings [43]. Temperature
indices such as TEM, TEMmax, and TEMmin exhibit average lag-accumulation times of less
than a month, indicating positive feedback to vegetation within the same or the following
month (Figure 8). During the growing season, rising temperatures enhance photosynthetic
efficiency and transpiration rates, leading to increased root water absorption [87].

In comparison to the direct impact of temperature on vegetation, precipitation’s impact
appears much more gradual. Precipitation indices, such as PRE, TR, RX1day, RX5day, and
SDII, display clear time accumulation effects, averaging 1–2 months. The accumulation
effect of LR, MR, and TR is delayed compared to TR, taking approximately 2–3 months.
These findings align with Ma et al.’s research in northern China. Moreover, this study
reveals that the accumulation effect of precipitation in coastal China is greater than the lag
effect, underscoring the substantial driving role of accumulated precipitation on vegetation
growth in the study area. This phenomenon aligns with the research of [85] on the lag-
accumulation effects of drought on grassland vegetation. Vegetation does not directly
respond to precipitation but reacts to actual soil moisture [88]. The main reason is that
when precipitation increases, the soil moisture is not immediately absorbed and utilized by
vegetation, taking some time to penetrate to the root zones [89]. Additionally, deep soil
moisture rising to the surface also requires time to sustain vegetation growth. When the
amount of rainfall exceeds the plants’ utilization rate in a short time, the soil can retain a
certain level of excess moisture, providing long-term nutrient supply to vegetation [90].
Furthermore, Ref. [91] study demonstrates that, regardless of climate zone and vegetation
type, accumulation effects of precipitation are generally stronger than lag effects in most
regions. This finding further corroborates that, relative to the immediate effectiveness
of moisture at single time points within short periods, the accumulated effectiveness of
moisture over specific time intervals has a more substantial impact on vegetation growth.
Overall, we find that the cumulative effects of climate variables have a stronger explanatory
power for vegetation growth than lag effects [92]. These results enhance our understanding
of the relationship between climate and vegetation growth and offer valuable insights for
vegetation management and climate change adaptation in the coastal regions of China.
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4.4. Limitations and Uncertainty

While this study provides valuable insights into the relationship between vegetation
and extreme climate events in the coastal regions of China, several limitations and un-
certainties should be acknowledged. Firstly, although SIF data offer unique advantages
in capturing evergreen forests compared to traditional vegetation indices, the data only
cover the period from 2000 to 2019, which is a relatively short time frame. Longer-term
data may be useful in better understanding patterns and trends in climate and vegetation
changes. Therefore, future research could consider extending the time range to acquire
more information.

Secondly, although we innovatively employed machine learning techniques com-
bined with geographic spatial interpolation to interpolate extreme climate indices into
spatial grids, greatly enhancing the accuracy of climate indices on a spatial scale, limita-
tions still exist in regions with rugged terrain and sparse meteorological stations due to
algorithmic variations.

Thirdly, different vegetation types exhibit specific resistance and adaptation mech-
anisms, allowing different vegetation types to respond rapidly to changes in climatic
conditions [93]. Different vegetation types have varying mechanisms for the absorption
and utilization of soil moisture, which may result in differences in the lag response to
climate factors. This study does not account for the differential response of vegetation types
to extreme climate events, which unavoidably affects the results. Further research into the
distinct responses of various vegetation types is necessary to enhance clarity and reliability.

Lastly, the complex interactions between vegetation growth and extreme climate condi-
tions may involve nonlinear relationships. Using simple correlation coefficient analyses for
monthly-scale extreme climate indices and vegetation indices may overlook the impacts of
seasonal variations, leading to uncertainties [94]. Therefore, gaining a better understanding
of vegetation responses to climate change and elucidating the underlying mechanisms of
extreme climate in vegetation time effects, while challenging, remains crucial.

5. Conclusions

This paper analyzes the spatiotemporal distribution patterns of climate indices, in-
cluding extreme climate indices, and vegetation in China’s coastal regions over the past
two decades. It clarifies the time lag and cumulative effects of vegetation in response to
extreme climate events, leading to the following conclusions:

(1) With an increase in the frequency of high-temperature events and extreme precipita-
tion events, the northern coastal areas of China have experienced a gradual increase
in day–night temperature differences, while the southern regions exhibit the opposite
trend. Precipitation has primarily increased in the form of short-duration heavy
rainfall, concentrated mainly in the Yangtze River Delta and the Guangdong-Guangxi
region, with limited precipitation increase in the northern areas.

(2) Gradual analysis and abrupt analysis reveal that the coastal regions of China have
undergone overall improvement and partial degradation over the past two decades,
with the southern regions showing more significant improvements in vegetation
compared to the northern areas. Areas with more severe vegetation degradation
are concentrated in regions facing rapid urbanization pressures, particularly in the
Yangtze River estuary.

(3) Vegetation’s response to temperature and precipitation indices exhibits a time lag-
accumulation effect, with different indices producing varying feedback on vegetation
growth at different time scales. Overall, cumulative effects of climate variables have
a stronger explanatory power for vegetation growth in the coastal regions of China
compared to lag effects. Specifically, vegetation responds more rapidly to temperature
changes, typically within one month, while the response to precipitation becomes
evident after a time accumulation of approximately 2–3 months. These results can
enhance our understanding of the climate–vegetation relationship and are valuable
for vegetation management and climate adaptation in the region.
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