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Abstract: Precision agriculture relies on understanding crop growth dynamics and plant responses
to short-term changes in abiotic factors. In this technical note, we present and discuss a technical
approach for cost-effective, non-invasive, time-lapse crop monitoring that automates the process
of deriving further plant parameters, such as biomass, from 3D object information obtained via
stereo images in the red, green, and blue (RGB) color space. The novelty of our approach lies in
the automated workflow, which includes a reliable automated data pipeline for 3D point cloud
reconstruction from dynamic scenes of RGB images with high spatio-temporal resolution. The setup
is based on a permanent rigid and calibrated stereo camera installation and was tested over an
entire growing season of winter barley at the Global Change Experimental Facility (GCEF) in Bad
Lauchstädt, Germany. For this study, radiometrically aligned image pairs were captured several
times per day from 3 November 2021 to 28 June 2022. We performed image preselection using
a random forest (RF) classifier with a prediction accuracy of 94.2% to eliminate unsuitable, e.g.,
shadowed, images in advance and obtained 3D object information for 86 records of the time series
using the 4D processing option of the Agisoft Metashape software package, achieving mean standard
deviations (STDs) of 17.3–30.4 mm. Finally, we determined vegetation heights by calculating cloud-to-
cloud (C2C) distances between a reference point cloud, computed at the beginning of the time-lapse
observation, and the respective point clouds measured in succession with an absolute error of
24.9–35.6 mm in depth direction. The calculated growth rates derived from RGB stereo images match
the corresponding reference measurements, demonstrating the adequacy of our method in monitoring
geometric plant traits, such as vegetation heights and growth spurts during the stand development
using automated workflows.

Keywords: stereo vision; image classification; 4D vegetation monitoring; non-invasive setup;
precision agriculture

1. Introduction

The increasing demand for efficient vegetation monitoring and precise determination
of crop traits under dynamic environmental conditions has driven remarkable progress in
the field of precision agriculture. In particular, remote sensing-based technologies, spatially-
explicit data analysis incorporating multiple data sources, and operational workflows have
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rapidly developed over the past few decades. These advancements have significantly
enhanced our understanding and site-specific management of crop growth dynamics, op-
timization of resource utilization, and the adoption of sustainable agricultural practices.
However, continued research and exploration are essential to fully release their potential
to deal with processes related to drivers such as climate change [1]. Specifically, the dy-
namics of grassland and crop systems are complex due to the interaction between biotic
(e.g., plant health, species type) and abiotic (e.g., soil moisture, soil temperature) system
components, as well as the particular management regime. In this context, a key objective is
the comprehensive monitoring of various plant traits including growth, vitality, stress, and
biomass volume throughout the principal Biologische Bundesanstalt, Bundessortenamt,
and Chemical Industry (BBCH) growth stages of mono- and dicotyledonous plants of
an entire growing season [2], which provides information on crop response to changing
environmental parameters or extreme climate conditions [3]. In turn, the BBCH classifica-
tion of phenology plays a key role in the aspired standardization of remote sensing-based
vegetation data products as it may link information between different scales of observation
(i.e., ground truth vs. satellite scale).

Several cost-effective non-invasive monitoring strategies have been developed that
are applicable to research areas encompassing plant phenotyping, agriculture, and crop
modeling, e.g., [4,5]. Driven by remote sensing-based monitoring approaches (i.e., Un-
manned Aerial Vehicle (UAV), airborne, or satellite), innovative ground truth methods are
required that can translate BBCH parameters between scales. For that reason, imaging
techniques utilizing digital photogrammetry, in combination with machine vision tech-
nologies, are promising as they enable the extraction of plant traits from camera images
e.g., [6–8]. Numerous recent studies in precision agriculture are dedicated to the campaign-
based assessment of geometric plant characteristics, including parameters such as growth
height, biomass, leaf morphology, fruit shape, and yield estimation. Those parameters
are most effectively captured by techniques that enable the extraction of spatial depth
information about an object. Notable examples of such techniques are Light Detection and
Ranging (LiDAR), e.g., [9,10], Structure-from-Motion (SfM), which is the three-dimensional
reconstruction of structures using a series of two-dimensional RGB images captured from
multiple viewpoints, e.g., [11–13], the combination of RGB cameras with depth sensors
for the simultaneous capturing of color and depth information, e.g., [14,15], or the com-
bination of several of the above-mentioned methods and carrier platforms, e.g., [16,17].
An approach that utilizes two RGB cameras installed in a stereo-capable orientation is
referred to as binocular vision or stereoscopic vision, which closely resembles the depth
perception of the human eye. Several studies have been conducted using this specific
camera configuration, predominantly in field laboratories or pilot-scale experiments, such
as isolated chambers or greenhouse tests, e.g., [18,19]. In this context, Dandrifosse et al. [20]
discussed the challenges of the laboratory-to-field transition. Some studies that use stereo
vision in precision agriculture focus on real-time data analysis, e.g., for camera installations
on autonomous harvesters [21,22]. Within all of those applications, the determination of
morphological plant features is typically conducted in a campaign-based manner, which is
subject to limitations such as dependence on weather conditions and manpower availabil-
ity. As a result, previously mentioned studies provide discrete snapshots of structural 3D
information at specific time points.

To observe plant responses to short-term changes in abiotic factors and to understand
the crop growth dynamics under climate change conditions, it is crucial to enhance the
spatio-temporal resolution. This can be achieved through continuous monitoring over time
and adjustments to the camera-to-object distance, on which the spatial resolution primarily
depends [23]. For example, Tanaka et al. [24] attained a ground sampling distance (GSD) of
2 mm per pixel through ground-based image acquisition, while other researchers such as
Zhang et al. [25], reported GSD values in the centimeter range per pixel for various flight
altitudes of UAV imagery in the context of agricultural monitoring. Several studies have
employed stereo vision-based approaches with rigidly installed camera configurations to



Remote Sens. 2024, 16, 541 3 of 15

monitor the morphological and geometric parameters over time [26–29]. However, current
research shows limitations in terms of insufficient spatio-temporal resolution to effectively
track dynamic changes in geometric plant traits, such as growth spurts, plant elasticity,
or fructification. Additionally, an integrated fully-automated workflow encompassing all
stages, ranging from data acquisition to 3D modeling, is missing. Such automated work-
flows have great potential for future remote sensing-based agricultural products but also
for scientific experiments and analysis. With an interface to corresponding management
apps, they provide conceivable modules for, e.g., Farm Management Information Systems.

The first objective of this study was to develop a contemporary approach for agri-
cultural vegetation monitoring, such as canopy height and growth rate, by utilizing a
permanently installed RGB stereo camera system. The system setup allows for continuous,
weather-independent on-site monitoring of crop plants at a high spatio-temporal resolution.
Time intervals for the acquisition of image pairs are user-defined, allowing for flexibil-
ity in capturing specific time points of interest. The stereo camera system was installed
over a test field of winter barley and was tested under controlled conditions during the
vegetation period from November 2021 to June 2022. We selected a sampling rate of up
to twelve images per day in our study, enabling the precise observation of plant growth
dynamics through 3D point cloud reconstruction and facilitating the accurate assessment
of morphological plant responses to short-term changes in abiotic parameters. Our second
objective was to efficiently and automatically derive primary plant traits from RGB image
pairs at any given time. To achieve this, a robust and fully automated data pipeline was
developed encompassing image acquisition, classification, and photogrammetric analysis.
Additionally, we compared the calculated growth heights and growth rates with regularly
conducted reference measurements throughout the main growing season to assess the
capabilities and limitations of the system.

2. Experimental Setup

The installation of a high-resolution stereo camera system for 4D vegetation moni-
toring, i.e., canopy height and biomass response to changes in abiotic factors over time,
requires a focus on a setup that ensures the comparability of the cameras in the system,
the captured stereo images, and the computed 3D point clouds. To this end, we carefully
address the following points in our workflow: (a) System calibration, i.e., respectively, de-
termining the interior orientation and distortion parameters (IOP) and exterior orientation
parameters (EOP) of both cameras; (b) Image acquisition, i.e., precise stereo image synchro-
nization and the alignment of stereo image properties (point operations, e.g., histogram
alignment) and (c) 3D point cloud generation, i.e., reasonable spatio-temporal resolution in
terms of the variation to be expected and measured.

2.1. Field Site: GCEF Bad Lauchstädt

The stereo camera system is installed at the field site of the GCEF located in Bad
Lauchstädt, Saxony-Anhalt, Germany (51°23’30”N, 11°52’49”E, see Figure 1). The research
facility was designed to investigate the consequences of a future climate scenario for
ecosystem functioning in different land-use types of farm- and grassland on several large
field plots [30]. Furthermore, GCEF experimental plot data provide an excellent training
database for remote sensing-based prediction models. For our study, we have chosen
to monitor winter barley that is usually sown in autumn. As an essential cereal in EU
agriculture, it is part of the characteristic crop rotation in the present and near-future [31].
Winter barley can develop deeper roots already during the winter months as soil moisture
is usually sufficient, which increases its resistance to drought stress in the spring. This and
a long growth period make it an ideal observation object to test our stereo setup under
different extreme environmental and ambient light conditions.
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Figure 1. Overview of the field site and the crop cultivation. (Left): GCEF, its location in Germany,
and the location of the camera setup on one of the experimental plots (red star). (Right): Scheme of
simulated land-use forms at the facility-a: extensive grassland use (mowing), b: ecological agriculture,
c: intensive grassland use, d: conventional production and e: extensive grassland use (grazing)
(Illustration: Tricklabor, Marc Hermann, copyright by UFZ, 2014).

2.2. Stereo Camera Setup

Two parallel arranged RGB frame cameras of the type Mako G-319C (resolution:
2064 × 1544, frames per second: 37.6, pixel size: 3.45µm; [32]) manufactured by Allied
Vision were installed on the roof construction of a GCEF field plot with a camera-to-object
distance of about 6.5 m (Figure 2). The cameras are fixed in a stereo-capable orientation
with a baseline of about 20 cm in a waterproof hard case with protection standard IP66.
Equipped with fixed lenses featuring a 16 mm focal length, they achieve a GSD of 1.45 mm
per pixel. In view of the camera-to-object distance and the image overlap of 86.7%, this
allows for the three-dimensional observation of a plot size of 2.16 × 2.67 m = 5.75 m2 related
to floor level without vegetation. Smaller parts of the crop plants, such as small leaves
or ears of corn, can be dissolved in this arrangement. Cameras are controlled by a Pokini
i2 field computer (cf. Section 2.3; [33]) and supplied by Power over Ethernet (PoE). To
guarantee a stable performance, power outtakes are covered by an uninterruptible power
supply (UPS).

2.3. Image Acquisition

Automatic image acquisition, see Figure 2, is part of the automated data pipeline. A
key requirement for time-lapse stereo vision is the comparability of the images from the
stereo cameras and of the calculated point clouds over time (cf. introduction of Section 2).
For this purpose, both cameras were radiometrically adjusted for exposure and white
balance using the application programming interface (API) Vimba Python v0.3.1 from
Allied Vision Technologies GmbH [34] and synchronously triggered. A multi-threading
approach controlled by Trigger over Ethernet (ToE) is used to simultaneously stream several
frames per camera into a queue. Meanwhile, bright areas in the frames are detected, and
the configuration parameters are iteratively adjusted to ensure that these areas are not
saturated once the threshold for the number of frames is reached. Finally, the current
frame is saved as an image in the uncompressed Tag Image File Format (TIFF). The image
acquisition is controlled by a daily task scheduler. Here, variable astronomical (sunrise,
noon, sunset) and constant time intervals of two hours (between 6 am and 10 pm) were
chosen to ensure the comparability of point clouds both in high temporal resolution over
the entire vegetation period and concerning changes in abiotic parameters.

2.4. Measurement of Reference Data

In order to evaluate the feasibility and quality of the introduced approach, manual
canopy height measurements of winter barley were conducted regularly during the main
growing season, starting with the principal growth stage 3 of BBCH-scale [2] in mid-
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April until harvest at the end of June 2022. Plant height is determined by using an ultra-
light rectangular polystyrene plate, which is placed on the crop surface at a specified
representative location within the overlapping area of stereo image pairs. The height
is measured from the ground to the lower edge of the plate on all four sides and then
averaged. Thus, the measurement method determines the mean height of a crop surface
area and not the maximum height of single plants or awns. In general, canopy height
is a reliable estimate of above-ground plant biomass across ecosystems and accordingly,
therefore, indicates growth rates [35] and grain yield production [36]. In addition, the
current developmental stage of the plants is categorized according to the general stages of
the BBCH scale.

Figure 2. Left: Stereo camera system observing the corresponding vegetation plot of several square
meters with an image overlap of 86.7% or 5.75 m2. Right: Flowchart of the data acquisition workflow.

3. Data Processing

This chapter introduces the part of the data pipeline for generating 3D point clouds
from time-lapse stereo images, which includes stereo image preselection, undistortion, and
relative orientation, reconstruction of 3D point clouds, and C2C distance calculation to
estimate growth heights (Figure 3). The workflow steps are realized using Python.

3.1. Image Preselection

The quality of the 3D reconstruction from time-lapse stereo images is dependent
on their image quality (cf. Section 2). Thus, we removed images from the time-lapse
series, which were impaired by over- or underexposure, blur, snowfall, snow cover, field
operations, or a closed roof covering the field plot (Figure 3). To achieve this, image
classification was performed by object recognition with machine learning using Scikit-
learn [37]. An RF classifier [38] was chosen to separate the stereo images into two classes:



Remote Sens. 2024, 16, 541 6 of 15

‘usable’ showing different growth stages of winter barley and ‘not usable’ which are the
impaired images. The classifier was trained with 1280 images of the field plot distributed
into both classes (usable: 57%, not usable: 43%) and the amount of test data was set to
400 images. Here, the best training parameter set was chosen by using grid search cross-
validation over a standard parameter grid. The basis for training variables is formed by
histograms of different color bands and color spaces. During classification, i.e., before class
prediction, images are temporarily pre-processed by point operations using the libraries
of OpenCV [39] and Scikit-image [40]. In detail, we applied histogram matching to all
image pairs using a representative reference image and contrast adjustment. If an image is
classified as not usable, all images of a certain time stamp are discarded. All usable images
are subjected to further processing.

Figure 3. Flowchart of theautomated workflow for stereo image processing. (Left): Image preselection
via RF classifier into the two classes ‘usable’ and ‘not usable’. (Mid): Camera self-calibration to
obtain IOP for image undistortion and the relative orientation with a known baseline between both
cameras. (Right): 3D point cloud generation from time-lapse images and change detection by C2C
distance measurement.

3.2. Camera Calibration

Deriving 3D information, i.e., canopy heights, from stereo images requires knowledge
of the stereo geometry of both images, which implies the relative orientation between both
images and the IOP of each image. Furthermore, a scale is required to transfer calculated 3D
data from a model coordinate system into a metrically-scaled local coordinate system. Both
cameras implemented in our stereo camera system use central perspective and could be
described by Brown’s standard camera and lens model [41]. The IOP of both cameras was
simultaneously determined via camera self-calibration, implemented in AICON 3D Studio
v12.00.10 [42]), using a 3D calibration test field that has been captured with synchronized
images (see Figure 3; image measurement accuracy, given by ŝ0, amounted to 0.56 µm).
Besides the IOP of both cameras, we received the EOP for each image pair that was used
in the calibration process. The pairwise determined EOP, more precisely, the translation
vectors, were used to establish the baseline between both cameras, which was used to scale
the 3D data in the subsequent processing. In total, translation vectors were available for
86 image pairs, resulting in a mean baseline of 198.41 mm (±11.47 mm).

The images, which have been assessed as suitable in the previous classification for
further processing, were undistorted using the determined IOP via an in-house undistortion
tool because the software used for relative image orientation and stereo reconstruction does
not support the lens distortion model of Brown [41].

3.3. Time-Lapse Stereo Reconstruction

Calculating the relative orientation of each undistorted stereo pair of the time-lapse
sequence in a shared model coordinate system was conducted in Agisoft Metashape v1.7.1
using its “Dynamic Scene (4D)” option [43]. In order to scale the 3D data, i.e., to transfer the
relatively determined EOP of the stereo images into a metric coordinate system, we used
the calculated baseline as a “scale bar” in Metashape (length: 198.41 mm, accuracy: 11 mm).
This transforms the EOP of both cameras, which until now have only been available in an
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arbitrary model coordinate system, into a metric local coordinate system. When using the
“Dynamic Scene (4D)” option, the local coordinate system and the EOP are determined only
once for the first image pair of the time-lapse stereo sequence and applied to all subsequent
stereo images that have been captured, respectively, per time stamp. The stereo camera
system is assumed to be statically mounted and rigid with a stable baseline during the entire
observation period. The calculation of the camera position and orientation parameters, i.e.,
the position of the camera’s projection center and the rotation of the camera coordinate
system in the object coordinate system, is conducted using the “Align Photos” option
that calculates, beside the camera position and orientation parameters, a sparse 3D point
cloud from homologous image points via spatial intersection. We performed bundle block
adjustment (“Optimize”) to, on the one hand, optimize the determined EOP and on the
other hand, to calculate statistics, i.e., the 3D STD for each 3D point of the sparse cloud,
whose amount is hereinafter referred to as “precision maps”. Details on those precision
estimates are given in James et al. [44,45].

Once the image configuration was established, we used Metashape’s dense image-
matching functionality to calculate a dense 3D point cloud for each time stamp. In the
following, we used the reconstructed dense clouds together with the precision estimates,
calculated for each time stamp and extrapolated to the dense clouds, to derive evidence
about the dynamics of plant traits over time. The precision estimates allow for the estima-
tion of the significance of any detected changes with respect to the local accuracies of the
computed 3D point clouds.

Finally, to obtain depth information over time, absolute C2C distances were calculated
for the entire sequence of reconstructed 3D point clouds related to a reference point cloud,
in our case the date of the first plant emergence on 3 November 2021. For distance deter-
mination, the nearest neighbor distance based on a kind of Hausdorff distance algorithm,
was used that is implemented in the open source software CloudCompare v.2.13 [46,47].
Furthermore, it should be noted that the error calculation performed in addition to the C2C
distances calculation is based on Gaussian error propagation.

4. Results

The stereo camera system has reliably captured RGB images of a winter barley field
several times a day from 3 November 2021, to 28 June 2022, and provided the database to
quantify the canopy height of the winter barley test plots. In total eight to twelve stereo
image pairs were captured per day, 4790 images in sum. To investigate the setup capabilities
over the whole growth period we have analyzed one image pair per three days in the winter
time and one image pair per two days from the end of March 2022 resulting in 86 image
pairs. To ensure comparability due to ambient light conditions, we have chosen to analyze
the first image pair of each day.

4.1. Image Classification Using Machine Learning

The classification of 400 test images into the two classes ‘usable’ and ‘not usable’ re-
sulted in an accuracy score of 0.9575 for the optimal parameter configuration. The resulting
2 × 2 error matrix A provides insights into prediction outcomes. In the ‘usable’ class, which
encompasses 229 images, A1 = [226,3] denotes the accurate classification of 226 usable pictures
and three misclassifications. For the ‘not-usable’ class, comprising 171 images, A2 = [14,157]
reveals 14 misclassifications and the correct classification of 157 images. The class report
for ‘usable’ shows a precision of 0.94 and a recall of 0.99. The ‘not-usable’ class yielded a
precision of 0.98 and a recall of 0.92, both determined from the test run. However, during
the preselection of the plot image data, about 94.2% (89.6–99.8% per month) of all captured
images were correctly classified. Images with impaired effects, cf. Section 3.1, were reliably
removed with a prediction accuracy of 94.1%. On the other hand, several potentially usable
images were falsely classified as not usable, 5.7% in sum and were, therefore, not considered
further. These results fit a mean accuracy score for the classifiers’ prediction of test data of
0.9425± 0.0275 obtained from k-fold cross-validation with 10 folds.
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4.2. 3D Point Clouds: Reconstruction, Evaluation, Distances

The 3D stereo reconstruction of 86 sparse clouds was conducted within a precision of
11.4–80.6 mm in the depth direction, which, in mathematical notation, represents σz and is
stored in precision maps (cp. Section 3.3). The calculation of the 98th percentile cut very
few outliers and reduced this range to an interval of 23.1–64.5 mm. Arithmetic means of
the STDs values were found to be in the range of 17.3–30.4 mm. The medians of the STDs
values fell within the range of 16.9–26.9 mm.

Figure 4a displays exemplary results of the 3D stereo reconstruction, the accompanied
interpolated precision maps, and the C2C distance calculation at three points in time of
our measurement series. Since the stereo camera system is mounted at a slight angle
to the perpendicular, the graphics show a trapezoidal shape from the top to the bottom
of a single image, whose extent decreases with plant growth over time due to the fixed
field of view of our stereo cameras. Additionally, we observed a decrease in point cloud
density with increasing crop growth (Figure 4a; 1st column). At the same time, the point
cloud precision decreased with the point cloud density (Figure 4a; second column). This
effect can also be observed in Table 1(b). The intervals for STDs reveal a trend indicating
an anti-correlation between the point cloud density and the maximum STD values. For
example, we observed the range of STDs in the depth direction and the accompanied anti-
correlated point cloud density to be 16.7–24.8 mm/5.3 M points, 19.0–40.8 mm/4.2 M points
and 12.7–54.8 mm/2.9 M points with the increasing time steps in Figure 4a (see also Table 1;
dates are marked with *). For these dates, the calculation of the 98th percentile reveals
maximum values of 22.6 mm, 34.0 mm, 33.8 mm, respectively, and therefore, cuts the few
outliers shown as dark-red dots in the precision maps. The mean/median STDs range
from 19.6 mm/19.4 mm to 28.9 mm/28.8 mm. C2C distances were calculated concerning
the reference date, 3 November 2021. The results map the crop surface (Figure 4a; 3rd
column) and, thus, represent the current maximum vegetation height. For visualization,
gaps within the calculated C2C distance maps were interpolated. At later observation
times, for example, on 28 May 2022, significant height variations become evident. The
distinct blue line, indicating near-zero heights, can be correlated with the track of a fertilizer
vehicle (as also visible in Figure 2).

Table 1. (a) Results from C2C distance calculation for representative dates over a whole growing
season and for the central cell of a 3 × 3 grid in Figure 4a. Registered reference date (3 November
2021), dates of plant height reference measurements (Figure 4b, marked with a red star), dates shown
in Figure 4a (marked with * in the date column), and the harvest day (28 June 2022). Columns—hcalc:
99.9th percentile of height distribution; hre f —hand measurement; hmean/hmedian—mean/median
area height; errabs—Gaussian absolute error. (b) Interpolated STD intervals for the entire observed
area and accompanied point cloud density.

(a) Date hcalc [cm] hre f [cm] hmean [cm] hmedian [cm] errabs [cm] (b) σz No. Points

2021-11-03 0.00 - 0.00 0.00 - 1.62-2.38 4.1M
2021-11-11 * 3.51 - 0.60 0.44 2.78 1.67–2.48 5.3M
2022-04-22 22.05 22 13.56 13.90 2.89 1.83–3.00 6.4M

2022-04-26 * 25.57 - 17.32 17.51 3.48 1.90–4.08 4.7M
2022-04-27 27.69 26 20.72 21.13 3.30 1.72–4.69 4.2M
2022-05-03 44.27 43 31.64 32.08 3.55 1.53–6.81 3.1M
2022-05-11 67.47 64 49.67 50.52 3.29 1.26–7.29 3.6M
2022-05-18 83.43 84 62.84 63.56 3.33 1.30–6.42 3.2M
2022-05-26 92.65 90 70.04 71.47 3.30 1.29–5.95 2.6M

2022-05-28 * 94.18 - 73.35 74.72 3.24 1.27–5.48 2.9M
2022-06-01 92.07 92 73.73 74.99 3.26 1.32–6.44 2.6M
2022-06-15 86.75 87 74.43 75.55 2.82 1.30–5.67 3.5M
2022-06-23 84.36 86 72.57 73.78 3.03 1.34–5.80 3.6M
2022-06-28 85.61 82 73.06 73.63 2.88 1.46–6.25 3.9M
2022-06-28 34.78 - 21.90 22.11 2.69 1.63–3.65 6.1M



Remote Sens. 2024, 16, 541 9 of 15

Figure 4. Results of the data processing pipeline. (a) First column-reconstructed 3D point clouds from
top view, second column-calculated and rasterized STDs of the point clouds (called precision maps),
third column-distance estimates related to the reference date 3 November 2021. (b) Mean, median
and percentile values of C2C distances in the mid-cell of a 3 × 3 grid with respect to the reference
point cloud and compared to our plant height reference measures.

Due to interpolation artifacts at the edges of the plots resulting from the C2C distance
calculation steps and human-made impacts, such as vehicle tracks or footpaths, further
analysis was limited to an undisturbed area, specifically the central cell of the 3 × 3 grid
drawn on the images in Figure 4a. Based on this, a seasonal time-series of distance calcu-
lations is displayed in Figure 4b, and furthermore, related values for representative dates
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are written in Table 1(a). The resulting curves exhibit similar slopes and are enclosed by a
gray ribbon representing the absolute error calculated using Gaussian error propagation.
The curves of the mean (orange) and median (green) height values are almost congruent
and only start to diverge with increasing plant height, which is also evident from Table 1(a).
A comparison of average values for maximum growth heights (blue curve) with manual
height measurements (red stars) is conducted by calculation of a 99.9th percentile for the
observed rectangle. These average values take into account the temporal flattening of the
surface due to the hand measurement method used (cf. Section 2.4). Both the determination
of maximum height and growth dynamics according to principal BBCH stages are consis-
tent for hand and camera measurements within error intervals (Table 1(a)). The absolute
error is slightly correlated with vegetation height and ranges between 24.9 mm and 35.6 mm
over the entire time series. Finally, all of the displayed curves collapsed to the swath height
on 28 June 2022, due to the harvest of the field plot on this date. The observations and
hypotheses described in this section are supported by the values in the last two rows of
Table 1, i.e., median/mean converge, error values drop, and point cloud density increases
with an abrupt decrease in vegetation height.

5. Discussion

The approach presented combines continuous vegetation monitoring using stereo-
vision photogrammetry for high spatio-temporal vegetation parameter monitoring. The ex-
periment shows proof of principle for the retrieval of canopy height within an autonomous
ground truth solution. The presented automated data pipeline includes the acquisition,
classification, and photogrammetric analysis of RGB image data, and thus, the automatic
derivation of geometric plant traits from the 3D reconstruction of stereo image pairs. As
demonstrated in this study, the sampling rate of about eight to twelve image pairs per
day over a whole growing season enables the possibility to reliably and closely determine
heights or growth rates, which allows for the investigation of plant response to short-term
changes in abiotic environmental conditions related to plant geometry and growth.

However, long-term observation in a non-laboratory environment is a technical chal-
lenge [28], especially for a permanently installed system. A range of factors can interfere
with data acquisition and affect the quality of stereo image pairs or, in the worst case, inter-
rupt the monitoring. First, power outages due to, e.g., construction work at the field site or
unexpected problems in the electricity supply caused recurring gaps in our time-series and
later resulted in the installation of a UPS. Second, the quality of captured images can be af-
fected by varying ambient light conditions during the camera configuration (cf. Section 2.3).
Fast light–shadow changes due to clouds, sunlight reflection on the leaves, and also minor
snow patches can lead to the wrong adjustment of white balance and exposure, resulting
in overexposed images. Third, we also captured images showing snow cover or a closed
construction roof. Thus, the pre-classification of image pairs was required before applying
further 4D processing steps.

In this study, we used a simple supervised RF classifier to remove unsuitable stereo-
image pairs from the data pipeline. The selection of 4790 stereo images into usable or not
usable data using histograms succeeded in a satisfactory 94.2%. According to Millard and
Richardson [48] RF is generally appropriate for RGB image classification, but better results
could be achieved by adjusting the amount and selection of training data as well as strictly
equalizing the training images within the number of groups. Additionally, a comprehensive
test using cross-validation and grid search across a range of specific input variables can
enhance accuracy by identifying the optimal variable combination for training the model.
The application of further classifiers could also increase the prediction accuracy [49]. Note,
for more complex classification approaches in precision agriculture, e.g., phenotyping, de-
tecting plant diseases, observing BBCH stages, counting fruit bodies, or similar classifiers,
e.g., [50,51] or a deep learning approach [52] could be more appropriate. Certainly, with
regard to the extent of the applicability to various plant types and observation sites, the
exploration of unsupervised learning algorithms becomes particularly relevant. In cases of
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generating new training datasets for distinct vegetation types with annotations, unsuper-
vised image classifiers demonstrate clear advantages over their supervised counterparts in
terms of data curation effort and processing time.

The 3D point cloud reconstruction provides reliable results. The theoretically achiev-
able object point accuracy can be estimated separately for position sxy and depth sz by
applying the error propagation law when assuming the stereo normal case (details are
given in [53], p. 35), which amounts to sxy ≈ 1 mm and sz ≈ 23 mm concerning our setup.
Note, that theoretical accuracy is a limiting factor for the observation of geometric param-
eters, and therefore, must be included in the considerations of an appropriate setup. In
our study, the determined STDs of the reconstructed 3D points range in the same order
of magnitude (Metashape: 11.4–80.6 mm; 98th percentile: 11.4–64.5 mm), as is the range
of the STDs mean and median values of 17.3–30.4 mm and 16.9–26.9 mm, respectively,
and the range of the absolute error of 24.9–35.6 mm obtained by C2C calculation. Image
measurement and matching of homologous points in the stereo image pair are significant
factors impacting the accuracy of the object points to be reconstructed. With increasing
vegetation height, the detection of homologous points becomes more and more difficult
due to varying perspectives and the probability of mismatches increases, e.g., both images
capture different sides of upright leaves, awns, and fruits. Any gaps in the point clouds
are due to superimposed vegetation causing mutual occlusions (Figure 4a). Furthermore,
Table 1(b) demonstrates a clear trend of an inverse relationship between point cloud density
and the STDs achieved. This is primarily a result of the increased presence of outliers,
which have a more pronounced impact on the mean than on the median, leading to an
increasing divergence between the mean and median height curves (cp. Figure 4b and
Table 1(a)). Any discontinuities in the marginal areas of the plots shown in Figure 4a
result from interpolation errors due to a greatly reduced point density in the marginal area
covered by high vegetation. Consequently, the elevation values presented at the margins of
the observed study area should be viewed with caution. Anyway, the accuracy of 3D point
cloud reconstruction as well as the point cloud density can be increased by using additional
cameras within the setup, as stereo image matching would detect more homologous points
due to a higher number of ray intersections, e.g., to better deal with occlusions. However,
a reasonable cost-benefit calculation in terms of, e.g., the number of cameras, available
mounting stations, etc., is necessary for a field application of our approach on a farm.

A critical aspect of our approach is the geometric stability of the camera setup. Currently,
we assume that both the IOP and EOP of both cameras remain stable over the entire observa-
tion period. The camera setup was designed for outdoor use, installed in robust, waterproof
housings, and firmly mounted to the steel structure above the plot. Elias et al. [54], however,
demonstrated that based on low-cost cameras the accumulation of waste heat, which is to be
expected as a result of the housing construction, likely has an impact on the physical integrity
of the camera. Furthermore, they show that the temporal stability of the calibration parameters
is influenced by environmental factors, e.g., sunlight and cold. In particular, changes in the
principal point and principal distance are to be expected, which in turn, are directly correlated
with the depth measurement. Consequently, it is recommended that the calibration, i.e., the
IOP, of both cameras is inspected regularly and updated if required. The same applies to the
EOP of both cameras, respectively, and their relative orientation. Even if the installation is
most stable, weather impacts on the temporal stability of the position and orientation of the
involved cameras cannot be excluded. Accordingly, the EOP should likewise regularly be
verified and, if necessary, updated. For both, on-the-job calibration using a sufficient number
of ground control points in the field of view should be considered.

The data pipeline for plant monitoring with a stereo camera system can be improved
concerning the aspects previously discussed. Transferability to other practical agricultural
applications is conceivable since the pipeline is automated, starting with the high-resolution
data acquisition. As the data analysis consists of modules, it can be supplemented by
further methods of photogrammetric data analysis or computer vision. In summary, this is
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a promising application for service companies in precision farming and a promising tool
for fundamental research on vegetation dynamics under global change.

6. Conclusions and Outlook

We presented a robust, cost-effective, non-invasive system for potential long-term
crop monitoring and associated automated analysis of geometric plant traits for precise
agricultural applications, such as biomass, canopy height, or Leaf Area Index (LAI). The
high spatio-temporal resolution allows for the correlation of stereo vision-based 3D depth
information to abiotic parameters in terms of, e.g., growth spurts, plant elasticity, or
fructification. A unique feature compared to the current use of drones is the potential of
weather-independent continuous monitoring with a suitable, automated, and expendable
processing pipeline. In principle, the workflow is transferable to drone applications in
precision agriculture.

One point to note about the overall workflow package, however, is that the camera
calibration procedure is not fully automated, i.e., it is advisable to calibrate the system
regularly to control the stability of the IOP. A critical point of the data pipeline concerns the
compilation of an appropriate RF training data set for each specific installation site. In this
state, an agronomic service is still required.

Considering the workflow as a sequential arrangement, it is conceivable to augment
the data analysis with supplementary methodologies, such as detecting geometrical objects
using machine learning, once the 3D point clouds have been reconstructed. Perpendicular
porosity of the vertical foliage walls, plant geometry under changing sunlight or wind
conditions, or observation of BBCH stages correlated to climatic events are influencing
environmental effects, which should be the subject of future observations in order to
improve the workflows’ validity of results. For example, our study will be extended to
another non-greenhouse field plot at the GCEF for evaluation reasons and to examine
crop growth with respect to abiotic parameters by comparing a manipulated and a non-
manipulated plot. Furthermore, the implementation of the presented or similar workflows
may be conducted by using sophisticated open-source software like COLMAP v3.9.1 [55]
in the future.

Further potential for use cases in agriculture lies in the processing of the color information
of the recorded images. These data can be used to determine the optimal timing for the harvest
of crops from images, e.g., utilizing machine learning for detecting flowering [56]. In situ
stereo-vision camera data may provide ground truth information for UAV or satellite-based
color mapping for this purpose. Additionally, the detection of diseases, deficiencies, and stress
symptoms in plants is enabled by the color information. This can be conducted, among other
things, using spectral vegetation indices. In the setup described here with RGB images, e.g.,
the application of the Visible Atmospherically Resistant Index may be appropriate, which is
designed to estimate vegetation fraction in the visible portion of the spectrum [57]. Using
color information to differentiate between weeds and crops enables the precise application of
herbicides for weed control while at the same time protecting the crops. Therefore, several
weed detection methods based on computer vision [58] involve color information to improve
crop productivity. Furthermore, stereo vision-based geometric plant data could be extended
by further remote sensing-based observations, e.g., of the near-infrared (NIR), short-wave
infrared (SWIR), and thermal infrared (TIR) spectral bands. Especially, the combined analysis of
plant geometric data and thermal emissivity may support research and parameter retrieval for
evapotranspiration and plant health scenarios under changing environmental conditions [59,60].

In conclusion, there is potential for further investigation regarding the camera setup
and the data pipeline. Higher accuracy and density of the reconstructed 3D point clouds
could be achieved by using multi-image techniques, as a larger number of cameras can
capture the object with multiple convergent images to reduce stereo reconstruction am-
biguities and occlusions, e.g., [61]. Here, RGB and thermal oblique camera solutions [62]
provide innovative observations and may be coupled to the 3D point cloud reconstruction.
Experiments using UAV-based data acquisition at various spatial scales also provide a
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cost-efficient method to study scaling effects in point cloud reconstruction quality. How-
ever, one significant added value of the described actual setup lies in the utilization of
established, passive, non-invasive measurement techniques, resulting in minimal costs and
substantial gains, even if it entails accepting certain trade-offs, e.g., decreasing accuracy
measures or point cloud density with increasing plant height. Building upon the presented
data pipeline and included processes, the potential for enhancing output quality and ex-
panding applicability to diverse vegetation types and observation sites is evident through
the incorporation of additional methods in data curation, analysis, and error estimation.

Author Contributions: Conceptualization, J.B. and H.M.; methodology, J.B. and H.M.; setup, H.M.
and M.K.; data pipeline & software & validation, M.K. and M.E.; reference measurement, I.M.; site
management, M.S.; writing—original draft preparation, M.K., M.E., H.M. and M.P.; visualization,
M.K.; supervision, H.M.; project administration, H.M.; funding acquisition, H.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Federal Ministry of Food and Agriculture, grant num-
ber 28DE102B18.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to personal data protection laws for
imaging data.

Acknowledgments: This study is part of the EXPRESS project which addresses the above key issues
and supports farmers with the development of modern monitoring strategies in the selection of
suitable crops, their cultivation and maintenance. The GCEF is funded by the Federal Ministry of
Education and Research, the State Ministry for Science and Economy of Saxony-Anhalt and the State
Ministry for Higher Education, Research, and the Arts of Saxony. Additional thanks to Konrad Kirsch
and Ines Merbach for their excellent fieldwork and support. Furthermore, we gratefully thank Frank
Liebold for providing a tool for image undistortion using Brown’s camera and lens model.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst.

Eng. 2013, 114, 358–371. [CrossRef]
2. Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany,

2018; p. 204. [CrossRef]
3. Morison, J.I.; Morecroft, M.D. Plant Growth and Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2008.
4. Vázquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D imaging systems for agricultural applications-—A

review. Sensors 2016, 16, 618. [CrossRef]
5. Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [CrossRef]

[PubMed]
6. Wakchaure, M.; Patle, B.; Mahindrakar, A. Application of AI Techniques and Robotics in Agriculture: A Review. Artif. Intell. Life

Sci. 2023, 3 , 100057. [CrossRef]
7. Kolhar, S.; Jagtap, J. Plant trait estimation and classification studies in plant phenotyping using machine vision–A review. Inf.

Process. Agric. 2021, 10, 114–135. [CrossRef]
8. Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric.

2020, 176, 105672. [CrossRef]
9. Blanquart, J.E.; Sirignano, E.; Lenaerts, B.; Saeys, W. Online crop height and density estimation in grain fields using LiDAR.

Biosyst. Eng. 2020, 198, 1–14. [CrossRef]
10. Schirrmann, M.; Hamdorf, A.; Garz, A.; Ustyuzhanin, A.; Dammer, K.H. Estimating wheat biomass by combining image

clustering with crop height. Comput. Electron. Agric. 2016, 121, 374–384. [CrossRef]
11. Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of plant height and yield based

on UAV imagery in faba bean (Vicia faba L.). Plant Methods 2022, 18, 1–13. [CrossRef]
12. Volpato, L.; Pinto, F.; González-Pérez, L.; Thompson, I.G.; Borém, A.; Reynolds, M.; Gérard, B.; Molero, G.; Rodrigues, F.A., Jr.

High throughput field phenotyping for plant height using UAV-based RGB imagery in wheat breeding lines: Feasibility and
validation. Front. Plant Sci. 2021, 12, 591587. [CrossRef]

http://doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.5073/20180906-074619
http://dx.doi.org/10.3390/s16050618
http://dx.doi.org/10.3390/s141120078
http://www.ncbi.nlm.nih.gov/pubmed/25347588
http://dx.doi.org/10.1016/j.ailsci.2023.100057
http://dx.doi.org/10.1016/j.inpa.2021.02.006
http://dx.doi.org/10.1016/j.compag.2020.105672
http://dx.doi.org/10.1016/j.biosystemseng.2020.06.014
http://dx.doi.org/10.1016/j.compag.2016.01.007
http://dx.doi.org/10.1186/s13007-022-00861-7
http://dx.doi.org/10.3389/fpls.2021.591587


Remote Sens. 2024, 16, 541 14 of 15

13. Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W.S.; Maas, H.G. Watching grass grow-a pilot study on the
suitability of photogrammetric techniques for quantifying change in aboveground biomass in grassland experiments. ISPRS Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2018, 42, 539–542. [CrossRef]

14. Rueda-Ayala, V.P.; Peña, J.M.; Höglind, M.; Bengochea-Guevara, J.M.; Andújar, D. Comparing UAV-based technologies and
RGB-D reconstruction methods for plant height and biomass monitoring on grass ley. Sensors 2019, 19, 535. [CrossRef] [PubMed]

15. Vit, A.; Shani, G. Comparing RGB-D sensors for close range outdoor agricultural phenotyping. Sensors 2018, 18, 4413. [CrossRef]
16. Jimenez-Berni, J.A.; Deery, D.M.; Rozas-Larraondo, P.; Condon, A.T.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Furbank, R.T.;

Sirault, X.R. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR.
Front. Plant Sci. 2018, 9, 237. [CrossRef]

17. Wang, X.; Singh, D.; Marla, S.; Morris, G.; Poland, J. Field-based high-throughput phenotyping of plant height in sorghum using
different sensing technologies. Plant Methods 2018, 14, 1–16. [CrossRef]

18. Bernotas, G.; Scorza, L.C.; Hansen, M.F.; Hales, I.J.; Halliday, K.J.; Smith, L.N.; Smith, M.L.; McCormick, A.J. A photometric
stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. GigaScience 2019, 8, giz056.
[CrossRef]

19. Tilneac, M.; Dolga, V.; Grigorescu, S.; Bitea, M. 3D stereo vision measurements for weed-crop discrimination. Elektron.
Elektrotechnika 2012, 123, 9–12. [CrossRef]

20. Dandrifosse, S.; Bouvry, A.; Leemans, V.; Dumont, B.; Mercatoris, B. Imaging wheat canopy through stereo vision: Overcoming
the challenges of the laboratory to field transition for morphological features extraction. Front. Plant Sci. 2020, 11, 96. [CrossRef]

21. Wen, J.; Yin, Y.; Zhang, Y.; Pan, Z.; Fan, Y. Detection of Wheat Lodging by Binocular Cameras during Harvesting Operation.
Agriculture 2022, 13, 120. [CrossRef]

22. Bao, Y.; Tang, L. Field-based robotic phenotyping for sorghum biomass yield component traits characterization using stereo
vision. IFAC-PapersOnLine 2016, 49, 265–270. [CrossRef]

23. Eltner, A.; Hoffmeister, D.; Kaiser, A.; Karrasch, P.; Klingbeil, L.; Stöcker, C.; Rovere, A. UAVs for the Environmental Sciences: Methods
and Applications; wbg Academic in Wissenschaftliche Buchgesellschaft (WBG): Darmstadt, Germany, 2022; Chapter 1.5.1.2.

24. Tanaka, Y.; Watanabe, T.; Katsura, K.; Tsujimoto, Y.; Takai, T.; Tanaka, T.S.T.; Kawamura, K.; Saito, H.; Homma, K.;
Mairoua, S.G.; et al. Deep learning enables instant and versatile estimation of rice yield using ground-based RGB images. Plant
Phenomics 2023, 5, 0073. [CrossRef]

25. Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the effect of real spatial resolution of
in situ UAV multispectral images on seedling rapeseed growth monitoring. Remote Sens. 2020, 12, 1207. [CrossRef]

26. Zaji, A.; Liu, Z.; Xiao, G.; Bhowmik, P.; Sangha, J.S.; Ruan, Y. Wheat Spikes Height Estimation Using Stereo Cameras. IEEE Trans.
Agrifood Electron. 2023, 1, 15–28. [CrossRef]

27. Cai, J.; Kumar, P.; Chopin, J.; Miklavcic, S.J. Land-based crop phenotyping by image analysis: Accurate estimation of canopy
height distributions using stereo images. PLoS ONE 2018, 13, e0196671. [CrossRef]

28. Brocks, S.; Bareth, G. Estimating barley biomass with crop surface models from oblique RGB imagery. Remote Sens. 2018, 10, 268.
[CrossRef]

29. Schima, R.; Mollenhauer, H.; Grenzdörffer, G.; Merbach, I.; Lausch, A.; Dietrich, P.; Bumberger, J. Imagine all the plants:
Evaluation of a light-field camera for on-site crop growth monitoring. Remote Sens. 2016, 8, 823. [CrossRef]

30. Schädler, M.; Buscot, F.; Klotz, S.; Reitz, T.; Durka, W.; Bumberger, J.; Merbach, I.; Michalski, S.G.; Kirsch, K.; Remmler, P.; et al.
Investigating the consequences of climate change under different land-use regimes: A novel experimental infrastructure. Ecosphere
2019, 10, e02635. [CrossRef]

31. Ballot, R.; Guilpart, N.; Jeuffroy, M.-H. The first map of crop sequence types in Europe over 2012–2018. Earth Syst. Sci. Data 2023,
15, 5651–5666. [CrossRef]

32. Allied Vision Technologies GmbH. Mako Technical Manual. 2023. Available online: https://cdn.alliedvision.com/fileadmin/con
tent/documents/products/cameras/Mako/techman/Mako_TechMan_en.pdf (accessed on 18 January 2024).

33. EXTRA Computer GmbH. Pokini i2 Data Sheet. 2023. Available online: https://os.extracomputer.de/b10256/devpokini/wp-co
ntent/uploads/2020/07/Pokini-I2_Datenblatt_DE_V1-2_02-2020_web.pdf (accessed on 18 January 2024).

34. Allied Vision Technologies GmbH. About. 2023. Available online: https://www.alliedvision.com/ (accessed on 18 January 2024).
35. Proulx, R. On the general relationship between plant height and aboveground biomass of vegetation stands in contrasted

ecosystems. PLoS ONE 2021, 16, e0252080. [CrossRef] [PubMed]
36. Walter, J.D.; Edwards, J.; McDonald, G.; Kuchel, H. Estimating biomass and canopy height with LiDAR for field crop breeding.

Front. Plant Sci. 2019, 10, 1145. [CrossRef]
37. Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image

processing in Python. PeerJ 2014, 2, e453. [CrossRef]
38. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
39. Bradski, G. The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123.
40. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. 2011, 12, 2825–2830.
41. Brown, D.C. Close-range camera calibration. Photogramm. Eng 1971, 37, 855–866.

http://dx.doi.org/10.5194/isprs-archives-XLII-2-539-2018
http://dx.doi.org/10.3390/s19030535
http://www.ncbi.nlm.nih.gov/pubmed/30696014
http://dx.doi.org/10.3390/s18124413
http://dx.doi.org/10.3389/fpls.2018.00237
http://dx.doi.org/10.1186/s13007-018-0324-5
http://dx.doi.org/10.1093/gigascience/giz056
http://dx.doi.org/10.5755/j01.eee.123.7.2366
http://dx.doi.org/10.3389/fpls.2020.00096
http://dx.doi.org/10.3390/agriculture13010120
http://dx.doi.org/10.1016/j.ifacol.2016.10.049
http://dx.doi.org/10.34133/plantphenomics.0073
http://dx.doi.org/10.3390/rs12071207
http://dx.doi.org/10.1109/TAFE.2023.3262748
http://dx.doi.org/10.1371/journal.pone.0196671
http://dx.doi.org/10.3390/rs10020268
http://dx.doi.org/10.3390/rs8100823
http://dx.doi.org/10.1002/ecs2.2635
http://dx.doi.org/10.5194/essd-15-5651-2023
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/Mako/techman/Mako_TechMan_en.pdf
https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/Mako/techman/Mako_TechMan_en.pdf
https://os.extracomputer.de/b10256/devpokini/wp-content/uploads/2020/07/Pokini-I2_Datenblatt_DE_V1-2_02-2020_web.pdf
https://os.extracomputer.de/b10256/devpokini/wp-content/uploads/2020/07/Pokini-I2_Datenblatt_DE_V1-2_02-2020_web.pdf
https://www.alliedvision.com/
http://dx.doi.org/10.1371/journal.pone.0252080
http://www.ncbi.nlm.nih.gov/pubmed/34038429
http://dx.doi.org/10.3389/fpls.2019.01145
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.1023/A:1010933404324


Remote Sens. 2024, 16, 541 15 of 15

42. Godding, R. Camera Calibration. In Handbook of Machine and Computer Vision; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017;
Chapter 5, pp. 291–316. [CrossRef]

43. Agisoft Helpdesk Portal. 4D Processing. 2022. Available online: https://agisoft.freshdesk.com/support/solutions/articles/310
00155179-4d-processing (accessed on 18 January 2024).

44. James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change
detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271.
[CrossRef]

45. James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogram-
metry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788.
[CrossRef]

46. Girardeau-Montaut, D. CloudCompare. Fr. EDF R&D Telecom ParisTech 2016, 11, 5.
47. Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal.

Mach. Intell. 1993, 15, 850–863. . [CrossRef]
48. Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case

study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [CrossRef]
49. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine

Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

50. Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-based image classification of
summer crops with machine learning methods. Remote Sens. 2014, 6, 5019–5041. [CrossRef]

51. Kumar, S.; Kaur, R. Plant disease detection using image processing—A review. Int. J. Comput. Appl. 2015, 124. [CrossRef]
52. Zhou, C.L.; Ge, L.M.; Guo, Y.B.; Zhou, D.M.; Cun, Y.P. A comprehensive comparison on current deep learning approaches for

plant image classification. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1873,
p. 012002. [CrossRef]

53. Kraus, K. Photogrammetry, 2nd ed.; DE GRUYTER: Berlin, Germany, 2007. [CrossRef]
54. Elias, M.; Eltner, A.; Liebold, F.; Maas, H.G. Assessing the Influence of Temperature Changes on the Geometric Stability of

Smartphone- and Raspberry Pi Cameras. Sensors 2020, 20, 643. [CrossRef] [PubMed]
55. Schoenberger, J.L. COLMAP. 2023. Available online: https://colmap.github.io/index.html (accessed on 18 January 2024).
56. Kim, T.K.; Kim, S.; Won, M.; Lim, J.H.; Yoon, S.; Jang, K.; Lee, K.H.; Park, Y.D.; Kim, H.S. Utilizing machine learning for detecting

flowering in mid-range digital repeat photography. Ecol. Model. 2021, 440, 109419. [CrossRef]
57. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.

Environ. 2002, 80, 76–87. [CrossRef]
58. Wu, Z.; Chen, Y.; Zhao, B.; Kang, X.; Ding, Y. Review of weed detection methods based on computer vision. Sensors 2021, 21, 3647.

[CrossRef] [PubMed]
59. Gerhards, M.; Rock, G.; Schlerf, M.; Udelhoven, T. Water stress detection in potato plants using leaf temperature, emissivity, and

reflectance. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 27–39. [CrossRef]
60. Sobrino, J.A.; Del Frate, F.; Drusch, M.; Jiménez-Muñoz, J.C.; Manunta, P.; Regan, A. Review of thermal infrared applications and

requirements for future high-resolution sensors. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2963–2972. [CrossRef]
61. Maas, H.G. Mehrbildtechniken in der Digitalen Photogrammetrie. Habilitation Thesis, ETH Zurich, Zürich, Switzerland, 1997.

[CrossRef]
62. Lin, D.; Bannehr, L.; Ulrich, C.; Maas, H.G. Evaluating thermal attribute mapping strategies for oblique airborne photogrammetric

system AOS-Tx8. Remote Sens. 2019, 12, 112. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/9783527413409.ch5
https://agisoft.freshdesk.com/support/solutions/articles/31000155179-4d-processing
https://agisoft.freshdesk.com/support/solutions/articles/31000155179-4d-processing
http://dx.doi.org/10.1002/esp.4878
http://dx.doi.org/10.1002/esp.4125
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.3390/rs70708489
http://dx.doi.org/10.1109/JSTARS.2020.3026724
http://dx.doi.org/10.3390/rs6065019
http://dx.doi.org/10.5120/ijca2015905789
http://dx.doi.org/10.1088/1742-6596/1873/1/012002
http://dx.doi.org/10.1515/9783110892871
http://dx.doi.org/10.3390/s20030643
http://www.ncbi.nlm.nih.gov/pubmed/31979284
https://colmap.github.io/index.html
http://dx.doi.org/10.1016/j.ecolmodel.2020.109419
http://dx.doi.org/10.1016/S0034-4257(01)00289-9
http://dx.doi.org/10.3390/s21113647
http://www.ncbi.nlm.nih.gov/pubmed/34073867
http://dx.doi.org/10.1016/j.jag.2016.08.004
http://dx.doi.org/10.1109/TGRS.2015.2509179
http://dx.doi.org/10.3929/ethz-a-001865074
http://dx.doi.org/10.3390/rs12010112

	Introduction
	Experimental Setup
	Field Site: GCEF Bad Lauchstädt
	Stereo Camera Setup
	Image Acquisition
	Measurement of Reference Data

	Data Processing
	Image Preselection
	Camera Calibration
	Time-Lapse Stereo Reconstruction

	Results
	Image Classification Using Machine Learning
	3D Point Clouds: Reconstruction, Evaluation, Distances

	Discussion
	Conclusions and Outlook
	References

