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Abstract: Unmanned aerial vehicles (UAVs) are extensively used to gather remote sensing data,
offering high image resolution and swift data acquisition despite being labor-intensive. In contrast,
satellite-based remote sensing, providing sub-meter spatial resolution and frequent revisit times,
could serve as an alternative data source for phenotyping. In this study, we separately evaluated
pan-sharpened Pléiades satellite imagery (50 cm) and UAV imagery (2.5 cm) to phenotype durum
wheat in small-plot (12 m × 1.10 m) breeding trials. The Gaussian process regression (GPR) algorithm,
which provides predictions with uncertainty estimates, was trained with spectral bands and a selected
set of vegetation indexes (VIs) as independent variables. Grain protein content (GPC) was better
predicted with Pléiades data at the growth stage of 20% of inflorescence emerged but with only
moderate accuracy (validation R2: 0.58). The grain yield (GY) and protein yield (PY) were better
predicted using UAV data at the late milk and watery ripe growth stages, respectively (validation: R2

0.67 and 0.62, respectively). The cumulative VIs (the sum of VIs over the available images within the
growing season) did not increase the accuracy of the models for either sensor. When mapping the
estimated parameters, the spatial resolution of Pléiades revealed certain limitations. Nevertheless,
our findings regarding GPC suggested that the usefulness of pan-sharpened Pléiades images for
phenotyping should not be dismissed and warrants further exploration, particularly for breeding
experiments with larger plot sizes.

Keywords: feature selection; Gaussian process regression; pan-sharpened satellite imagery;
phenotyping; time series

1. Introduction

The world’s rapidly increasing population requires an increase in the production of
food for its nutrition. Cereals are the main source of energy and carbohydrates and one of
the main sources of vegetable protein in the human diet [1]. Furthermore, they produce a
low environmental footprint compared with animal production systems [2]. According to
the FAO (Food and Agriculture Organization), the world production of cereals needs to
increase significantly to meet future demand for both food and animal feed uses, and it is
projected to reach some 3 billion tons by 2050, up from today’s nearly 2.1 billion tons.

Durum wheat (Triticum turgidum subsp. Durum Desf.) is the only tetraploid wheat
species of commercial importance [3]. It is used primarily for human food due to its
nutrition and technological properties (a high content of proteins and carotenoids, a hard
endosperm with glassiness, and strong gluten). Durum wheat is grown in 8% of the world’s
wheat area [4], and about 37 million tons of it are produced annually. It originates from
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the countries around the Mediterranean Basin [5], but nowadays, it is grown worldwide,
even in non-traditional areas such as Northern Europe. Its wide distribution is related to
the grain’s unique qualities, which make it a preferred raw material for obtaining pasta
products with a firm texture and a pleasant yellow color highly valued by consumers.

Bulgaria is one of the regions with the most favorable conditions for growing high-
quality durum wheat in Europe, and a large number of varieties have been identified here.
Therefore, its breeding improvement in Bulgaria has deep traditions, the beginning dating
back almost 100 years ago at the Field Crops Institute in Chirpan (South Bulgaria) [6].

According to Ceglar et al., 2021 [7], climate change may decrease the suitable area
for durum wheat cultivation by 19% at the mid-century and by 48% at the end of the
century. The widespread loss of suitable areas is foreseen in the Mediterranean regions and
northern America. Recently, the global change in the climate, especially drought and heat
stress, has already affected the grain yield (GY) and the quality of wheat and increased
genotype-environment interaction [8,9]. This emphasizes the need for regional studies.

Lately, the main challenge for durum wheat breeding has been the creation of new
varieties well adapted to the changing climatic conditions, with an improved grain yield
and higher quality parameters, that meet the pasta industry’s requirements. The yield has
a complex structure of different components, all of which show quantitative inheritance
determined via polygenic systems [10]. The suitability of durum wheat for processing
into high-quality pasta products is due to several characteristics. The protein content
and the gluten strength as factors of culinary taste and the color of the pasta products as
primary marketing characteristics are the most important quality priorities in the modern
concept of the technological quality of durum wheat [11]. The work of breeders for grain
quality improvement is associated with a number of difficulties [12]. These traits are
quantitatively heritable, and alongside the major genes that have been well studied so far
and that determine gluten composition [13] and protein content [14], many other genes
control their expression. In addition, it is necessary to determine the quality indicators of
the final product, which is complicated due to the necessity of milling the grain to semolina,
the production and culinary evaluation of pasta, and the requirement of a lot of time and
large quantities of grain [15].

The simultaneous improvement of the grain yield and protein content is difficult due
to the existing negative correlation between both traits and the presence of the significant
influence of environmental conditions in their variation [16–18]. Multiple environmental
factors during grain filling affect protein accumulation. The negative correlation between
the yield and protein content illustrates the interrelationship between carbon and ni-
trogen (N) metabolism in plants [19]. The nitrogen distribution in photosynthetic and
non-photosynthetic plant organs during the grain-filling phase and the post-flowering
nitrogen accumulation and translocation determine the grain yield by influencing the
effective photosynthetic area, photosynthetic duration, and photosynthetic assimilation
capacity [20]. In the later phenophase of grain filling, nitrogen is transported to the grain
for protein synthesis [21]. According to Xynias et al., 2020 [22], a genetic improvement
reduces the grain protein concentration as a result of improved yields but without affecting
pasta cooking quality. The lower grain protein content (GPC) of modern cultivars is due to
a dilution effect caused by their heavier grains or increased amounts of carbohydrates.

So far, various breeding strategies have been proposed to overcome the negative corre-
lation between grain yield and protein content, such as mutagenesis and the introgression
of genes for high protein content from closely related species, which, however, have not
been completely successful. In recent years, so-called selection indices such as protein
yield and protein deviation have begun to be applied [18]. Monaghan et al. (2001) [23]
determined that a deviation from the regression line between the grain yield and the protein
content could be used to identify genotypes with a higher protein content than would
be expected based on their yields. The protein yield (PY) was proposed as a selection
criterion to improve the protein content and yield simultaneously [24]. The protein yield
is the product of the grain yield and the relative protein content, and thus, it corresponds
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to the grain protein harvested per area [18]. However, despite being identified more than
20 years ago, it has not been extensively modeled like GY and GCP [25,26]. Additionally,
all the classical breeding methods for the simultaneous improvement of both important
agronomic traits are time-consuming, and phenotyping procedures are costly. In recent
years, low efficiency in the phenotyping of important agronomic traits has been considered
a limiting factor for genetic progress in breeding programs. Therefore, more and more
multidisciplinary research efforts are directed toward the establishment of remote sensing
methods as plant phenotyping tools [27].

In recent years, the interest in using unmanned aerial vehicles (UAV) for phenotyping
data collection has increased dramatically [28–31] due to the flexibility of such systems, the
diversity of the sensors they can now carry, the reduced costs of the equipment, and the
availability of software for data processing [32,33]. The use of high-resolution, multispectral
images acquired from UAVs has notably broadened the potential for monitoring wheat
variety trials under field conditions [34]. The selection process for developing new varieties
with an increased yield, improved grain quality, and adaptability to changing climate
conditions is significantly improved by integrating regularly collected remote and ground-
based data [35]. This integration is enhanced by the presence of strong and statistically
significant correlations between data from these sources [25,34]. This integration is critical
for advancing sustainable agriculture. In the past decade, numerous field trial experiments
have been conducted to assess the accuracy of various machine learning approaches based
on regression algorithms for estimating the GY and GPC of various winter wheat genotypes
using multispectral data from multiple platforms and sensors [36]. The validation and
the improvement of the accuracy of machine learning models based on remote sensing
platforms and sensors can streamline the variety trial process and aid in obtaining legal
protection certificates for newly created varieties. The evaluation of models usually revolves
around accuracy metrics. However, incorporating the mapping of estimated parameters
into the evaluation process, along with uncertainty estimation, can offer additional insights
into the model’s performance and should be an integral part of the assessment. Furthermore,
maps illustrating the retrieved parameters with their associated uncertainty at a plot and
pixel level could prove to be a valuable tool for crop breeders.

Unlike UAVs, high-resolution imagery from satellite platforms is not commonly used
in high-throughput phenotyping (HTP). Despite the growing interest in satellite imaging
for plant breeding [37,38] due to cost reductions and the usefulness of evaluating multi-
location yield trials, there is still a scarcity of studies exploring its potential use [39,40] for
HTP. The main disadvantage of the currently available satellite imagery is its lower spatial
resolution compared to UAV imagery. Therefore, depending on the size of the plots in a
crop breeding experiment, the pixel size may become a limiting factor for its application.
Pan-sharpening is a technique used to enhance the resolution of spectral bands based on a
pan-chromatic band with a higher resolution [41]. It is mostly used to prepare quality color
composite images suitable for mapping and visual interpretation. Pan-sharpened images
have also been used to derive spectral vegetation indices [39] and, thus, for quantitative
research. This technique increases the potential utility of high-resolution satellite systems
for crop evaluation in field breeding trails. One such system is the Pléiades constellation
consisting of two identical satellites, 1A and 1B, launched in 2011 and 2012 respectively [42].
A pan-sharpened product (a multispectral image with 0.5 m resolution) is generated and
made available from the image provider as a standard product [43,44]. Furthermore, the
Pléiades constellation can provide daily image acquisition to any point on the globe. Timely
image acquisition is essential for the in-season monitoring of crops. Pléiades imagery has
been used for the prediction of the winter wheat aboveground biomass (AGB), leaf area
index (LAI), and leaf nitrogen concentration (LNC) [45]. To the best of our knowledge,
the utility of pan-sharpened Pléiades data for phenotyping has been studied until now
only by Sankaran et al. (2019) [40]. Implementing satellite-based phenotyping for yield
trial plots holds the potential to assess new crop varieties across numerous geographically
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distinct locations. This could contribute significantly to the development of more resilient
and widely adapted crops.

Two primary approaches are commonly utilized to predict crop parameters, such
as GY, GPC, and PY, using remote sensing data and statistical models. The first ap-
proach consists of modeling the GY, GPC, and PY with spectral data at a specific growth
stage [26,30,31,46,47]. To improve the model accuracy, typically, a multitude of spectral
bands is required [31]. For sensors with limited spectral bands, vegetation indices (VIs)
could be considered as additional model inputs alongside the available spectral bands.
The second approach entails integrating the temporal development of the crop into the
modeling process by considering phenological metrics usually derived from VI time series.
These metrics encompass important factors such as the start of the season, the end of the
season, the maximum amplitude of a VI, the cumulative sum of a VI, and the temporal
integration of a VI based on the area under the curve [48–53].

In 2020, the effectiveness of the fixed-wing drone Sensefly eBee AG, equipped with
the multispectral camera Parrot Sequoia, was assessed in predicting the grain yield and
the biophysical parameters of 52 winter durum wheat genotypes [30]. In the following
year, the same genotypes were sown in a different location, and both remote and ground
monitoring were carried out. The results of these evaluations are presented in this article.

This study aims to evaluate the predictive capabilities of a machine learning method
with uncertainty estimation, namely Gaussian process regression (GPR). The evaluation
involves data from a UAV (a DJI Phantom 4 multispectral camera) and the Pléiades satel-
lite (a multispectral, pan-sharpened product at a 0.5 m spatial resolution) data for key
parameters—GY, GPC, and PY—within a breeding experiment involving a diverse range of
durum wheat genotypes. To the best of our knowledge, no studies have been published pre-
dicting PY with spectral data and machine learning methods so far. The primary objective
is to determine whether the predicting models with satellite data are comparable to those
with UAV data. The developed models consider either single growth stages or the entire
duration of the growing period. Additionally, the study aims to estimate the uncertainties
in the retrieved parameters. Associating the prediction models for crop parameters with
maps at the plot and pixel levels and including an uncertainty estimation will provide
valuable insights for durum wheat breeders.

The rest of this paper is organized as follows: First, the materials and methods are de-
scribed, including the experimental setup, the ground and remote-sensing data acquisition
and preprocessing, and the modeling approach. The results are then presented, followed
by a discussion of the main findings and limitations of the study. Finally, a concluding
section emphasizes the important lessons learned.

2. Materials and Methods
2.1. Test Site and Experimental Design of the Study

To achieve the study’s objectives, a test site with diverse genotypes of winter durum
wheat cultivated under identical agro-climatic conditions, nitrogen fertilizer application
levels, and field management practices was selected. The test site was situated in the
breeding fields of the Field Crops Institute, Chirpan (FCI-Chirpan), Bulgaria (Figure 1).
For the 2021/2022 growing season, the test site comprised two competitive variety trials
(CVTs) conducted in rainfed field conditions, incorporating fifty-two genotypes of winter
durum wheat (Triticum turgidum L. var. durum) varieties and breeding lines. The winter
durum wheat was grown on flat terrain (208–209 m a.s.l.) and Pellic Vertisol soil, according
to the World Reference Base for Soil Resources classification system [54]. The climate in
the region is temperate continental, with a poorly expressed Mediterranean influence. The
winter during the 2021/2022 growing season was warmer than usual and without snow
cover, and the large amount of precipitation in October (150.5 mm) delayed the sowing
of the genotypes (Table 1). In general, the meteorological conditions during the growing
season were characterized by higher temperatures than the multiannual norm (9% over the
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average) and by higher soil moisture and rainfall (4.7% over the average). The harvest year
was suitable for obtaining a high grain yield and grain quality.
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Table 1. Meteorological characteristics during the vegetation of durum wheat in FCI–Chirpan for the
2021/2022 growing season and the average meteorological data for the multiannual period. The data
are from the FCI–Chirpan weather station situated less than 500 m from the test site.

Months Mean Daily Air Temperature, ◦C Monthly Amount of Precipitation, mm

2021–2022 1928–2022 2021–2022 1928–2022

October 11.3 12.7 150.5 38.6
November 7.9 7 14.2 47.3
December 3.9 1.4 108.8 54.0
January 1.8 −0.2 21.4 44.3
February 4.2 1.7 40.1 37.7
March 4.2 5.7 22.4 37.0
April 12.2 11.8 36.0 45.3
May 17.3 16.9 29.4 64.1
June 22.0 20.7 80.5 65.4
July 25.1 23.1 7.7 54.1
Sum 109.9 100.8 511 487.8
% 109 100 104.7 100

In CVTs, newly developed breeding lines, along with standard varieties, undergo
testing for three or more years to identify the highest-yielding and stable genotypes. These
genotypes are submitted to the Executive Agency of Variety Testing Field Inspection
and Seed Control for official variety testing to be recognized as new varieties and to be
included in the official variety list of the Republic of Bulgaria and Europe. In the middle of
each experiment, the two standards, the Predel variety for the grain yield and the Mirela
variety for the grain quality, were positioned. The trials were organized using a complete
block design with four replications. The genotypes were sown on 12 November 2021 on
plots with an area of 13.2 m2 (12 m × 1.10 m) with a distance between the genotypes of
0.5 m and a distance between the replications of 2 m. Each genotype was sown with
550 germinated seeds per m2, following the standard technology for growing durum wheat
breeding materials in FCI–Chirpan. The predecessor was winter peas. One-time nitrogen
(N) fertilization with a fertilizer rate of 100 kg/ha of active substance nitrogen was applied
in February 2022. In addition, 92 kg/ha of active-substance P2O5 was applied before the
sowing of the durum wheat. The experiment was treated against weeds with an herbicide
combination of Axial 050 EK in a dose of 900 mL/ha and Biatlon 4 D in a dose of 50 g/ha
on 15 April 2022. No pesticides were employed for disease and pest control.

Remote sensing and phenology data for the year 2022 were acquired between April
and June. Throughout this period, the studied durum wheat genotypes progressed through
various growth stages, including stem elongation, booting, heading, anthesis, and late milk.
Concurrently, requests were submitted to obtain satellite images from Pléiades 1A and 1B,
and UAV flight missions were executed to capture data during the same timeframe. Shortly
before the harvest, plant samples were collected from all plots for laboratory analysis to
determine grain protein content. Furthermore, the grain yield per plot was measured.

2.2. Data Acquisition
2.2.1. Grain Yield (GY)

The GY (kg/plot) data were collected at the agricultural full maturity phenophase of
the plants via mechanical harvesting with a classic plot combined separately for each plot
on 10–11 July 2022. The harvest was carried out under uniform conditions, including a
similar air temperature, time of day, and setup of the harvest combine. The GY of a plot
was calculated after weighing the harvested grain with an electronic scale. Table 2 presents
the descriptive statistics for the measured GY, the GPC, and the calculated PY.
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Table 2. Descriptive statistics for the measured grain yield (kg/plot), grain protein content (%), and
the calculated protein yield (%) of winter durum wheat.

Number of
Measurements Min. Max. Mean Std. Dev. CV %

GY (kg/plot) 208 5.59 10.11 8.27 0.79 9.60
GPC (%) 208 14.10 17.40 15.55 0.60 3.87
PY (%) 208 0.89 1.53 1.28 0.11 8.86

2.2.2. Grain Protein Content (GPC)

The grain protein content was determined by taking three randomly selected samples
from each plot of each genotype and averaging the results. The protein content of the grain
was determined using the Kjeldahl method (N × 5.7) according to BDS EN ISO 20483:
2013 [55] with FCI–Chirpan modifications. Thus, the applied analysis procedure was as
follows. One gram of whole ground durum wheat grain (meal) was burned in 15 mL
H2SO4 and catalysts (7 g of dry K2SO4 and 5 mg of Se powder) and 5 mL of 35% H2O2. This
was followed by heating at 250 ◦C for 60 min., heating at 370 ◦C for 60 min., and heating
at 420 ◦C for 40 min. The samples were allowed to cool to about 50–60 ◦C, and 50 mL of
distilled water was added to them immediately before distillation. An Erlenmeyer flask
(receiver) containing 25 mL of a four percent solution of boric acid (H3BO3) with 1–2 drops
of an indicator (Tashiro indicator) was placed in the steam still. The tube with the sample
was set in the distiller. Then, 50–60 mL of NaOH (32–33%) was added, and the distillation
cycle was started. Titration was carried out with 0.2 N HCl until the color changed from
green to pink.

The protein content was calculated using the following formula:

GPC[%] =
(a − b)× F0.2NHCI × 2.803 × 100 × k

1000 mg
(1)

where GPC is the protein quantity in %, a is mL HCl used to titrate the sample, b is the
mL of HCl used to titrate the blank, F is factor of 0.2 N HCl, 2.803 is mg N = 1 mL 0.2 N
HCl, 100 is the amount to pass in %, 1000 is the amount of the sample in mg, and k is the
coefficient for wheat flour protein (k = 5.7).

2.2.3. Protein Yield (PY)

In this study, in addition to the assessed GY and GPC traits, we also calculated the
protein yield index (PY). The PY was calculated using the equation below.

PY[%] =
GY × GPC

100
(2)

2.2.4. Multispectral Image Acquisition and Pre-Processing

UAV and satellite multispectral data were used in this study. Three flight missions
(Table 3) were carried out with the DJI Phantom 4 Multispectral quadcopter. It was
equipped with an in-built real-time kinematic (RTK) GPS and an integrated spectral sun-
light sensor, which measures the sky down-welling irradiance and was used to retrieve
the reflectance factors [56]. The camera (referred to as P4M below) featured blue, green,
red, red-edge, and near-infrared (NIR) spectral bands (Table 4). The flight missions were
carried out in a clear sky between 12:00 a.m. and 02:00 p.m. local time while observing
the same parameters. The flight height was 50 m. The spectral images obtained with the
P4M featured a spatial resolution of 2.5 cm/pixel. The horizontal accuracy of the images
obtained with the P4M was 10–15 cm without ground control. To achieve the highest
possible orthorectification accuracy, easily discernible objects were fixed on the ground
before the first flight mission and used as ground control points (GCPs). Their geographic
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coordinates were measured with an accuracy of 1–3 cm using the GNSS equipment Leica
GS08 plus in the RTK mode.

Table 3. Dates of acquisition of multispectral images (DJI Phantom 4 Multispectral—P4M and
Pléiades satellite sensor) and the corresponding growth stage and BBCH code of the investigated
winter durum wheat genotypes.

Date Growth Stage BBCH Code P4M Pléiades

5 April 2022 Beginning of stem elongation BBCH 30–31 ✓
9 April 2022 Mid-stem elongation BBCH 34 ✓

28 April 2022 Mid-boot BBCH 43 ✓
5 May 2022 20% of inflorescence emerged BBCH 52 ✓

19 May 2022 Beginning of flowering BBCH 61 ✓
26 May 2022 Watery ripe BBCH 71 ✓
31 May 2022 Watery ripe BBCH 71 ✓
15 June 2022 Medium to late milk BBCH 75–77 ✓
19 June 2022 Medium to late milk BBCH 75–77 ✓

Note: ✓denotes that an image is available, while its absence indicates that no image is present for the respective
entry.

Table 4. Spectral bands of the P4M multispectral UAV sensor and Pléiades 1A and 1B satellite sensor.

Band Name
P4M Pléiades 1A and 1B

Central Wavelength (nm) Band Width (nm) Central Wavelength (nm) Band Width (nm)

Panchromatic – – 650 390
Blue (B) 450 32 490 120
Green (G) 560 32 560 120
Red I 650 32 650 120
Red-edge (RE) 730 32 – –
Near-infrared (NIR) 840 52 840 200

This study also used six high-resolution cloudless satellite images obtained via Pléiades
(Pléiades @ CNES (2022), Distribution AIRBUS DS). Data were provided as a color (pan-
sharpened) product geo-registered to the WGS84/UTM35N coordinate system. At this
processing level, the original spatial resolution of 2.0 m/pixel of the blue, green, red, and
NIR spectral bands (Table 4) increases up to the spatial resolution of the panchromatic
band, which is 0.5 m/pixel [43]. As with the UAV data, the imagery from Pléiades was
additionally geo-referenced using GCPs measured with the GNSS. The time proximity of
the images taken with Pléiades was within 4–5 days before or after the data collection using
the UAV.

2.3. Modeling Approach

In Figure 2, we present the modeling approach for the retrieval of the GY, GPC, and
PY data.

The objective of the modeling process was to retrieve the GY, GPC, and PY data, and
it was pursued in two different ways. Firstly, the aim was to retrieve the parameters using
nonparametric regression models for each date where remote sensing data was available
using the original bands and VIs as model inputs. Secondly, the modeling process sought
to incorporate all available data (April to June 2022) by cumulating the values per VIs for
the available dates and using these cumulated VIs as model inputs. These two approaches
were implemented separately for P4M and Pléiades.
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The first approach enabled a comprehensive analysis of the relationship between the
parameters and the remote sensing data, offering valuable insights into identifying the
most suitable phenophase for the retrieval of each parameter. This knowledge is crucial for
optimizing the use of remote sensing data and selecting the most appropriate time window
for obtaining reliable and precise estimates of GY, GPC, and PY.

Meanwhile, for the second approach, by considering the entire growing season’s data,
we assumed that the models would be better equipped to capture seasonal variations and
dependencies. This, in turn, should have yielded more accurate and robust parameter
retrieval results.

For the selection of the VIs, we primarily adhered to the following criteria: (1) VIs
based on data from blue, green, red, red-edge, and near-infrared spectral bands, predomi-
nantly acquired from UAVs and satellite sensors; (2) VIs from previous studies that had
demonstrated strong correlations between these indices and important parameters such
as GY, the crop canopy cover, GPC, PY, and various wheat growth parameters affecting
the yield and quality such as biomass, the leaf area index, the vegetation fraction, and the
nitrogen (N) content; and (3) VIs that reflect the crop’s state at a specific phenophase (for a
single date) or throughout the crop growth period (across multiple dates).

As a result, 22 VIs were ultimately selected to model the parameters for a single date,
and 11 VIs were chosen to model the parameters across multiple dates, calculating the
cumulative vegetation indices (ΣVI) as detailed in Table 5.
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The plot means of the VIs and spectral bands were calculated for each image using a
vector of plot boundaries. Additionally, the mean VI and band values were calculated for
several soil “plots” in each image, which were manually selected from the fields around
the trials or in the paths between replications. These data were needed to obtain a better
representation of the training data in the feature space and avoid extrapolation problems
during modeling.

The regression modeling was carried out with the ARTMO toolbox [57,58] (https:
//artmotoolbox.com/, accessed on 7 August 2023), version 3.29. The models were trained
at the plot level with training data, representing 3/4 of all the available data (166 samples,
comprising 156 vegetation and 10 soil samples), and they were optimized with tenfold
cross-validation. The trained models were validated with validation data, representing
1/4 of all the available data (52 vegetation samples), that were not used for training. The
training data comprised the 1st, 3rd, and 4th replications and the validation data the 2nd
replication. The best-performing cross-validation models were selected according to the
normalized root mean square error (nRMSE). Once the best-performing cross-validation
model was identified, the models were evaluated a second time according to the coefficients
of determination (R2) of the validation data. Additional metrics for model evaluation were
calculated, such as the root mean square error (RMSE) and the relative RMSE (rRMSE), to
provide a more comprehensive assessment of the models. The equations for all metrics are
described in [59].

https://artmotoolbox.com/
https://artmotoolbox.com/
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Table 5. Multispectral vegetation indices used in this study.

Index Equation 1 Reference Selected Studies Utilizing the Index for Wheat
Parameters’ Evaluation

Simple ratio (SR) 2 ρ_NIR/ρ_Red [60] GY [61,62]
Reciprocal ratio vegetation index (repRVI) 2 ρ_Red/ρ_NIR [60] GY [34]

Normalized-difference vegetation index (NDVI) 2 (ρ_NIR − ρ_Red)/(ρ_NIR + ρ_Red) [63] GY [36,64–66]; GPC [66,67];
and biomass and LAI [45]

Green normalized-difference vegetation index
(GNDVI) 2 (ρ_NIR − ρ_Green)/(ρ_NIR + ρ_Green) [68] GY [25,28,69] and PY [25]

Structure-insensitive pigment index (SIPI) (ρ_NIR − ρ_Blue)/(ρ_NIR − ρ_Red) [70] GPC [67]

Normalized-difference red-edge index (reNDVI) (ρ_NIR − ρ_RedEdge)/(ρ_NIR + ρ_RedEdge) [71] GPC [72]; assessing the grain-filling process: [73];
and GY, PY, and biomass [26]

Normalized-green–red-difference index (NGRDI) (ρ_Green − ρ_Red)/(ρ_Green + ρ_Red) [74] GY [69]
Modified normalized-difference blue index
(mNDblue) (ρ_Blue − ρ_RedEdge)/(ρ_NIR + ρ_Blue) [75] GY [34]

MERIS terrestrial chlorophyll index (MTCI) (ρ_NIR − ρ_RedEdge)/(ρ_RedEdge − ρ_Red) [76] GPC [77]
GY [34]

Normalized green–blue-difference index (NGBDI) (ρ_Green − ρ_Blue)/(ρ_Green + ρ_Blue) [78] GY [79]
Triangular greenness index (TGI) −0.5× [(λ_Red−λ_Blue)× (ρ_Red− ρ_Green)− (λ_Red−λ_Green)× (ρ_Red− ρ_Blue)] [80] GY [69]
Triangular vegetation index (TVI) 0.5× [(λ_Red−λ_Green)× (ρ_NIR−ρ_Green)− (λ_NIR−λ_Green)× (ρ_Red−ρ_Green)] [81] GY and GPC [82]
Optimized soil-adjusted vegetation index (OSAVI) 2 (ρ_NIR − ρ_Red)/(ρ_NIR + ρ_Red + 0.16) [83] GPC [84]
Two-band enhanced vegetation index (EVI2) 2 2.5 × (ρ_NIR − ρ_Red)/(ρ_NIR + 2.4 × ρ_Red + 1) [85] GY [86]
Visible atmospherically resistant index (VARI) (ρ_Green − ρ_Red)/(ρ_Green + ρ_Red − ρ_Blue) [87] Vegetation fraction [88]
Three-band vegetation index (3BSI-Tian) 2 (ρ_Red − ρ_NIR − ρ_Green)/(ρ_Red + ρ_NIR + ρ_Green) [30,89] GY [30]

Red-edge chlorophyll index (CIred-edge) ρ_NIR/ρ_RedEdge − 1 [90] GY [86]
LAI [88]

Green chlorophyll index (CIgreen) ρ_NIR/ρ_Green − 1 [90] GPC [91]
Plant senescence reflectance index (PSRI) 2 (ρ_Red − ρ_Blue)/ρ_NIR [92] Assess the grain-filling process [73]; GPC [67];

Enhanced vegetation index (EVI) 2 2.5 × (ρ_NIR − ρ_Red)/(ρ_NIR + 6 × ρ_Red − 7.5 × ρBlue + 1) [93] GY [53,94,95]; GPC [67,84];
And biomass and LAI [45]

Soil-adjusted vegetation index (SAVI) 2 1.5 × (ρ_NIR − ρ_Red)/(ρ_NIR + ρ_Red + 0.5) [96] GY [65,94,95] and
biomass and LAI [45]

Difference vegetation index (DVI) 2 ρ_NIR − ρ_Red [74] GPC [84]

1 In the equations, ρ_i is the reflectance and λ_i is the central wavelength (nm) of the spectral band with the name i (see Table 4 for band names and corresponding central wavelengths).
2 VI for modeling the parameters across multiple dates (ΣVI).
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A widely used machine learning regression method, Gaussian process regression
(GPR), was tested in this study. GPR [97] is a kernel-based method. In our study, we
employed the radial basis function (RBF) as the kernel function. As a Bayesian machine
learning technique, GPR models the target function as a Gaussian process, which comprises
a collection of random variables with a joint Gaussian distribution. The notable advantages
of GPR include its capability to provide predictions with uncertainty estimates, its capacity
to handle non-linear relationships between predictors and response variables, and its ability
to adapt to changes in the underlying function as more data become available [98]. The
relative uncertainties generated with GPR models are expressed as a coefficient of variation.
It is calculated as the ratio of the standard deviation (σ) to the mean (µ), multiplied by 100 to
express it as a percentage [99]. The predictive variance, or uncertainty interval, serves as an
indicator of the presence of representative data during the training phase. High uncertainty
levels suggest a lack of representative data within the training dataset. Additionally, with
the machine learning method, we applied the Band Analysis Tool (BAT) [100] to find the
most sensitive bands for a variable, as well as ascertaining what would be the minimum
of bands to keep an acceptable accuracy. With BAT, a backward band reduction option is
applied, whereby the modeling starts with all bands, and after each iteration, the poorest-
performing band is removed, and the model is recalculated. Accuracy is evaluated at each
step and with each subset of bands, resulting in the selection of the highest accuracy. As
such, eventually, the best-performing bands are determined.

The best-performing models were used to create maps for the studied durum wheat
parameters, visually evaluating the modeling results. The credibility of these maps is an
important condition for the overall effectiveness of the proposed approach. Maps were
generated at two levels: plot and pixel. At the plot level, the maps were realized using
precalculated mean values of the independent features for each plot. Simultaneously, at
the pixel level, models were directly applied to the images, resulting in the resolution of
pixel-level maps being dependent on the sensor used. In addition to the estimated values,
uncertainty estimation was also mapped for the pixel-based representations. Consequently,
plot-level mapping allowed for a straightforward comparison with in-situ measurements,
while pixel-level mapping provided insights into the spatial distribution of the parameters
and their uncertainty.

3. Results
3.1. Relationship between GY, GCP, and PY

The measured PY is a calculated parameter that establishes a connection between the
measured GY and GPC. Our investigation corroborated the conventional understanding
of a weak negative correlation between GY and GPC. However, the intricate nature of
the relationship between GY and GPC justified its modeling as an additional parameter,
offering valuable insights for durum wheat breeders, as illustrated in Figure 3.
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3.2. Models per Date
3.2.1. Models with Pléiades Data per Date

Using Pléiades satellite data, we aimed to retrieve GY, GPC, and PY data. Despite
rigorous modeling, all results except one fell short of a threshold for validation data
(R2 > 0.50), limiting the model efficacy (Table 6). A GY estimation remained unattainable,
with no model meeting the desired R2. Similar challenges were faced in GPC estimation,
although the model on 5 May 2022 showed promise (validation R2 = 0.58). When uti-
lized with the comprehensive dataset, encompassing both training and validation data,
this model encountered difficulties in precisely predicting both low and high values of
GCP (Figure 4). PY prediction also faced challenges, as no model achieved the desired
R2 with validation data. In conclusion, the Pléiades data encountered obstacles in re-
trieving GY, GPC, and PY data due to insufficient model performance, emphasizing the
need for continuous refinement and alternative approaches to address data limitations
and complexities.
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Figure 4. Scatterplot of measured and modeled GPC values using Pléiades data at a growth stage of
20% of emerged inflorescence (5 May 2022). The GPR model was trained with TVI, VARI, EVI, and
DVI as independent features. The full dataset (training and validation) is shown. For reference, the
blue line represents a 1:1 relationship.

The optimally performing model for GPC was employed to map the retrieved param-
eter, enabling a spatial representation of the results (Figure 5). In this figure, predictions
were presented in two ways: at the plot level (Figure 5B) and at the pixel level (Figure 5C).
For comparison purposes, a map of ground-measured values per plot was also presented
(Figure 5A). For a better comparison, a classified legend was used instead of a continuous
scale. When comparing the measured and modeled GPC per plot in Figure 5, it was found
that 71% of the plots were in the same legend class. The relative uncertainty of GPC,
characterized by the coefficient of variation (CV), as calculated using the GPR models, was
determined both per plot and per pixel, as illustrated in Figure 5D. The modeled GPC at
both the plot and pixel levels displayed consistently low uncertainty across the predicted
values, remaining below 5%.
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Table 6. Retrieval results for GY, GPC, and PY per date with Pléiades data.

Date/Growth Stage Parameter
Independent Features of the
Best Model

Cross-Validation Validation

R2 RMSE nRMSE rRMSE R2 RMSE nRMSE rRMSE

9 April 2022/mid-
stem-elongation

GY TVI and VARI 0.91 0.66 6.49 8.35 0.18 0.72 24.13 9.04
GPC NDVI, repRVI, VARI, and 3BSI-Tian 0.99 0.45 2.57 3.07 0.51 0.41 13.77 2.65
PY TVI and VARI 0.90 0.1 6.72 8.43 0.07 0.11 25.70 8.86

28 April
2022/mid-boot

GY TVI and EVI 0.91 0.64 6.37 8.20 0.30 0.73 24.47 9.17
GPC EVI2, VARI, and SAVI 0.98 0.47 2.70 3.22 0.49 0.45 14.91 2.87
PY TVI and TGI 0.91 0.10 6.57 8.25 0.17 0.11 25.82 8.90

5 May 2022/20% of
inflorescence emerged

GY SR, CIgreen, and TGI 0.91 0.65 6.45 8.30 0.29 0.69 23.14 8.67
GPC TVI, VARI, EVI, and DVI 0.99 0.47 2.69 3.20 0.58 0.40 13.22 2.54
PY repRVI, TGI, and NDVI 0.90 0.10 6.60 8.29 0.16 0.11 24.78 8.54

19 May 2022/beginning
of flowering

GY All bands except blue, green, and SIPI 0.89 0.71 6.99 8.99 0.12 0.70 23.37 8.76
GPC CIgreen, SR, DVI, EVI2, NIR, and SAVI 0.98 0.48 2.79 3.32 0.46 0.50 16.63 3.20

PY NDVI, SR, repSVI, TGI, OSAVI,
3BSI-Tian, GNDVI, SAVI, and EVI2 0.90 0.10 6.65 8.35 0.11 0.10 24.30 8.37

31 May 2022/
watery ripe

GY SR 0.90 0.68 6.76 8.69 0.15 0.72 23.97 8.98
GPC CIgreen, SR, and GNDVI 0.98 0.52 3.00 3.58 0.34 0.49 16.35 3.14

PY All bands except blue, green, red, and
NGBDI 0.90 0.10 6.65 8.35 0.16 0.11 24.77 8.54

19 June 2022/medium
to late milk

GY GNDVI and DVI 0.88 0.72 7.44 9.58 0.21 0.83 27.64 10.36
GPC GNDVI and DVI 0.98 0.56 3.24 3.86 0.02 0.79 26.44 5.09
PY DVI, GNDVI, and NGBDI 0.87 0.12 7.64 9.60 0.08 0.14 32.24 11.11
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Figure 5. Spatial representation of GPC. (A). Measured GPC. (B). Modeled GPC per plot. (C). Modeled
GPC applied to the raster image. (D). Modeled GPC_CV from the raster image. The modeled GPC
used Pléiades data and the best-performing GPR model at 20% of inflorescence during the growth
stage (5 May 2022).

3.2.2. Models with P4M Data per Date

Using P4M data, we successfully retrieved optimal models for GY and PY, and we
did so with less success for GPC, at specific growth stages (Table 7). For GY, the most
promising model was identified at the medium-to-late milk growth stage (15 June 2022)
with robust performance (validation R2 = 0.67; Figure 6). Similarly, the optimal PY model
aligned with the watery ripe growth stage (26 May 2022), reliably predicting PY (validation
R2 = 0.62; Figure 6). Notably, achieving good accuracy in predicting PY at a growth
stage preceding that of GY and GPC estimation suggests that PY is a parameter deserving
thorough investigation, as it could be employed by breeders for early monitoring.



Remote Sens. 2024, 16, 559 16 of 30

Table 7. Retrieval results for GY, GPC, and PY per date with P4M data.

Date/
Growth Stage Parameter Independent Features of the Best Model Cross-Validation Validation

R2 RMSE nRMSE rRMSE R2 RMSE nRMSE rRMSE

5 April 2022/
beginning of stem
elongation

GY mNDblue, NIR, and TVI 0.92 0.61 6.04 7.77 0.38 0.69 22.85 8.57
GPC PSRI and 3BSI-Tian 0.98 0.53 3.04 3.62 0.38 0.46 15.42 2.97
PY mNDblue and TVI 0.92 0.09 6.61 8.30 0.41 0.09 21.86 7.53

26 May 2022/
watery ripe

GY CIred-edge, SR, CIgreen, and EVI 0.94 0.54 5.31 6.83 0.55 0.58 19.27 7.22
GPC All bands 0.98 0.50 2.85 3.39 0.29 0.50 16.56 3.19
PY SR, CIred-edge, and reNDVI 0.95 0.07 4.64 5.83 0.62 0.08 18.53 6.38

15 June 2022/
medium to late
milk

GY
3BSI-Tian, CIred-edge, NGBDI, TGI, NGRDI,
repRVI, PSRI, VARI, NDVI, OSAVI, reNDVI, SAVI,
EVI, and TVI

0.94 0.52 5.19 6.68 0.67 0.46 10.26 5.61

GPC repRVI, mNDblue, GNDVI, Red, and NGBDI 0.98 0.46 2.66 3.17 0.52 0.42 12.63 2.68

PY VARI, NIR, repRVI, NGBDI, CIred-edge,
and NGRDI 0.94 0.08 5.35 6.73 0.52 0.08 12.41 6.21
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ured and modeled GY per plot (Figure 7), it was found that 72% of plots were in the same 
legend class. Similarly, the measured and modeled GPC per plot were in the same legend 
class for 74% of the plots, as shown in Figure 8. For PY, the correspondence was 70% (Fig-
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The relative uncertainty, as calculated using the GPR models, was determined both 
per plot and per pixel, as illustrated in Figures 7D, 8D, and 9D. The modeled GY at both 
the plot and pixel levels demonstrated higher uncertainty levels for low GY values (<7 
kg/plot). However, at the plot level, the uncertainty remained below 10% for all values, 
whereas at the pixel level, it surpassed 15%, particularly for low values of GY. This pattern 
was similarly observed in the modeled PY. The modeled GPC at the plot level displayed 
consistently low uncertainty across the predicted values, remaining below 5%. Neverthe-
less, at the pixel level, GPC exhibited higher uncertainty levels for low and high GPC val-
ues. 

Figure 6. Scatterplots of measured and modeled parameters’ values. Left-side figure: GY with
P4M data at the late milk growth stage (15 June 2022). The GPR model was trained with 3BSI-Tian,
CIred-edge, NGBDI, TGI, NGRDI, repRVI, PSRI, VARI, NDVI, OSAVI, reNDVI, SAVI, EVI, and TVI
as independent features. Middle figure: GPC with P4M data at the late milk growth stage (15 June
2022). The GPR model was trained with repRVI, mNDblue, GNDVI, Red, and NGBDI as independent
features. Right-side figure: PY with P4M data at the watery ripe growth stage (26 May 2022). The
GPR model was trained with SR, CIred-edge, and reNDVI as independent features. The full dataset
(training and validation) is shown. For reference, the blue line represents a 1:1 relationship.

The optimally performing model was employed to map each retrieved parameter,
enabling a spatial representation of the results (Figures 7–9). When comparing the measured
and modeled GY per plot (Figure 7), it was found that 72% of plots were in the same legend
class. Similarly, the measured and modeled GPC per plot were in the same legend class for
74% of the plots, as shown in Figure 8. For PY, the correspondence was 70% (Figure 9).

The relative uncertainty, as calculated using the GPR models, was determined both per
plot and per pixel, as illustrated in Figures 7D, 8D and 9D. The modeled GY at both the plot
and pixel levels demonstrated higher uncertainty levels for low GY values (<7 kg/plot).
However, at the plot level, the uncertainty remained below 10% for all values, whereas at the
pixel level, it surpassed 15%, particularly for low values of GY. This pattern was similarly
observed in the modeled PY. The modeled GPC at the plot level displayed consistently low
uncertainty across the predicted values, remaining below 5%. Nevertheless, at the pixel
level, GPC exhibited higher uncertainty levels for low and high GPC values.

3.3. Model for the Growing Period of April–June 2022
3.3.1. Models with Pléiades Data across Multiple Dates

Utilizing Pléiades satellite data spanning six dates (9 April 2022 to 19 June 2022;
Table 3), we found that the GY and PY estimation faced considerable challenges (Table 8),
with no model achieving an R2 value exceeding 0.50 for validation data. This highlights
complexities in capturing the relationships between Pléiades data and GY/PY during the
specified timeframe. Shifting its focus to GPC estimation (Table 8), one model stood out,
achieving a validation R2 of 0.58, indicating moderate accuracy during the given timeframe.
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Figure 7. Spatial representation of GY. (A). Measured GY. (B). Modeled GY per plot. (C). Modeled 
GY applied to the raster image. (D). Modeled GY_CV from the raster image. The modeled GY used 
the P4M data and the best-performing GPR model at the late milk growth stage (15 June 2022). 

Figure 7. Spatial representation of GY. (A). Measured GY. (B). Modeled GY per plot. (C). Modeled
GY applied to the raster image. (D). Modeled GY_CV from the raster image. The modeled GY used
the P4M data and the best-performing GPR model at the late milk growth stage (15 June 2022).
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Figure 8. Spatial representation of GPC. (A). Measured GPC. (B). Modeled GPC per plot. (C). Modeled
GPC applied to the raster image. (D). Modeled GPC_CV from the raster image. The modeled GPC
used the P4M data and the best-performing GPR model at the late milk growth stage (15 June 2022).
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Figure 9. Spatial representation of PY. (A). Measured PY. (B). Modeled PY per plot. (C). Modeled 
PY applied to the raster image. (D). Modeled PY_CV from the raster image. The modeled PY used 
the P4M data and the best-performing GPR model at the watery ripe growth stage (26 May 2022). 

  

Figure 9. Spatial representation of PY. (A). Measured PY. (B). Modeled PY per plot. (C). Modeled PY
applied to the raster image. (D). Modeled PY_CV from the raster image. The modeled PY used the
P4M data and the best-performing GPR model at the watery ripe growth stage (26 May 2022).
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Table 8. Retrieval results of GY, GPC, and PY for the growing period of April–June 2022 with Pléiades
data.

Parameter Independent Features of the
Best Model

Cross-Validation Validation
R2 RMSE nRMSE rRMSE R2 RMSE nRMSE rRMSE

GY GNDVI, PSRI, DVI, EVI2, and SAVI 0.91 0.66 6.40 8.23 0.25 0.68 22.52 8.44

GPC GNDVI, repRVI, SR, SAVI, OSAVI,
NDVI, EVI2, 3BSI-Tian, and DVI 0.99 0.45 2.58 3.07 0.58 0.40 13.13 2.53

PY DVI, GNDVI, and PSRI 0.90 0.10 6.73 8.45 0.13 0.10 24.14 8.32

When employed with the comprehensive dataset covering both the training and
validation data, this model faced difficulties in precisely predicting both low and high
values of GCP, as illustrated in Figure 10. The model’s performance mirrored that observed
when predicting GPC on a single date, as shown in Figure 4.
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3.3.2. Models with P4M Data across Multiple Dates

Utilizing P4M data spanning three dates (5 April 2022 to 15 June 2022; Table 3) we
retrieved optimal models for GY and PY across multiple dates with moderate success,
Table 9.

For GY, the most promising model was identified with intermediate performance
(validation R2 = 0.57; Figure 11), and for PY, the most promising model was identified with
even lower performance (validation R2 = 0.51; Figure 11). In the case of GPC retrieval, the
top-performing model achieved an R2 of only 0.47 with validation data.
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Table 9. Retrieval results for GY, GPC, and PY for the growing period of April–June 2022 with P4M
data.

Parameter Independent Features of the Best Model
Cross-Validation Validation

R2 RMSE nRMSE rRMSE R2 RMSE nRMSE rRMSE

GY repRVI, GNDVI, MTCI, PSRI, SR, and EVI 0.94 0.54 5.30 6.52 0.57 0.59 19.77 7.41
GPC EVI, OSAVI, 3BSI-Tian, GNDVI, and EVI2 0.99 0.42 2.43 2.89 0.47 0.43 14.43 2.78
PY repRVI and MTCI 0.94 0.08 5.25 6.60 0.51 0.09 20.30 6.99
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and validation) is shown. For reference, the blue line represents a 1:1 relationship.

4. Discussion

For this study, multiple images, well distributed over time between the mid-stem elon-
gation and medium-to-late milk phenophases, were available for each of the
two sensors (Pléiades and P4M). This provided an opportunity (1) to evaluate when
during the growing season is the most suitable time to predict GY, GPC, and PY using
the spectral signal from the Pléiades and P4M imagery and (2) to determine the use of
cumulative vegetation indices (ΣVI) to encompass the growing season. To predict GY, GPC,
and PY, we trained GPR models with 166 samples, comprising 156 vegetation and 10 soil
samples. The best model based on the cross-validation nRMSE was applied to 52 samples
of validation data not used for training. Therefore, as a criterion for an evaluation of the
models, the cross-validation nRMSE and validation R2 metrics of the corresponding models
were used (Tables 6–9). Although the models were trained with the sensors’ bands and
VIs as independent variables, the best-performing models with the minimum number of
independent variables were constructed with VIs rather than sensor bands. VIs are less
sensitive to changes in illumination and viewing geometry [101], and their use reduces
the noise related to overall albedo variance [102]. For the prediction of crop parameters,
different studies have suggested various spectral bands as the most suitable for construct-
ing good retrieval models (Table 5). Our study highlighted the importance of the red-еdge
band for the retrieval of the studied parameters at all stages of the growing season, as the
VIs including the red-еdge band were present in all the best models for P4M, except for
GPC at the beginning of stem elongation (Table 7).

The rationale behind the time series integration approach used in this study was
the hypothesis that end-of-the-season parameters such as GY, GPC, and PY can be better
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evaluated considering the state of the crop during the whole growing season and not just
in one (key) moment or phenophase. We calculated one feature per VI, the cumulative
vegetation index (ΣVI), which characterizes both the magnitude and duration of greenness.
The results obtained from the P4M data indicated that the models incorporating cumulative
dates did not achieve the performance level of the best single-date models. Conversely,
the results from Pléiades’ data for GPC demonstrated that the models with cumulative
dates yielded comparable results to the best models based on a single date. These results
highlight that our hypothesis, anticipating greater accuracy and robustness in models
incorporating cumulative dates, was not substantiated. This was particularly evident with
the models utilizing P4M data. The fewer available dates for the ΣVI calculations with P4M
compared to Pléiades may have contributed to this outcome.

In the context of field phenotyping, UAV data can be considered a benchmark to which
other types of data should be compared. In our case, semi-coinciding data (i.e., from the
same phenophase) from P4M and Pléiades were available for the stages of the beginning
of stem elongation, watery ripe, and medium/late milk. In most cases, the P4M models
outperformed those of Pléiades (Tables 6–9). A better performance with P4M could be
expected, considering the differences in the spatial and spectral resolution between the
two sensors. However, the results for GPC in some phenophases showed that Pléiades
might even outperform P4M. It would be meaningful to evaluate the performance achieved
using the Pléiades models, considering the relative advantages of the satellite data, such as
the larger coverage and the easy access to ready-to-use products. These aspects should also
be taken into account in future studies in order to assess whether Pléiades can be a viable
alternative to UAV for breeding practitioners.

The relative uncertainty presented with the GPR models offers insight into the presence
of representative data during the training phase. The training data for these models were
constructed by averaging the spectral information from each plot. Consequently, the
interpretation of uncertainty in the parameters retrieved with Pléiades and P4M should be
approached differently due to the significant disparity in the spatial resolution between the
sensors. Utilizing the averaged spectral information from each plot with the P4M resulted
in distinct uncertainties at both the plot and pixel levels, owing to the high diversity in the
averaged data. Conversely, for Pléiades data, the uncertainties were notably similar due to
the lower diversity attributed to the lower spatial resolution.

4.1. Predicting GY with Pléiades and P4M Data

The single-date results for GY with Pléiades data were unsatisfactory. Considering
the entire growth period, from stem elongation to grain filling, the accumulation of VI
values did not result in improved retrieval models compared to a single date with either
of the studied sensors. The best model for GY retrieval in our study was obtained using
P4M data during the medium-to-late milk stage. Similarly, some studies have obtained
good results in predicting GY during grain filling [34,86]; however, the results of other
studies [53] have pointed to booting and heading growth stages. Gracia-Romero et al.
(2019) [29] obtained the best prediction results for GY during the final stages of grain filling.
Stay-green genotypes, which can be easily identified at that stage using remote sensing,
are associated with extended periods of photosynthetic activity, thus maximizing the grain
mass. Therefore, a longer duration of flag leaf greenness through grain filling has been
associated with an increased yield [29].

4.2. Predicting GPC with Pléiades and P4M Data

A characteristic pattern was observed with the GPC models using Pléiades data. Better
results in terms of both the validation R2 and rRMSE were achieved during the first part
of the observed period (between mid-stem elongation and when 20% of inflorescence
emerged), at the end of which the most accurate model was obtained. The lower result
that we obtained for the beginning of flowering with Pléiades data is inconsistent with
previous studies. For example, Vatter et al., 2022 [31] reported good accuracy for GPC
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prediction around flowering; however, those results were reached with an eleven-band
multispectral camera mounted on a UAV. GPC was also modeled successfully at grain
filling with winter wheat [86,91], which is consistent with our results from P4M data.
An extensive literature review by Bastos et al. (2021) [103] showed that anthesis (e.g.,
flowering), followed by heading and grain filling, was most often reported as the best
phenophase for GPC prediction with winter wheat. However, earlier phenophases, such
as tillering, stem elongation, and booting, have also been reported, although much more
rarely. Walsh et al. (2023) [64] found that neither GreenSeeker NDVI nor UAV NDVI data
from tillering and booting were useful in the prediction of spring wheat GPC.

It is noteworthy to highlight the case of GPC retrieval, as the optimal model for
Pléiades is during the growth stage when 20% inflorescence emerged, while with P4M data,
it occurs during the medium or late milk stages. The synthesis of grain proteins primarily
takes place towards the end of the growth cycle, during grain development [104]. However,
it is important to consider that nitrogen in the grain comes from two sources: N remobilized
from pre-anthesis N accumulation and N absorbed from the soil during the post-anthesis
period [105]. Additionally, a significant portion of N in the grain (60–95%) may derive from
remobilization, rather than soil absorption [106]. Sharma et al. (2023) [107] demonstrated
that the nitrogen uptake and remobilization of wheat genotypes from both the pre- and
post-anthesis stages contribute to the grain yield and grain protein concentration. These
findings align with our discovery that the growth stage when 20% inflorescence emerged is
suitable for GPC prediction using Pléiades data. Unfortunately, we did not have a P4M
acquisition corresponding to that of Pléiades for this growth stage to check the consistency
of this result with the UAV data.

GPC retrieval is interesting, especially since it is the only parameter better predicted
using Pléiades instead of P4M data. Both models using single-date data and data across
multiple dates exhibit very similar accuracy. However, the single-date model is preferred
due to its simplicity in training. Yet, if remotely sensed data are missing at the growth stage
when 20% inflorescence has emerged due to clouds, the multiple-dates-based model could
serve as a viable second option.

4.3. Predicting PY with Pléiades and P4M Data

Our primary focus was to examine the potential for PY retrieval in the context of its
link to GY and GPC. A successful outcome would discern two distinct genotype categories:
one exhibiting average GY and GPC, and the other characterized by either high GY and
low GPC or low GY and high GPC.

Unfortunately, despite our efforts, the Pléiades data on designated dates did not
facilitate the successful retrieval of PY. Notably, our study reveals that only GPC was
retrieved with an average degree of accuracy using Pléiades data. However, caution is
warranted in interpreting these results due to the overall limited performance of the models,
particularly those concerning GY and PY, as discussed in Sections 4.1 and 4.2.

PY and GY data were retrieved with good accuracy using P4M data. Therefore, this
information could be used to calculate the corresponding GPC.

4.4. Limitations, Challenges, and Future Opportunities

This study has showcased the potential application of high-resolution satellite and
UAV data in plant breeding experiments to retrieve grain yield, grain protein content, and
protein yield data for durum winter wheat. Nonetheless, certain limitations and challenges
are discussed below, accompanied by proposed solutions.

(1) Few applications of satellite imagery for phenotyping have been reported so
far [38–40,108]. These studies’ findings support the use of high-resolution satel-
lite imagery for phenotyping applications. Our results using Pléiades data are not
conclusive but suggest that some potential for the prediction of GPC exists. High
variability among genotypes may have contributed to the observed relations with the
satellite data. Training models with a larger number of spectral bands may improve
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the accuracy of the predictions [31]. A red-edge band may be particularly useful
since it would permit the calculation of VIs that were shown as good predictors in
this study.

(2) The selection of the machine learning method may be of key importance in modeling
GY and other crop parameters, as previous studies have emphasized [31]. The reason
is that the best-performing method may differ across traits and data sets. In this study,
one machine learning method was tested, GPR. This method was selected based on
the good results achieved in previous studies [30] and its wide application to the
prediction of vegetation parameters.

(3) Our study utilized data from 52 genotypes within a single growing season. We posit
that enhancing the training set with additional genotypes could enhance the predic-
tive capacity of the developed models [31], and incorporating data from multiple
growing seasons would bolster the robustness of these models. Conducting exper-
imental studies in the form of CVT under natural conditions could facilitate these
improvements. Accurately predicting GY and GPC is integral to the monitoring of
such trials.

(4) Assessing the accuracy of measured data and retrieved products is a significant
challenge in phenotyping. This crucial information is essential for optimizing the
potential benefits of applied remote sensing technology. Quantitative measurements
form the foundation of both proximal and remote sensing approaches, and it is
imperative to provide associated uncertainty estimates [109]. Ensuring the trace-
ability of measurements and derived products to international standards is essen-
tial to facilitate the generation of actionable information. While our study delved
into the uncertainties of the retrieval algorithm, additional efforts are required to
gauge the impact of uncertainties throughout the entire value chain, encompass-
ing remote sensing observations and the propagation of uncertainty as a product
uncertainty budget.

5. Conclusions

This investigation provided insights into parameter retrieval from Pléiades and UAV
data. With Pléades data, our study highlighted challenges for GY and PY while showing
promise for GPC estimation. Conversely, P4M data demonstrated promising results for
GY and PY retrieval and mapping but proved less effective for GPC retrieval. These
diverse outcomes emphasize the complexities of satellite data-based parameter retrieval,
prompting further exploration to enhance predictive capabilities in plant breeding trials.
Our study also illustrated the additional value of modeling PY alongside GY and GPC. The
results of both sensors indicated that the models with cumulative dates did not surpass the
performance of the best single-date models. The models based on UAV data confirmed that
the beginning of stem elongation is less suitable for parameter retrieval compared to the
later growth stages, such as watery ripe and milk, for GY and PY. They also indicated that
the watery ripe stage is preferable for PY prediction, while the medium or late milk stages
are more suitable for GY and GPC prediction. However, for GPC, the results with Pléades
data point to the period of inflorescence emergence as the most suitable. Unfortunately, this
conclusion could not be validated for both sensors due to the absence of UAV data at this
growth stage. Additionally, the performance level for GPC retrieval from both sensors was
deemed inadequate for practical use and mapping applications. Although the performance
of the GY and PY data retrieval using P4M was good, additional efforts are needed in
terms of estimating the product uncertainty budget. This information is crucial to fully
harness the potential of applied remote sensing technology, streamlining the variety of the
trial process, and facilitating the issuance of legal protection certificates for new durum
wheat varieties.
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