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Abstract: Precision viticulture systems are essential for enhancing traditional intensive viticulture,
achieving high-quality results, and minimizing costs. This study explores the integration of Un-
manned Aerial Vehicles (UAVs) and artificial intelligence in precision viticulture, focusing on vine
detection and vineyard zoning. Vine detection employs the YOLO (You Only Look Once) deep
learning algorithm, achieving a remarkable 90% accuracy by analysing UAV imagery with various
spectral ranges from various phenological stages. Vineyard zoning, achieved through the application
of the K-means algorithm, incorporates geospatial data such as the Normalized Difference Vegetation
Index (NDVI) and the assessment of nitrogen, phosphorus, and potassium content in leaf blades and
petioles. This approach enables efficient resource management tailored to each zone’s specific needs.
The research aims to develop a decision-support model for precision viticulture. The proposed model
demonstrates a high vine detection accuracy and defines management zones with variable weighting
factors assigned to each variable while preserving location information, revealing significant differ-
ences in variables. The model’s advantages lie in its rapid results and minimal data requirements,
offering profound insights into the benefits of UAV application for precise vineyard management.
This approach has the potential to expedite decision making, allowing for adaptive strategies based
on the unique conditions of each zone.

Keywords: neural networks; UAV; precision viticulture; YOLO; K means; remote sensing; multispectral
images

1. Introduction

Thanks to very favourable agroecological conditions, a long history, and tradition,
viticulture has always represented an important branch of agriculture in Serbia. The
period of transition, economic instability, wars, the abandonment of villages, the decline
of large viticulture and winemaking complexes, and market instability at the end of the
20th century have contributed to the current, very difficult situation in the viticulture and
winemaking sector [1]. An agricultural farm in the Republic of Serbia that produces grapes
has an average of 0.28 hectares under vines. The average vineyard area cultivated by
one farm in Central Serbia is 0.23 hectares, while in Vojvodina, it is significantly larger
at 0.85 hectares [1]. At the end of 2020, the Republic of Serbia published the “Program
for the Development of Winemaking and Viticulture for the Period from 2021 to 2031”.
With the adoption of this document, the conditions for the development of viticulture and
winemaking have been created. Geographic Information Systems (GISs), sensors, and the
use of artificial intelligence in this field can make a significant contribution to the further
development of viticulture.

Remote sensing in agricultural production is diverse, such as in the detection of chloro-
phyll content in plants, the assessment of plant health and water status, soil moisture
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measurements, weed and pest detection, and mapping the areas for selective spraying
and fertilization, among others [2]. Precision viticulture represents the integration of tra-
ditional grape production concepts with new technologies, empowering winegrowers
and winemakers to make informed decisions to optimize vineyard performance [3]. The
application of artificial intelligence in the viticulture sector is still in the early stages of
development. Many processes in viticulture can be significantly enhanced through the
utilization of artificial intelligence. In recent years, the viticulture industry has encountered
challenges arising from a shortage in skilled labour and rising labour costs, which have im-
pacted productivity, quality, and timely harvest [4]. Additionally, manual agricultural tasks
are time-consuming and susceptible to the subjective decisions made by workers. These
challenges have urged the development of new technologies that use data from advanced
sensors, including data from Unmanned Aerial Vehicles (UAVs) and the application of
artificial intelligence. These advancements aim to enhance productivity, improve quality,
and boost economic competitiveness.

Over the past few years, the proliferation of modern sensors and the application of new
technologies in precision viticulture have resulted in a significant increase in data generation
per hectare. This has provided winegrowers with a wealth of information [5]. Data
acquisition techniques commonly seen in viticulture can be categorized into three groups:
satellite imagery, data acquired using aerial platforms (most frequently UAVs), and data
collected from ground-based (terrestrial) platforms. Given that vineyards typically cover
relatively small areas, the latter two categories play a more substantial role in assessing
various parameters in precision viticulture [6]. However, it is worth noting that satellite
imagery still has its utility in this domain [7]. Depending on the spatial resolution of the
images, it can be applied in the management at different levels, such as at the plot, row, or
individual plant levels. Due to their coarser spatial resolution, satellite images are typically
seen for vineyard-level management when distinguishing rows or individual plants is
impractical [8]. In contrast to satellite remote sensors, UAVs offer several advantages,
notably their ability to capture images with a higher spatial resolution compared to that of
satellites. This high spatial resolution enables the identification of fine details and features
that are often indiscernible in satellite imagery [9]. This becomes particularly important
when the pixel size is larger than the objects of interest, as is often the case in vineyards [10].
Consequently, mixed pixels emerge, where a single pixel encompasses various elements,
including the above-ground sections of cultivated plants, weeds, soil, and shadows [11].
Given the narrow width of vine canopies, using images with resolutions exceeding 25 cm
presents challenges related to the accurate classification of vine canopies, weeds, soil, and
shadows [12].

Precision viticulture encompasses a range of methodologies, analyses, and processes
tailored for vineyard management. Precision viticulture aims to address challenges such as
efficient resource utilization, disease and pest management, optimal harvest timing, water
management, and more. In addition to these objectives, precision viticulture studies spatial
variability within vineyards and defines zones that differ in terms of soil, microclimate, and
morphology [3]. These zones require specific management approaches. The primary goal
of precision viticulture is to maximize agronomic potential in terms of yield and production
quality while enhancing ecological sustainability, reducing costs, and minimizing the use
of harmful substances, with a strong emphasis on environmental protection [13]. As such,
precision viticulture aims to craft location-specific management plans for each segment of the
vineyard, and even individual plants, with a keen focus on resource optimization. In doing so,
unnecessary, potentially harmful treatments can be avoided, leading to cost reductions. In
the field of precision viticulture, remote sensing is used for numerous purposes, including
yield estimation [14–18]. Additionally, computer image processing and artificial intelligence
techniques are applied for detecting inflorescences [19,20], vines [4,5,21–24], and even cluster
berries [25], as well as for disease detection [26]. A central aim of precision viticulture is to
provide grape growers and wine producers with accurate, real-time, or near-real-time data to
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facilitate efficient and sustainable vineyard management [27]. Some authors [2,28–30] propose
a three-step cyclical process in order to adopt precision viticulture:

1. The collection of data on vineyards;
2. The interpretation of data;
3. The development and implementation of a targeted management plan based on

the analysis.

Utilizing modern technologies in vine cultivation is imperative for unlocking the full
potential of precision agriculture and viticulture, aiming to boost income and preserving
the environment through site-specific resource management [31,32]. An essential aspect
of precision viticulture involves the individualization of vines, facilitating plant-level
management [33]. This approach empowers vineyard managers to implement treatments
tailored to the unique needs of each plant or location. Over the years, issues such as
diseases and mechanical damage have caused losses of plants, resulting in a decrease in the
initial number of vines per hectare. As a result, farmers experience a significant reduction
in potential wine production. To precisely estimate vineyard yield, calculations are based
on the number of vines and the average yield per plant. However, since each individual
vine may be affected by diseases to varying degrees, identifying live and missing vines in
each vineyard and tallying them is necessary to assess yield based on the actual number of
vines. This task is fundamental because vineyards typically lose vines every year due to
aging, diseases, mechanical damage, or other factors. Given that the number of missing
plants can exceed 20% [34], calculating yield by multiplying the average yield per plant by
the theoretical number of plants can lead to significant overestimations. Visual counting is
a time-consuming process, underscoring the need for a fully automated method capable of
detecting and locating vines. Such a method holds the potential for generating base maps
for various precision viticulture applications.

Various methods that can be found in the literature can estimate the position of trees,
using prior knowledge regarding the number of plants in a row and the distance between
plants [35–38]. One approach for identifying missing plants would be to detect areas
that are not covered by the canopy along the row. However, vertical aerial photography
cannot capture below the canopy, and, when a plant is missing, neighbouring plants can
expand their shoots and leaves to fill the nearby adjacent space [35,39]. Regarding counting
and detecting vines, most of the available literature relies on 3D point clouds for vine
location [35]. Several studies have explored 3D point clouds for identifying vineyards,
e.g., Comba et al. [37] proposed an unsupervised algorithm for vineyard detection and the
evaluation of vine characteristics based on 3D point cloud processing. Jurado et al. [36]
proposed an automatic method for grapevine trunk detection using point clouds. The
proposed method focuses on the recognition of key geometric parameters to ensure the
existence of each plant in the 3D model. Studies that use image analysis for mapping are
rare, and the proposed methods in these studies need further improvement. de Castro
et al. [38] proposed and developed an object-oriented method of image analysis for the
evaluation of grapevine canopy and applied it to high-resolution digital models of the
surface. Then, the individual positions of the vines were marked, assuming a constant
distance between the plants, and in this way, the missing plants were estimated.

The widely adopted practice of uniform vineyard management results in lower produc-
tivity, inefficient resource use, and adverse environmental effects [40–42]. The delimitation
of management zones can enable the management of spatial variability within the field
by dividing it into homogeneous zones, which are of particular interest for the implemen-
tation of variable nutrient and water management schemes [43–47]. It can be assumed
that based on the analysis of vegetation indices and the processing of the time series of
satellite images, zones of soil degradation [48–50] in agriculture can be distinguished. So
far, various methods have been developed to measure the spatial variability within the field
for the delimitation of management zones. Most of these methods in analysis and zoning
rely on individual data types. These data can be yielding data [51–53], soil characteristic
data [54–56], remote sensing data [57–59], etc. Numerous authors [60–63] have proposed
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zoning through the simple categorization of values, such as vegetation indices, into a
specific number of categories or classes, each containing an equal number of objects (pixels).
Another approach for delimiting management zones that can be found in the literature is
zoning using unsupervised classification [64–69]. The K-means algorithm clearly stands
out as the most frequently applied machine learning method for defining management
zones in agriculture, and thus finds application in viticulture as well. In order to be sure
that the obtained results (zones) depend only on the condition of the vines, it is necessary to
remove the influence of the inter-row and the vegetation in them. Many authors [62,70,71]
suggest reading the values from the raster (e.g., vegetation indices) using points in the
vine rows and creating a new raster via interpolation based on those values. In this way,
the new raster will represent the spatial distribution of only the state of the vines, and
such data can be used to define management zones. It was noted that in the literature,
there is no rule on how such locations are chosen, but that they are chosen randomly.
Also, although there is a study in the literature [72] that deals with defining standardized
methods for delineating zones and providing recommendations on which data to use in
zone delimitation, the proposed methodology in this paper is valuable because it provides
the locations of grapevines with high accuracy without the need for processing point clouds.
These locations are ultimately used for vineyard zoning.

Therefore, considering all the mentioned shortcomings found in the available literature,
the authors of this study propose a method that utilizes only UAV images in the RGB + NIR
spectrum to detect and locate vines and count and identify living and wilted vines (those
vines that are dead, but the stem still remains in the rows). Based on these data, along with
the results of plant sample analyses within the vineyard (the nitrogen (N), phosphorus
(P), and potassium (K) content in leaf blades and petioles), the method employs machine
learning techniques to define management zones. These zones will distinctly separate
different parts of the vineyard with various characteristics. The developed model will
enable winemakers and grape growers to have a reliable, fast, and automated procedure
for counting, detecting, and localizing living and wilted vines, as well as for zoning
the vineyard, a heterogeneous structure, into a specific number of homogeneous zones
managed in a unique way to maximize agronomic potential.

2. Materials and Methods
2.1. Study Areas and Datasets

The study area was located in Sremski Karlovci, in the province of Vojvodina, the
northern part of Serbia. The study area included the valleys of Fruška Gora Mountain,
characterized by meadows and pastures, while its slopes are covered with orchards and
vineyards. Some parts of the mountain rise to heights exceeding 300 m above sea level
(ASL), being covered with dense deciduous forest. The viticulture in the Fruška Gora
Mountain has a long tradition. The earliest records are 1700 years old, but it is reasonable to
believe that vineyards existed in that region before Roman Emperor Probus. The vineyard
zone spreads from the forest zone on the mountain crest and from the zone of field crops at
the mountain feet.

The experimental was conducted in a vineyard block with an area of 2 ha (45◦11′16′′N,
19◦55′44′′E) with an altitude of 120 m ASL (Figure 1). This vineyard block is a part of the
Experimental field for viticulture, University of Novi Sad, Faculty of Agriculture. The
vineyard was planted in 1996 (cv. Riesling Italico, clone SK 54, grafted on Kober 5BB), by
planting two grafts in one planting place with a planting distance of 2.8 × 1.6 m. Initially,
the vineyard block consisted of 5880 vines (2940 locations with two grafts each). However,
in the test area with 1.2 ha (marked in red in Figure 1), where the controls were conducted,
there were a total of 2442 locations with two grafts each. The actual presence of vines was
determined manually by walking through the vineyard and recording the status of each
vine. Three situations were observed: live vines, missing vines, and dead vines but with its
trunk still present (wilted vines).
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For this area, a series of studies were conducted in 2020 and 2022 during different phases
of the vine growth cycle. The research utilized a DJI Phantom P4 v2.0 drone (DJI Sky City,
Shenzhen, China) equipped with a multispectral camera, MicaSense RedEdge-M (MicaSense,
Inc., Seattle, WA, USA). This sensor captures images in five bands: Blue (475 nm ± 20 nm),
Green (560 nm ± 20 nm), Red (668 nm ± 10 nm), Red Edge (717 nm ± 10 nm), and Near
Infrared (840 nm ± 40 nm) [73]. To perform the vine counting and locate wilted vines
according to the proposed model, it was necessary to capture the vineyard at two different
time points: before the start of the vegetative cycle (first half of April (2 April 2020 and 13 April
2022)) and after the flowering stage (end of flowering and onset of veraison (21 August 2020
and 11 August 2022)). The images taken before vegetative growth were later used to identify
the grapevines (using shadows), a process that is difficult during and after the flowering stage
due to leaf density. In both periods, the imaging covered the vineyard and its surroundings,
and precisely these data from the surrounding vineyards were used to train a neural network,
enabling the automatic recognition of vines within the analysed vineyard.

In order to precisely position the obtained photogrammetric survey products (or-
thophoto, Digital Surface Model (DSM), Digital Terrain Model (DTM), reflection maps
for individual bands), 5 markers were placed before each flight (in the corners of the area
and in the middle of the surveyed area), and the positions of the markers were measured
with a Trimble R2 (Trimble Germany GmbH, Raunheim, Germany) GNSS (Global Naviga-
tion Satellite System) receiver. The Real-Time Kinematic positioning (RTK) measurement
method was used. Markers were used as Ground Control Points (GCPs), and in this way all,
obtained maps from different time periods could be overlapped with sufficient accuracy.

The flight plan was formed to obtain crosshatch trajectories with a longitudinal overlap
of 75% and a transverse overlap of 70% at a height of 60 m above ground. During each
flight, two sets of images were obtained: RGB from the camera built into the UAV and
multispectral from the MicaSense RedEdge-M camera, which was additionally mounted
on the UAV together with a GNSS receiver. In using the data from this receiver, informa-
tion about the position of the camera during the recording (EXIF info) wass attached to
the multispectral images. Transverse overlap of images wass achieved through defined
paths in the flight plan. In order to obtain a correct reflectance map for each band of the
camera, before each flight, the calibration panel supplied with the multispectral camera
was pre recorded.

Photogrammetric image processing was conducted for each imaging campaign sepa-
rately, and as a result of processing RGB images from the DJI camera, multilayered rasters
with an average ground sampling distance (GSD) of approximately 1.5 cm were obtained.
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For multispectral images captured with the MicaSense RedEdge-M, five different orthopho-
tos were generated for each multispectral band (Blue, Green, Red, Red Edge (RE), Near
Infrared (NIR)) with a GSD of around 3.5 cm.

In addition to UAV data used for vineyard zoning with the aim of better defining
management zones, an analysis of plant samples within the vineyard was conducted to
incorporate these data into the zoning process. The vineyard block was initially divided
into 20 subplots. On two occasions (end of flowering and at veraison), one average sample
of leaves (30 leaves) was taken from each subplot. In the laboratory, the leaf blades and
petioles were separated and submitted for a chemical analysis. The nitrogen (N) content in
the samples was determined using the AOAC Official Method 972.43 [74], and phosphorus
(P) and potassium (K) were determined via ICP-OES [74].

2.2. Methodology

To conduct a rapid analysis of the vineyard and obtain quality results for timely
management, it is necessary to create a model that incorporates all essential elements in the
vineyard, from data collection to the final definition of management zones.

For the purpose of this research, field data on the analysed vineyard were collected,
including UAV images from multiple time periods and samples for the analysis of N, P,
and K content in leaf blades and petioles. Figure 2 illustrates the system encompassing all
the steps of processing the previously collected data, highlighting several key steps:

1. The detection and localization of vines;
2. The exclusion of inter-rows from the analysis;
3. The zoning of vineyards into a certain number of homogeneous zones.
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2.2.1. Detection of Vines—You Only Look Once (YOLO) Algorithm

Object detection is a method related to computer image processing, which involves
detecting instances of semantic objects of a certain class (such as people, buildings, or cars)
in digital images and videos. Object detection is applicable in many areas, so it also finds
applications in precision agriculture.

Deep learning-based object detection algorithms can be divided into two types: two-
stage networks and one-stage networks. The first group includes algorithms that perform
detection in two stages (1. the detection of potential regions containing objects; 2. The
classification of images based on those regions), such as RCNNs (Region-Based Convolu-
tional Neural Networks) and Fast RCNNs. A drawback of these algorithms can be the long
image processing time, potentially hindering real-time detection [75]. The second group of
detection algorithms includes YOLO, SSD (Single-Shot Detector), and others.

One of the primary contributions of this study is manifested in its initial step, namely,
the detection and localization of live vines. The outcomes of this step also serve as input
data for the subsequent stages of the proposed algorithm, making it evident that the
accurate identification of live grapevines will lead to appropriately defined management
zones. Figure 3 depicts the segment that deals with the detection and localization of vines
from the model presented earlier (Figure 2).
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In 2016, Redmon and Farhadi [76] proposed the YOLO model, which is a one-stage
network. YOLO is a neural network-based algorithm used for object detection. It distin-
guishes itself from other object detection algorithms in that it observes the image only
once. The neural network’s design is implemented through a feedforward network, where
information flows from the input layer to the hidden layers, ultimately reaching the output
layer. This means that object detection for the entire image is performed in a single pass of
the algorithm, simultaneously predicting the probability of an object belonging to a certain
class and the bounding boxes that specify its location in the image (Figure 4) [77].
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The YOLO algorithm family consists of multiple models, with YOLOv5 being easy to
train with good reliability and stability [78]. The Web of Science shows that publications
based on YOLOv5 have an absolute advantage and have been widely used in the past
years [79]. The selection of the YOLOv5 model for our research is based on its proven sim-
plicity and speed, as well as its widespread use in previous studies [5,27,78,79], confirming
the relevance of this model in the research community. Additionally, YOLOv5 was chosen
for its popularity and availability across a wide range of applications in both industry
and academic circles. Therefore, YOLOv5 remains highly competitive and was utilized
in this study. YOLOv5 is a popular deep learning framework that includes five network
models of different sizes, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x [80],
representing different depths and widths of the network [79].

The detection of vines inside a vineyard using images obtained by a UAV is a challenge,
because in the later stages of vineyard development, the vegetation is so dense that it is not
possible to see the tree, and in the early stages when there is no vegetation, the tree merges
with the soil, and it is difficult to identify it on RGB images. This problem can be overcome
by detecting the shadow cast by the vine tree in the first phase (Figure 5), and then in the
next phase localizing the vines.
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In the experimental field, within the vineyard that was used for training, the marking
of vines was carried out. The next figure (Figure 6) shows a part of the training dataset, for
which bounding boxes were manually drawn.
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Figure 6. Example of training dataset with drawn bounding boxes for vine shadows and the
coordinates of each bounding box.

The training dataset, created in this way and used to train the neural network, enables
the transfer and the detection of vines in another vineyard without the need of remarking
or creating new training sets. So, there is no requirement to retrain the network. When
applying the previously trained model to a new dataset, results are obtained rapidly, with
marked bounding boxes around each vine. The number of bounding boxes corresponds to
the number of vines.

The first result obtained after applying the YOLO algorithm is the number of identified
vine trees. However, several events, such as diseases or mechanical damage, can lead to
the drying of vine trees, thus reducing the number of living vines that will develop later.
Accordingly, the next step is the localization of living vines and the determination of the
number of dead vines. To accomplish this, it is necessary to collect new images of the
analysed vineyard in the next phenological period, when the green shoots begin to develop.
Then, the Normalized Difference Vegetation Index (NDVI) is calculated to differentiate
between living and dead vines. In this step, it is necessary to define the threshold value of
the NDVI, which is used to represent living vines (the threshold value in this work was
estimated manually). An additional challenge in this step is inter-row vegetation that can
introduce errors into the detection results.

The following figures show the algorithm for the identification and localization of
living vines. Initially, the vine identification process involves adjusting the boundary
frames (blue boxes) containing the identified shadows (Figure 7a) to include the entire
width of the vine row (Figure 7b). After that, using the NDVI, the parts of the image that
belong to the vine rows are extracted (Figure 7c). If those polygons (red lines inside red
rectangle) are within the adjusted bounding box (red boxes), it indicates the presence of a
live vine. Conversely, if the boundary is empty, it indicates a dead vine. The last step is the
localization of live vines, i.e., the determination of the coordinates of all living vines. The
position of the vine (yellow dots) is obtained by calculating the centre point for the part
of the row that is extracted using the NDVI and is located within the translated boundary
frame (Figure 7d).

To ensure the high accuracy of the presented model for identifying living vines, it is
crucial that the UAV images are captured during a period when vegetation is not developed
to the extent that it obscures the space above the dead vine, but is sufficiently advanced to
identify the canopy of each individual vine using the NDVI (Figure 7d). Additionally, when
planning the flight, consideration should be given to the time of day when the capture will
take place to identify vine shadows in the image. If the images are captured around noon,
the shadows will be almost invisible, causing errors in the algorithm’s operation, and some
vines will not be identified.
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2.2.2. Management Zones—K-Means Algorithm

The K-means clustering algorithm is considered one of the most powerful and popular
data analysis algorithms in the research community. The K-means algorithm is an algorithm
for clustering n objects in k clusters, based on attributes, where k < n. The specified
classification method starts from a predetermined number of clusters defined by the user
himself. The K-means algorithm is based on the principle of iterative displacement. This
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means that after establishing an initial solution, subsequent moves are made (i.e., assigning
observations to clusters), and the algorithm stops when no further improvement is possible.

The K-means clustering algorithm is optimal for use in problems of precise agriculture
in vineyards using UAV images [81–84]. Being an unsupervised learning method, it does
not require labelled data for training. Also, the K-means algorithm is a computationally
efficient method that can handle large datasets. With the increasing availability of high-
resolution UAV imagery, the use of efficient algorithms is crucial for timely analysis. Finally,
K-means is a robust algorithm that can handle noise and outliers in the data (in the case that
you have noise, the K-means algorithm will cluster the noise in one of the defined classes).

To zone the vineyard based on the condition of the grapevines, it is necessary to exclude
inter-rows (the space between rows in the field where there may be non-vineyard plants or
bare soil) before applying the K-means algorithm in further analyses. This intermediate
step needs to be performed on UAV imaging data (i.e., on the raster representing the NDVI,
the parts related to inter-rows need to be removed) to obtain data related only to the vines,
as is the case with other data involved in the zoning process (results of chemical analyses
of vine leaf and petiole). The removal of inter-rows is conducted using the locations of
previously detected live vines, from which NDVI values were collected from the image
captured after the flowering stage. Based on these values, i.e., using points defining the
location of live vines, the possibility of readings from rows without vegetation caused by
withered vines is eliminated. Through a further interpolation of these values, the spatial
distribution of the NDVIs of grapevines within the analysed vineyard is obtained, without
the influence of inter-row vegetation or soil. Although logical, this choice of points has not
been applied in the literature so far, where it is common to randomly select data collection
locations in vineyards, regardless of whether they are between rows or within rows.

Based on the newly created raster representing the NDVI without the influence of
inter-row vegetation and rasters obtained by interpolating the leaf and stem content of
nitrogen, phosphorus, and potassium sample analysis data, management zones are defined
using the K-means clustering algorithm (Figure 8).
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Standard clustering algorithms, including the previously mentioned K-means, use
only attribute values when defining clusters. Therefore, the resulting clusters are not
guaranteed to be spatially contiguous, and these algorithms were not designed to ensure
this. If spatial information is desired for grouping, the data concerning object locations
must be appropriately adapted for algorithmic processing.

When defining the management zones, the location information (coordinates) was
also incorporated along with the previously calculated attributes (NDVI and the N, P, and
K content in leaf blade and petiole). This approach treats coordinates separately from
regular attributes and tries to make a compromise between attribute similarity and location
similarity. If we consider the general case, in which there are p attributes next to the X,
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Y coordinates, with a weight of w1 ≤ 1 for the coordinates, the weight for the regular
attributes will be w2 = 1 − w1. Specifically, weight w1 is assigned to the coordinates (as
w1/2 for X and Y), while weight w2 is assigned to regular attributes as w2/p. As the weight
for the X, Y coordinates increases, the fit to the attribute dimension will become worse.
The large weight for the X, Y coordinates essentially forces a continuous solution, like
that which would follow if only the coordinates were considered. Although this enforces
adjacency, it does not provide a significant result in terms of attribute similarity.

2.2.3. Metrics

In addition to visual assessment, numerical and quantitative evaluations play an
important role in assessing the accuracy of the obtained results. The performance of the
model was evaluated using a confusion matrix, and the metrics presented in this chapter
were used to determine the performance of the vine detection model. Accuracy is often
used in evaluating the performance of classification models in machine learning and is one
of the basic indicators of the quality of classification models. It is a metric that shows the
percentage of correctly classified instances in relation to the total number of instances [85]:

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)

Recall is another metric used to assess model accuracy and is calculated as the ratio of
the number of correctly classified instances in a certain class to the total number of instances
that actually belong to that class. This parameter indicates whether false negatives have a
large impact on model performance, where a higher number indicates a better performance.
Recall can be expressed by the following formula [85]:

Recall =
True Positive

True Positive + False Positive
× 100% (2)

Precision is a measure used to evaluate the performance of classification models.
It represents the percentage of correctly classified positive instances out of all instances
that the model classified as positive. Precision is calculated only on positively classified
examples using the following formula [86]:

Precision =
True Positive

True Positive + False Negative
× 100% (3)

The F1 score is the harmonic mean between precision and recall, representing a balance
between these two measures. The harmonic mean is useful because it assigns more weight
to the smaller value, meaning that the F1 score will be high only if both the precision and
recall are high, indicating a model with a good balance between detecting true positive
results and avoiding false positive results [86].

F1 score = 2 × Precision × Recall
Precision + Recall

× 100% (4)

3. Results

As already mentioned, the first step in the proposed algorithm is the detection of
the grapevine tree shadow using the YOLO algorithm. In this step, training was initially
performed on a dataset created for surrounding vineyards. During training, a pre-trained
YOLOv5s (chosen for its speed in obtaining results) model was used as the starting point,
with a training image size of 640 × 640, a batch size of 32, and 60 epochs.

After applying the YOLO algorithm and all the steps of the proposed algorithm for the
detection and localization of vines on UAV images, it can be concluded that a high degree
of detection of individual trees was obtained. An example of the results for a part of the
analysed vineyard is provided in the next figure (Figure 9). The results show a high level
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of accuracy in prediction, with no instances of misidentification (pillars are distinguished
from vines).
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To fully test the vineyard detection algorithm, it was conducted with three separate
combinations. The first one involved training on the 2020 image (green part of Figure 1)
and performing vineyard recognition on the 2020 image (red part of Figure 1). The second
combination consisted of training on the 2020 image and applying vineyard detection to
the 2022 image. The third combination used the 2022 image for training purposes and
subsequently detected vines within the same 2022 image. This type of algorithm testing
was chosen because the analysed area, i.e., the analysed vineyard, is of small size, and
also because chemical analysis results for other available vineyards were not accessible for
zoning after the detection of vines in this study. The results were obtained through the
detection of living and dead vines using the algorithm described previously, in combination
with field analysis (vine counting) in the vineyard.

The confusion matrix for all three combinations of training and detection for both
years is provided in Table 1, and the metrics used to determine the performance of the vine
detection model (accuracy, precision, recall, and F1 score), as explained in Section 2.2.3, are
provided in Table 2.

Table 1. Confusion matrix for all three combinations for training and detection for both years.
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Table 2. Accuracy, precision, recall, and F1 score of the vine detection.

2020–2020 2020–2022 2022–2022

Accuracy 0.96 Accuracy 0.85 Accuracy 0.86
Precision 0.98 Precision 0.96 Precision 0.98

Recall 0.98 Recall 0.86 Recall 0.86
F1 score 0.98 F1 score 0.91 F1 score 0.92
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The data obtained from the applied vine detection were compared with reference data
to visually represent the number of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) objects. Figure 10 illustrates these results as follows: TP represents
correctly identified living vines; FP denotes instances where the algorithm mistakenly
recognized non-existent vines in the field; FN represents vines that exist in the field but
were not recognized by the model; and TN indicates vines that do not exist in the field and
were correctly identified as wilted chocks.
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Figure 10. Results of the detection of vines for all three combinations: 2020–2020 (a), 2020–2022 (b),
and 2022–2022 (c).

Using the locations of living vines, the possibility of reading from a row where there
is no vegetation, which can be caused by wilted vines, is eliminated. In this way, the
spatial distribution of the NDVI of the vine is obtained, without the influence of inter-row
vegetation. Since, from the previously shown results, it can be concluded that the best
results were obtained using the model trained on data from the year 2020 and tested on
images also from the year 2020, in further work, for removing inter-rows and interpolating
NDVI values, points obtained in this way were used. Furthermore, by interpolating the
NDVI values, a new raster representing the vegetation status within the entire vineyard
was obtained (Figure 11).
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After removing the inter-rows from the raster with NDVI values and obtaining the
vegetation status in the analysed vineyard, and after all other data (N, P, and K content
in leaf blades and petioles) have been interpolated, and corresponding rasters with a
continuous spatial distribution of the data within the vineyard have been obtained, the
next step of the proposed model was implemented, which is the definition of management
zones. When defining the management zones, in addition to attributes (NDVI and N, P, and
K content in leaf blades and petioles), we used information about the location (coordinates).
In this study, weights of a value of 0.15 were assigned to the coordinates (0.15/2 for each
coordinate) and the remaining 0.85 (0.85/7 for each of the 7 attributes—NDVI and N,
P, and K content in leaf blades and petioles) was assigned to the other attributes. This
approach aims to create management zones in vineyards that preserve both spatial and
spectral properties. The results of the grouping (zoning) approach with variable weights
for coordinates and attributes are illustrated in Figure 12.
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Figure 12. The result of clustering using the K-means method (a) and final (filtered) management
zones (b).

By analysing the statistical values of the variables within each zone (Zone 1 is the red
area and Zone 2 is the green area in Figure 12), the differences in the mean values for all the
variables participating in the zoning process can be clearly observed (Table 3).

Table 3. Mean values of all variables involved in zoning. Values of N, P, and K content are in % of
dry wt.

Mean of Zone 1 Zone 2

NDVI 0.64659 0.70601
N Petiole 0.64613 0.61632

N Leaf blade 2.17218 2.11042
P Petiole 0.16819 0.32651

P Leaf blade 0.16039 0.18214
K Petiole 0.58260 0.47835

K Leaf blade 0.39985 0.38451

Figure 13 shows box plot diagrams of each variable, which graphically present differ-
ences between the mean values of the zones, of which its numerical values are shown in the
previous table. As known from statistics, the appearance of a box plot diagram provides
information about the mean, range, dispersion, and presence of extreme values in a dataset.
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From Figure 13, the data have a certain variability within the zones, and these two zones
are different from each other in all variables, which is particularly expressed in the example
for phosphorus, where it can be seen that the values of these variables are significantly
different for the created management zones.
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Based on the previously presented box plot diagrams and the final appearance of the
management zones, it can be concluded that this approach to grouping, i.e., zoning, in
which different weights are assigned to attributes and coordinates, provides good results
in terms of the spatial connectivity of zones, and also in terms of spectral properties.

4. Discussion

The incorporation of emerging technologies into viticulture enables automation and
faster decision making [87–91]. The assessment of missing vines proves valuable in de-
termining the number of gaps along grapevine rows that could be filled with new plants.
Detecting missing vines in the vineyard is a key challenge that can be addressed with
new technologies. While detecting and locating individual plants are crucial for plant or
group-level (zone) management, there currently exists no fully automated method utilizing
UAV imagery for this purpose. Various methods found in the literature can estimate tree
positions using UAV images, but they rely on prior knowledge of the number of plants
in a row and the spacing between plants [35,38] or use laser scanning data, i.e., point
clouds [92,93]. The existing literature [35–37,94,95] suggests that vine detection involves
robots, laser scanners, and position extraction from point clouds, which can be time con-
suming and require significant financial investment. Therefore, one of the tasks of this study
was to develop an automated method capable of detecting and locating grapevine trees,
offering the potential to generate basic maps (maps of missing plants detected throughout
the vineyard, valuable for farmers when replacing missing plants) for various applications
in precision viticulture, including vineyard zoning.

The results of point cloud processing and tree identification from the 3D model in
a study [36] revealed that out of 221 estimated plants, 197 were correctly detected and
classified (89%). Concerning missing plants, 41 (64%) were accurately classified, resulting
in an overall accuracy of about 84%. Aguiar et al. [96] proposed tree detection using
high-performance deep learning suitable for real-time applications in robotics. Also, Pinto
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de Aguiar et al. [97], addressed the feature extraction problem in the vineyard context
using deep learning to detect grapevine trees with the YOLO algorithm. Several solutions
for grapevine tree detection have been developed using range sensors [98] or camera
systems [99], but such systems, despite their high performance, are still not widely applied
in vineyards, mainly due to the associated high costs of robots and autonomous vehicles.
Hence, a motivating factor for this study was to find methods that, without substantial
equipment and resource investments, can swiftly deliver quality results and successfully
and precisely detect individual vines.

Aerial imaging using UAVs has emerged as an expeditious method for object capturing,
with increasing significance in contemporary remote sensing due to its cost-effectiveness
and high-resolution capabilities. Nevertheless, a substantial limitation in vertical aerial
imaging lies in the challenge of accurately discerning the underlying conditions beneath
the canopy. In absence of a plant, neighbouring plants can extend their shoots and leaves
to fill the adjacent unoccupied space. Consequently, an essential consideration relies in the
careful selection of the imaging period [35]. Moreno et al. [92], proposed 3D models to be
created for the vineyard during the winter season when only branches without vegetation
are present, and based on this, the position of each tree is determined. This approach to
vineyard imaging before the start of the vegetative cycle was also applied in our study,
and based on these photographs, tree identification was performed without the need for
creating a 3D model. The advantage of the proposed vine detection algorithm in this study
is that it provides fast results without the need for extensive data such as point clouds,
and data acquisition is fast and straightforward. For this step of the proposed algorithm
(vine detection), only UAV images of the vineyard with R, G, B, and NIR spectra from two
periods (before the start of the vegetative cycle and after the flowering stage) were used.

In the context of image object detection within the scope of this investigation, the
fundamental principle characteristic in deep learning methodologies relies in the use of
a pre-trained model for the classification of novel images. This involves the knowledge
or proficiency acquired by a previously trained model when applied to new images—an
approach particularly noticeable when neural networks, used on expansive datasets, are to
be used in databases characterized by significantly reduced data volumes. The adoption of
pre-trained models mitigates the extended training periods typically associated with neural
networks [100]. It is noteworthy that the application of transfer learning is particularly
uncommon within the agricultural domain [96]. An empirical validation advanced within
this study establishes its viability and efficacy within this specific sector. The results of vine
detection performed in this way show that the results from the model trained on 2020 data
and tested on 2022 data is almost identical to the results of the model trained and tested
on 2022 data. This confirms the previous claim that there is no need to retrain the model
with new data. Using transfer learning and a pre-trained model can yield quality results,
reducing the time required for results and enabling the application of the YOLO algorithm
in near real time, facilitating timely and accurate decision making.

The fact that high accuracy in vine detection is quickly achieved by analysing UAV
images distinguishes this methodology from studies that use point clouds [36], 3D mod-
els [92], or oblique imagery [101] for the same purpose. The results obtained in this study
using the proposed detection algorithm show an accuracy of approximately 90%, with
similar metrics observed for each of the three combinations of images analysed. The critical
consideration when applying the proposed algorithm is the proper selection of the vineyard
imaging period, necessitating capture in two periods: before the start of the vegetative cycle
and after the flowering stage. Additionally, when planning the flight, attention should be
given to the time of day when the imaging will take place to identify shadows of grapevine
trees in images from pre-vegetative cycle periods. For imaging in the second phenological
period, attention should be paid to the development of grapevines, choosing a period when
the vegetation is sufficiently developed to identify it in the image yet not obscuring the
space above the canopy of withered grapevines.
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The second objective addressed in this study is the delineation of management zones
within the analysed vineyard. Various methods have been developed for measuring spatial
variability within fields for delineating management zones, but they have predominantly
focused on arable crops and much less on orchards, particularly vineyards [102]. Most
of these methods rely on individual types of data in the analysis and zoning process.
These data can include yield data [51–53], soil characteristic data [54–56], remote sensing
data [57–59], etc. This research proposes a method for zoning based on a larger dataset
composed of diverse geospatial data.

Our research aimed to zone a vineyard into two classes based on the grapevine’s condi-
tion (NDVI) and the results of chemical analyses of leaf blade and petiole samples (nitrogen,
phosphorus, and potassium content). The initial challenge was addressing the impact of
inter-row vegetation on determining the grapevine’s condition using the NDVI. To ensure
that the obtained results (zones) depend only on the grapevine’s condition, it is imperative
to eliminate the influence of inter-rows and the vegetation within them. Although some
studies suggest the application of the K-means algorithm to separate grapevine rows and
then determine the grapevine’s condition for the entire vineyard based on the results [103],
such an approach is not applicable in vineyards in southeastern Europe due to the chal-
lenging conditions that grape growers face. Primarily, grape growers confront a labour
and resource shortage (that would be invested in robotics and autonomous machinery),
resulting in the presence of weeds and grass in inter-rows. This significantly hampers
the accurate definition of the grapevine’s condition within the vineyard since, in further
analysis after this type of classification, vegetation related to the grapevine is used, along
with weeds and grass, to define the grapevine’s condition. Many authors [70,71] propose
reading values from the raster (e.g., vegetation indices) using points in grapevine rows and
creating new rasters by interpolating based on these readings. In this way, the new raster
will represent the spatial arrangement of only the grapevine’s condition, and such data can
be used for defining management zones. It has been noticed in the literature that there is no
rule based on which the locations of points used for the interpolation are determined; rather,
they are chosen randomly. In our study, the grapevine’s condition without the influence
of inter-rows was determined by using previously obtained locations of live vines used
to read NDVI values and interpolate them. The raster obtained by interpolating values
from these locations provides a more evenly distributed spatial arrangement of vineyard
conditions compared to the usual method of random sampling from rows. This approach
ensures that interpolation values are taken only from locations with live vines. Such data
form the basis for proper vineyard zoning, and these management zones are one of the
foundations of precision viticulture.

As there is still no universally accepted method for delineating management zones,
cluster analysis can be the basis for unresolved issues in this field [65]. While many
studies have addressed determining zones in vineyards [60–62], there are limited studies
using artificial intelligence for delineating management zones within vineyards. Most
proposed methods rely on statistical analysis. Delineating management zones can enable
the management of spatial variability within fields by dividing vineyards into homogeneous
zones, of particular interest for implementing variable nutrient and water management
schemes [43–47]. It can be assumed that the analysis of vegetation indices can identify soil
degradation zones [48–50] in agriculture. Many authors [60–63] propose zoning through
the simple division of raster values, e.g., vegetation indices, into a certain number of
classes, with an equal number of objects (pixels) in each class. Another approach in
delineating management zones found in the literature is zoning through unsupervised
classification [64–69]. The K-means algorithm stands out as the most commonly applied
machine learning method for defining management zones in agriculture, and it is also
used in viticulture. An analysis of the literature revealed a lack of standardized way to
define management zones, and there are no recommendations for which data to use when
delineating zones.
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As mentioned earlier, this research proposes a method for zoning based on a larger
comprehensive dataset composed of a newly created raster representing the NDVI without
the influence of inter-row vegetation and a raster obtained by interpolating sample data
(N, P, and K content in leaf blades and petioles). It is essential to note that the proposed
model is flexible regarding the amount of input data for zoning, and it can be expanded
with additional data or with the exclusion of some data in case of unavailability. To achieve
a clearer separation of management zones, we took more available data (NDVI, and N, P,
and K content in leaf blades and petioles) for our analysis, based on which, zoning was
performed. Management zones were defined using the K-means clustering algorithm, and
the principle of defining management zones based on weighted attributes assigned in this
study yielded good results in terms of the spatial connectivity of zones, the elimination
of small and scattered zones, and achieving differences in spectral properties indicating
diversity between zones.

The vineyard block in this research exhibited variability in terms of parameters used
for the analysis (NDVI and N, P, and K content in leaves and petioles). Using the proposed
model, the vineyard block was divided into two zones, differing from each other and with
certain variability within. Generally, the values of parameters in both zones, in other words,
the whole vineyard block, were lower than those referred in the literature [104–106]. The
lower NDVI values primarily resulted from a lower N status in the plant tissue [104]. An
unfavourable nutrition status was especially expressed in K, and more in zone 2. In terms
of the P status, the defined zones differed significantly. In this step, obtained results can
be used to define sampling methods (soil, yield, pruning residues). For making decisions
regarding vineyard management (fertilizing for example), additional attributes need to be
included in the presented model (topography, soil characteristics, yield parameters).

In future research, it is essential to expand the proposed zoning algorithm by incorpo-
rating additional geospatial data and examining how and to what extent these additional
data influence the separation of management zones. Additionally, exploring alternative
methods for defining homogeneous zones should be considered to establish a standardized
zoning model. Besides UAV acquired images, the potential use of Sentinel-2 or PlanetScope
images for zoning should be investigated, as they are believed to accurately represent the
vine status within the vineyard despite the presence of mixed pixels. Furthermore, the
utilization of very high spatial resolution satellite images should be considered, given the
increasing availability of such data, with the assumption that these results could closely
align with UAV image results. Additionally, the proposed vine detection and zoning
algorithm should be tested on other vineyards with different row orientations and slope
directions, confirming the feasibility of transfer learning in this field. Based on processed
data, analysis, and obtained results, drawing appropriate conclusions regarding potential
expansions and further algorithm development possibilities is crucial.

5. Conclusions

Zoning in the context of agriculture, including viticulture, is a key concept enabling
the efficient management of agricultural resources. The idea behind zoning is to divide
agricultural parcels or vineyards into smaller, homogeneous zones that share similar
characteristics and conditions. This approach brings numerous benefits in more effective
resource management and a tailored approach to the needs of each zone. As an alternative
to traditional methods of generating zoning maps, information obtained from remote
sensors allows the quick and easy definition of management zones. In the field of remote
sensing, unmanned aerial vehicles (UAVs) represent a significant advancement due to their
characteristics, including cost-effectiveness, high resolution, and flexibility, making them
widely used in various areas, including precision agriculture.

This study proposes a model to address zoning issues with a focus on precision
viticulture. The research aims to create a decision support model for defining management
zones in viticulture, assisting winemakers and grape producers in adjusting the use of
resources such as water, fertilizers, and pesticides according to the specific needs of each
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zone. The information obtained from this process is valuable for both producers and the
entire agricultural industry.

The results of this research provide a deep insight into the advantages of precision
viticulture achieved through the development of an innovative decision support model.
This study emphasizes key steps in the zoning process, highlighting the importance of auto-
matic vine detection and the precise definition of homogeneous zones, forming the basis for
the application of modern agronomic measures. The implementation of new technologies,
especially through the use of UAV imagery and innovative analysis algorithms, enables
not only efficient automation but also fast decision making in viticulture. The research
results confirm that the proposed model for vine detection, based on transfer learning and
the analysis of RGB + NIR images, provides high accuracy in vine detection, reducing
the need for extensive data. The proposed algorithm is simple, efficient, and achieves
high precision in detecting individual vines without the need for additional information
such as LiDAR data or digital terrain models. With such data, it is possible to precisely
eliminate the influence of inter-row vegetation and depict the true vegetation status, as
well as the spread of individual phenomena within the vineyard. Ultimately, this leads to
well-defined management zones that serve as the foundation for the implementation of
precision viticulture.

The proposed model can significantly speed up the decision-making process, regard-
less of the number of objects to be identified or the size of the analysed vineyard. The
division of the vineyard block into homogeneous zones, guided by parameters such as
the NDVI and the content of N, P, and K in leaf blades and petioles, indicates variability
in conditions within the vineyard. This information not only aids in understanding the
state of the grapevines but also provides a basis for precise vineyard management, from
sampling to fertilization strategies. Further improvements to the proposed model will
explore the use of other geospatial data and consider alternative algorithms that could
potentially increase the algorithm’s speed or enhance its accuracy.
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