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Abstract: Snow cover plays a crucial role in the surface energy balance and hydrology and serves as
a key indicator of climate change. In this study, we conducted an ensemble simulation comprising
48 members generated by randomly combining the parameterizations of five physical processes
within the Noah-MP model. Utilizing the variance-based Sobol total sensitivity index, we quantified
the sensitivity of regional-scale snow depth simulations to parameterization schemes. Additionally,
we analyzed the spatial patterns of the parameterization sensitivities and assessed the uncertainty of
the multi-parameterization scheme ensemble simulation. The results demonstrated that the differ-
ences in snow depth simulation results among the 48 scheme combinations were more pronounced in
mountain regions, with melting mechanisms being the primary factor contributing to uncertainty in
ensemble simulation. Contrasting mountain regions, the sensitivity index for the physical process of
partitioning precipitation into rainfall and snowfall was notably higher in basin areas. Unexpectedly,
the sensitivity index of the lower boundary condition of the physical process of soil temperature was
negligible across the entire region. Surface layer drag coefficient and snow surface albedo parameteri-
zation schemes demonstrated meaningful sensitivity in localized areas, while the sensitivity index of
the first snow layer or soil temperature time scheme exhibited a high level of sensitivity throughout
the entire region. The uncertainty of snow depth ensemble simulation in mountainous areas is
predominantly concentrated between 0.2 and 0.3 m, which is significantly higher than that in basin
areas. This study aims to provide valuable insights into the judicious selection of parameterization
schemes for modeling snow processes.

Keywords: multi-parameterization ensemble simulation; Sobol total sensitivity; sensitivity analysis;
uncertainty analysis

1. Introduction

As a fundamental element of the cryosphere, snow cover exerts a substantial influence
on various aspects of the earth’s systems; it plays a significant role in modulating the sur-
face energy balance, hydrological processes, and atmospheric circulation [1–3]. Moreover,
snow cover stands as a critical bellwether of climate change, exhibiting a rapid response
to its evolving patterns. In many regions, it plays a crucial role as a vital freshwater
resource essential for both human sustenance and socioeconomic development, thereby
holding a central position in the pursuit of global sustainability [4–7]. Furthermore, the
inherent characteristics of this specialized land surface exert a significant influence on
the energy and water cycles within the terrestrial environment [8–10]. For instance, the
high albedo of snow-covered surfaces adjusts the amount of solar radiation reaching the
Earth’s surface, consequently influencing the exchange of energy between the land and the
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atmosphere [11,12]. The low thermal conductivity of snow has a profound effect on soil tem-
peratures by insulating the soil surface from direct atmospheric contact [13]. Additionally,
the melting patterns of snow are critical factors in the occurrence of natural disasters, such
as flooding and avalanches [14,15]. Thus, a comprehensive understanding of the temporal
and spatial variations in snow cover is crucial for estimating snowmelt runoff, issuing
snow-related disaster warnings, and advancing our knowledge of atmospheric circulation.

Land surface models (LSMs) serve as invaluable tools for examining the temporal
and spatial dynamics of snow cover. The incorporation of a snow process module into
many LSMs and hydrology models has proven effective in achieving satisfactory snow
simulation results [16,17]. However, it is noteworthy that LSMs exhibit varying levels of
simulation accuracy, with disparities often observed even within the same model across
different regions. This variability can be attributed to the inherent characteristics and
applicability of individual LSMs. The use of parameterizations is a common strategy to
represent diverse physical processes, including snow surface albedo, runoff, and dynamic
vegetation. Notably, selecting different parameterizations for the same physical process
can lead to discernible differences in simulation outputs [10,18,19]. Essentially, parameteri-
zation comprises a set of mathematical equations designed to capture a special physical
process, with the parameters within these equations serving as adjustable numerical val-
ues [6,20]. Understanding and accounting for these inherent model characteristics and
parameterizations are critical considerations in ensuring the reliability and applicability of
LSMs in diverse geographical contexts [13]. Divergent simulation outputs resulting from
various mathematical equations for a given physical process pose a substantial obstacle
to a comprehensive understanding of the cryosphere’s response to climate change. This
limitation impedes the elucidation of intricate interactions between the land surface and the
atmosphere. As a result, the selection of appropriate parameterizations for LSMs becomes
a pressing concern.

The Noah-MP model, an advanced iteration building upon the Noah model, ad-
dresses this challenge by incorporating two to four innovative parameterization schemes
for identical physical processes, enhancing the model’s applicability [10,12,21]. The in-
clusion of multiple parameterization schemes in the Noah-MP model offers a convenient
avenue for exploring the sensitivity of model outputs to the option of parameterization
schemes [18,20]. This has garnered attention in the hydrology and meteorological com-
munities, with researchers keen on unraveling the impact of alternative parameterization
schemes on critical physical processes. A study comprising 288 experiments utilized multi-
parameterization schemes for six physical processes across ten hydrologic regions in China,
revealing varying sensitivities and optimal parameterization schemes for different variables
and regions [22]. On a site scale, the benchmarking method was employed to identify
the optimal combination of parameterization schemes within the Noah-MP model based
on sensitivity experiments of heat simulations [23]. Sensitivity analysis methods, such as
those investigating heat flux simulations, have revealed that sensitive parameterization
schemes introduce greater uncertainties, enabling researchers to identify schemes that
could potentially impact model performance [18]. Various sensitivity analysis methods,
including qualitative assessments and the Sobol total sensitivity index, have been employed
to evaluate the impact of parameterizations on sensible heat flux, latent heat flux, and net
ecosystem exchange [18,20]. Results demonstrated inconsistent sensitivities across sites,
emphasizing the need for region-specific evaluations [24]. Among numerous sensitivity
analysis methods, the Sobol variance analysis method [25] stands out as a particularly
effective choice for exploring parameterization sensitivity, both in small watersheds and
large-scale regions. This method not only demonstrates exceptional robustness but also
produces reliable sensitivity calculation results [20,26]. Another notable advantage of this
method is its independence from observational data in assessing the sensitivity of parame-
terization schemes; sensitivity calculations rely solely on ensemble simulation results. In
the context of snow processes, the Noah-MP model was employed to simulate snow, and a
physics ensemble simulation experiment was conducted to analyze the sensitivity of snow
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simulations to parameterization schemes [10,27]. Although sensitive parameterization
schemes were identified and optimal combinations determined, addressing the regional-
scale sensitivity of parameterization schemes remained a pressing concern. To address
this gap, we utilized the Sobol total sensitivity index in 48 Noah-MP physics-ensemble
simulations driven by the China Meteorological Forcing Dataset (CMFD) in Northern
Xinjiang, China. Conducting sensitivity analysis, we determined uncertainty intervals and
investigated their origins, with the goal of offering a valuable reference for the simulation
of snow processes.

The paper is structurally organized as follows: Section 2 provides an overview of the
study area, the regional atmospheric forcing data, the design of numerical experiments,
and the employed sensitivity analysis method. In Section 3, we showcase the simulation
results of snow depth using the default parameterization scheme combination, delve into
the sensitivity of parameterization schemes, and establish the uncertainty interval within
ensemble simulations. Finally, Section 4 succinctly summarizes the findings derived from
this study.

2. Materials and Methods
2.1. Study Area and Data

The research is focused on the northern Xinjiang region, spanning from 79.0◦ to 92.0◦E
and 42.0◦ to 50.0◦N, situated along the northwest border area of China. This region boasts
diverse topography, with the Altay Mountains in the north and the Tianshan Mountains
in the south, reaching a maximum elevation of 7440 m. The central portion comprises the
Junggar basin, maintaining an average elevation of 400 m. Terrain heights across Northern
Xinjiang are depicted in Figure 1. The climate in this area is characterized as a temperate
continental climate, owing to its unique geographical location in the Eurasian continent’s
hinterland [28]. Influenced by Siberian circulation, the region experiences a cold and snowy
winter, with snow cover persisting for approximately 120 days from November to March.
In certain areas, this snow cover can endure until May [28,29]. This climatic profile renders
the study area ideal for investigating the regional-scale sensitivity of snow simulations to
parameterization schemes, given its abundant snow resources.
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In this study, the Noah-MP model was driven by the China Meteorological Forcing
Dataset (CMFD) [30], covering the period from 1 October 2012 to 30 September 2013. De-
veloped by the hydrometeorological research group at the Institute of Tibetan Plateau
Research, Chinese Academy of Sciences, the CMFD is a comprehensive dataset that in-
cludes seven critical meteorological variables: pressure, precipitation, wind speed, specific
humidity, near-surface air temperature, and downward shortwave and longwave radiation.
Renowned for its precision, this dataset integrates observations from 740 operational sta-
tions of the China Meteorological Administration with data from Princeton meteorological
forcing, the Global Land Data Assimilation Systems (GLDAS) reanalysis, the precipitation
products of the Tropical Rainfall Measuring Mission (TRMM), and the radiation data ob-
tained from the Global Energy and Water Cycle Experiment—Surface Radiation Budget
(GEWEXSRB) [31]. The CMFD utilized in this study provides comprehensive coverage
across the entire geographical expanse of China, boasting a spatial resolution of 0.1 de-
gree and a temporal resolution of 3 h. To enhance experimental precision, the MicroMet
approach [32] was employed to downscale the atmospheric forcing data. This approach
relies on the correlations between meteorological variables and topography. Through this
methodology, we successfully derived a refined set of forcing data with an improved spatial
resolution of 0.05 degrees and a heightened temporal resolution of 1 h.

2.2. Simulation Setups

The Noah-MP model was enhanced by incorporating recent advancements in physics
from the land surface models (LSMs) of Noah [33,34]. Various parameterization schemes
were integrated into distinct physical processes, with details provided in Table 1, making
the model have stronger applicability [10,21]. Our prior research revealed that simulated
snow depth and snow water equivalent exhibit sensitivity to parameterization schemes,
particularly those related to surface layer drag coefficient (SFC), snow surface albedo
(ALB), partitioning of precipitation into rainfall and snowfall (PCP), lower boundary
condition of soil temperature (TBOT), and the first snow layer or soil temperature time
scheme (TEMP) [10,27]. Although we have determined that the physical processes SFC
and TEMP demonstrated high sensitivity across various snow climates and that the choice
of different parameterization schemes for these processes led to substantial variations in
simulation results, the distribution of parameterization scheme sensitivity on a regional
scale is still unknown. Therefore, we generated a total of 48 scheme combinations by
randomly combining parameterization schemes of these five physical processes, allowing
us to quantify the sensitivity of simulated snow depth to parameterization schemes on a
regional scale.

Table 1. The main physical options within the Noah-MP model.

Parameterization Description Scheme Options

Dynamic vegetation (DVEG) 1. off [Default], 2. on
Canopy stomatal resistance (CRS) 1. Ball-berry [Default], 2. Jarvis

Soil moisture factor controlling stomatal resistance (BTR) 1. Noah scheme [Default], 2. CLM scheme, 3. SSiB scheme
Runoff and groundwater (RUN) 1. SIMGM [Default], 2. SIMTOP, 3. Schaake96, 4. BATS

Surface layer drag coefficient (SFC) 1. M-O [Default], 2. Original Noah (Chen97)
Frozen soil permeability (INF) 1. NY06 [Default], 2. Koren99

Super-cooled liquid water in frozen soil (FRZ) 1. NY06 [Default], 2. Koren99
Radiation transfer (RAD) 1. gap = F(3D, cosz) [Default], 2. gap = 0, 3. gap = 1 − FVEG

Snow surface albedo (ALB) 1. BATS, 2. CLASS [Default]
Partitioning of precipitation into rainfall and snowfall (PCP) 1. Jordan91 [Default], 2. BATS, 3. Noah

Lower boundary condition of soil temperature (TBOT) 1. Zero-flux scheme, 2. Noah [Default]
First snow layer or soil temperature time scheme (TEMP) 1. Semi-implicit [Default], 2. Fully implicit

The meteorological forcing data used to drive the Noah-MP model were from the
CMFD dataset. Standard soil and vegetation parameters, including the monthly leaf area in-
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dex, were derived from the soil and vegetation type data using the Noah-MP default lookup
tables [35]. Additional hard-coded parameters of Noah-MP, as specified by reference [35],
adopted default values manually calibrated by parameterization developers [36,37]. These
datasets have been extensively used in continental hydrological simulations and have
demonstrated reasonable accuracy [37–39]. Building upon our previous research revealing
the sensitivity of snow simulations to various parameterization schemes for physical pro-
cesses SFC, ALB, PCP, TBOT, and TEMP across diverse climates [10,27], this study randomly
combined parameterization schemes for these five physical processes while maintaining
default settings for the other seven physical processes, resulting in a total of 48 scheme
combinations. To ensure soil-state equilibrium—a prerequisite for effective initialization—
we employed forcing data from 1 October 2011 to 30 September 2012. The equilibrium
criterion, stipulating that the time when the difference in annual means between consecu-
tive single-year simulations is less than 0.1% of the mean, was rigorously applied [37,40].
All simulations spanned one snow period, with snow depth output recorded at an hourly
interval. The hourly outputs were aggregated into monthly values, and then the monthly
means were analyzed using Sobol’s total sensitivity index.

2.3. Analysis and Evaluation Methods

In this study, the sensitivity analysis utilized the variance-based Sobol’s total sensitivity
index as proposed by Saltelli et al. [41] to quantify the impact of parameterization schemes
for the five aforementioned physical processes on snow depth simulations. The calculation
of sensitivity indices involved a structured series of steps.

Initially, we employed the various parameterization scheme combinations to derive
48 individual snow season averaged snow depth (SD) values, denoted as Yi, i = 1, . . . , 48.
Simultaneously, the mean and variance of the 48 values were promptly calculated.

E(Y) = ∑ 48
i=1Yi/48. (1)

Var(Y) = ∑ 48
i=1(Yi − E(Y))2/48. (2)

Secondly, the Sobol total sensitivity of the parameterization schemes for a given
physical process, denoted as A, was computed using the following equation:

SA = EA(VarA(Y| ∼ A))/Var(Y). (3)

Here SA represents the Sobol total sensitivity for the parameterization of a given
process, A. Additionally, ∼ A denotes all processes except A, Y signifies the snow depth
simulations of the 48 scheme combinations, Var(Y) is the variance of the 48 snow depth
simulations, VarA( Y| ∼ A) represents the variance caused by different parameterization
schemes of A, and E ∼A represents the arithmetic average across all scheme combinations
of the parameterizations other than A. To illustrate, consider the physical process of PCP,
which comprises three parameterization schemes. The 48 values were categorized into
16 groups, where the parameterization schemes for SFC, ALB, TBOT, and TEMP processes
remained constant, differing only in the PCP parameterization. Each group yielded three
values corresponding to the three PCP schemes (Jordan91, BATS, and Noah). For instance,
if the parameterization schemes for SFC, ALB, TBOT, and TEMP are M-O, BATS, Jordan 91,
Noah, and Semi-implicit, respectively, in one group, the variance of the three PCP schemes
(VarA( Y| ∼ A)) was calculated, with a denominator value of 3 for each of the 16 groups,
(Y|∼ A )j, j = 1, . . . , 16. The mean of these 16 values was calculated and denoted as
EA(VarA(Y| ∼ A)). Further details about this method can be found in reference [20]. The
Sobol total sensitivity index’s greatest strength lies in accounting for the variance of model
outputs resulting from different parameterization schemes for a given physical process.
The normalized value, ranging from 0 to 1, indicates the level of sensitivity of simulations
to parameterization schemes. A larger value implies high sensitivity, while approaching
zero suggests that the parameterization has minimal influence on the simulations.
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3. Results and Discussion
3.1. Results of Snow Depth Ensemble Simulations

The CMFD dataset served as the driving force for the 48 scheme combinations, re-
sulting in snow depth simulations across Northern Xinjiang. As illustrated in Figure 2,
it displays the annual average snow depth from the 48 ensemble simulations and the
variance in the snow depth ensemble simulations. The annual average snow depth reveals
a predominant distribution in the mountain regions, particularly evident in the Tianshan
and Altay Mountains, where the maximum annual average snow depth approaches 2 m,
primarily concentrated in the southern part of Tianshan Mountain. Conversely, the Junggar
Basin exhibits significantly lower snow depths, attributed to the arid and semi-arid climate
characteristics in Northern Xinjiang. The possible reasons for this phenomenon could be
that the colder temperatures in the mountainous regions facilitate snow preservation, while
the warmer and drier conditions in the basin contribute to snow sublimation and melting.
The simulation results employing the 48 scheme combinations align with the spatial distri-
bution of average snow depth, corresponding to the snow distribution characteristics in
Northern Xinjiang. This alignment underscores the Noah-MP model’s ability to accurately
simulate snow processes in the region. Importantly, we refrain from comparing the aver-
aged snow depth results of multiple scheme combinations with the corresponding snow
depth observational data in this study. Model performance evaluation has been addressed
in previous research, specifically assessing the snow simulation capabilities of the Noah-MP
model in Northern Xinjiang, China [27]. Our focus here is solely on discerning differences
in simulation results among different combination schemes within the Noah-MP model.
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Figure 2. The snow depth simulation results from multi-parameterization scheme combinations.
(Left) is the annual average snow depth of 48 ensemble simulations, and the (right) figure is the
variance of 48 ensemble simulations.

The right subfigure of Figure 2 displays the variance of the 48 ensemble simulations.
Examining the figure reveals a maximum variance of 0.10 m (the values of individual pixels
are not shown in the figure) and a minimum of 0 m. Most areas exhibit a variance in snow
depth simulation results below 0.02 m, particularly notable in the Junggar basin region.
In contrast, the variance in the Tianshan Mountains region is relatively pronounced, with
many areas having variance values around 0.03 m. Additionally, significant variances are
observed in the southern part of the Tianshan Mountains and the southeastern part of the
Altay Mountains. These findings indicate substantial differences in snow depth simulation
results within the Northern Xinjiang mountainous area among different combinations of
the Noah-MP model. This phenomenon can be attributed to two factors. Firstly, thicker
snow in mountainous areas corresponds to larger errors. For instance, with a 10% error,
the resulting errors for snow depths of 10 cm and 50 cm are 1 cm and 5 cm, respectively,
illustrating significant differences. Secondly, distinct scheme combinations governing snow
accumulation and melting mechanisms contribute to notable differences in snow depth
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simulation results. Despite these variations, the right subfigure highlights a relatively
small variance in the northern region of the Altay Mountains. While located in a high-
altitude mountainous region, the snow depth variance in this area is notably smaller than
in the southeastern region of the Altay Mountains. This phenomenon may be attributed
to relatively minor differences in simulated snow depth results among the 48 scheme
combinations in this region, resulting in a reduced variance. Consequently, it underscores
the importance of further investigating the sensitivity of different parameterization schemes
at the regional scale.

3.2. Spatial Patterns of the Parameterization Sensitivities

In our previous study, a qualitative analysis was undertaken, establishing that the
modeled snow depth exhibited sensitivity to the parameterizations of the physical pro-
cesses SFC, ALB, PCP, TBOT, and TEMP. In this current study, we extend our analysis to
quantify the sensitivity of modeled snow depth to these parameterizations in Northern
Xinjiang. The 48 scheme combinations were randomly generated by incorporating options
for the five sensitive physical processes. Figure 3 illustrates the Sobol total sensitivity of the
modeled snow depth to these five physical processes, showcasing the parameterization
sensitivity patterns across Northern Xinjiang. Higher values in the figure indicate greater
sensitivities. As depicted in Figure 3, the sensitivity patterns of these parameterizations
display significant differences. Two parameterization schemes are assigned for the physical
process of SFC, and the choice between these two schemes notably influences the simulated
surface layer drag coefficient. The first scheme incorporates the zero-displacement height,
while the second considers the difference between roughness length for heat and momen-
tum in calculating the surface layer drag coefficient, leading to substantial variations in
t water and energy computations in the model. In Figure 3, Sobol sensitivity indices in
most areas of Northern Xinjiang are below 0.1, with many regions showing indices at
zero, indicating weak sensitivity of surface physical processes in the majority of the region.
However, higher Sobol sensitivity indices are observed in the eastern part of the Tian Shan
region, reaching a maximum of 0.5. This indicates a stronger sensitivity of surface physical
processes in that area, highlighting significant variations in simulated snow depth results
when utilizing different parameterization schemes for the surface. Additionally, localized
areas near the western part of the Altay Mountains exhibit slightly higher Sobol indices
than other regions, averaging around 0.3. This suggests stronger sensitivity of the physical
process SFC, specifically in the eastern part of the Tianshan Mountain region, while its
sensitivity is weaker in other areas of Northern Xinjiang.

The control of solar radiation entering the snowpack by snow surface albedo signifi-
cantly influences the energy balance, potentially leading to snowmelt. Snow surface albedo
schemes within Noah-MP, specifically the BATS and CLASS schemes, play a distinct role
in regulating snow depth, with the CLASS scheme set as the default due to its presumed
smaller snow surface albedo resulting from a stronger aging effect. Figure 3 shows notable
spatial variations in the Sobol sensitivity index for the ALB process, with a maximum index
value of 0.4, primarily in the Tianshan Mountains. Sensitivity indices for most areas in
Northern Xinjiang are below 0.1, while the northeast of the Junggar Basin and the east of
the Tianshan Mountains show relatively high indices, ranging from 0.3 to 0.4. Overall, ALB
exhibits strong sensitivity in mountainous areas at higher altitudes, particularly concen-
trated in the eastern and southern parts of Northern Xinjiang. In our previous study, the
physical process of PCP demonstrated sensitivity at the site scale across various snowfall
climates [10]. Altering the parameterization scheme for this particular process can signif-
icantly impact the simulation outcomes of snow depth. PCP encompasses three distinct
parameterization schemes that categorize precipitation into rain and snow, contingent
on diverse temperature thresholds. The first scheme of PCP is the Jordan scheme, which
incorporates relatively complex functions. The second scheme divides all precipitation into
snowfall when Tair < Tf rz + 2.2K (the Tair and Tf rz are the air temperature and freezing
point, respectively), while in other cases, it is divided into rainfall in the second scheme.
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The third scheme of PCP divides precipitation into snowfall when Tair < Tf rz, while all
other situations are classified as rainfall. While these three parameterization schemes share
a minimal distinction in essence, their respective calculation methods reveal noteworthy
disparities in the model’s snow simulation outcomes, especially in situations where near-
surface air temperatures frequently oscillate around the freezing point. As illustrated in
Figure 3, regions with relatively high Sobol sensitivity indices are concentrated in the
Junggar Basin, north of the Tianshan Mountains, and in the northern part of Xinjiang, with
the maximum index value reaching approximately 0.4. Notably, Sobol sensitivity indices in
most areas of northern Xinjiang are low, approaching zero in many regions, particularly in
the mountainous areas of the Tianshan Mountains. This observation indicates that unlike
the physical process ALB, the sensitivity of the physical process PCP does not escalate with
altitude. The primary reason is that the three parameterization schemes of the physical
process PCP classify precipitation into varying proportions of rain and snow based on
temperature range. In the mountainous regions of northern Xinjiang during the snow
cover period, where temperatures are significantly lower than the freezing point, all three
schemes classify precipitation as snow. Consequently, the physical process of PCP does
not exhibit significant sensitivity in higher-altitude areas. However, in the Junggar Basin,
located in a lower-altitude, dry area, temperatures during the snowmelt period fluctuate
around the freezing point, leading to notable differences in snow simulation results when
different parameterization schemes are chosen. In summary, selecting the appropriate
parameterization scheme for the physical process PCP is crucial for accurately simulating
snow depth in Northern Xinjiang.

While Tukey’s test sensitivity method was previously utilized to assess TBOT sensitiv-
ity under diverse snow climate conditions at specific sites, a tentative sense emerged that
simulation results for snow depth might not be notably sensitive to the physical process
of TBOT. Our earlier statistical investigations, despite detecting sensitivity at all sites us-
ing Tukey’s test method, suggested that the differences in snow depth simulation results
arising from two distinct TBOT parameterization schemes were not statistically signifi-
cant. Figure 3 presents quantitative sensitivity outcomes in Northern Xinjiang, yielding
genuinely surprising results. The maximum value of the Sobol sensitivity index across
the entire region is 0.05, with only a few pixels achieving the maximum sensitivity index.
Remarkably, the sensitivity index for the physical process TBOT throughout the entire
Northern Xinjiang region is essentially zero. This finding appears to contradict the results of
the study by You et al. [10], where Tukey’s test method examined TBOT sensitivity in eight
sites under different snow climates. Further analysis reveals that, on one hand, Tukey’s test
scrutinizes the sensitivity of parameterization schemes at the point scale from a microscopic
perspective, overlooking spatial heterogeneity. On the other hand, a meticulous comparison
of the sample ensembles used for Tukey’s test in the study by You et al. [10] shows that the
mean, median, and kernel density distribution of the sample ensemble at most sites are
highly similar, with minimal differences between sets. Consequently, it can be concluded
that the choice of different parameterization schemes for the physical process TBOT is
unlikely to significantly impact the simulation results of snow depth at the regional scale,
at least in Northern Xinjiang.



Remote Sens. 2024, 16, 594 9 of 13Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. The Sobol total sensitivity of the simulated snow depth to the five parameterizations; 
higher values indicate higher sensitivities. 

The control of solar radiation entering the snowpack by snow surface albedo signifi-
cantly influences the energy balance, potentially leading to snowmelt. Snow surface al-
bedo schemes within Noah-MP, specifically the BATS and CLASS schemes, play a distinct 
role in regulating snow depth, with the CLASS scheme set as the default due to its pre-
sumed smaller snow surface albedo resulting from a stronger aging effect. Figure 3 shows 
notable spatial variations in the Sobol sensitivity index for the ALB process, with a maxi-
mum index value of 0.4, primarily in the Tianshan Mountains. Sensitivity indices for most 
areas in Northern Xinjiang are below 0.1, while the northeast of the Junggar Basin and the 
east of the Tianshan Mountains show relatively high indices, ranging from 0.3 to 0.4. Over-
all, ALB exhibits strong sensitivity in mountainous areas at higher altitudes, particularly 
concentrated in the eastern and southern parts of Northern Xinjiang. In our previous 
study, the physical process of PCP demonstrated sensitivity at the site scale across various 
snowfall climates [10]. Altering the parameterization scheme for this particular process 
can significantly impact the simulation outcomes of snow depth. PCP encompasses three 
distinct parameterization schemes that categorize precipitation into rain and snow, con-
tingent on diverse temperature thresholds. The first scheme of PCP is the Jordan scheme, 
which incorporates relatively complex functions. The second scheme divides all 

Figure 3. The Sobol total sensitivity of the simulated snow depth to the five parameterizations; higher
values indicate higher sensitivities.

Figure 3 highlights the significant sensitivity of the modeled snow depth to the TEMP
parameterization, evident across nearly the entire area. Sobol sensitivity indices in Figure 3
consistently approach 1 for the physical process TEMP throughout the region, with indices
reaching approximately 0.6 in specific areas of the Junggar Basin. Notably, areas where these
indices approach zero coincide with significant water bodies, falling outside the domain
of land surface models. TEMP has long been recognized as a crucial factor influencing
snow depth simulation outcomes, contributing significantly to the uncertainty in multi-
parameterization scheme ensemble simulations. The parameterization schemes in question
revolve around solving the heat conduction equation for soil/snow temperature in the first
layer, with two options employing different boundary conditions based on temperature
and fluxes. Our prior investigations reveal that opting for TEMP (1) results in rapid snow
ablation, while opting for TEMP (2) results in slower snow ablation.

3.3. Uncertainty Analysis of Physical Parameterization Schemes

Expanding on the sensitivity analysis of quantified parameterization schemes, we pro-
ceeded to quantify uncertainty in the simulated outcomes of a multi-parameterized scheme
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ensemble for snow depth in Northern Xinjiang. Figure 4 illustrates the uncertainty in snow
depth simulation results for 48 combination schemes. Notably, most areas in Northern
Xinjiang exhibit small uncertainties, gradually increasing with altitude. For instance, the
Tianshan Mountains region displays significantly higher uncertainty compared to the Jung-
gar Basin, ranging mostly from 0.2 to 0.4 m. In local mountainous areas, the uncertainty in
snow depth can exceed 0.5 m. This discrepancy is attributed to both the greater snow depth
in mountainous regions, leading to relatively larger errors, and the selection of different
parameterization schemes for specific physical processes, causing significant variations
in snowmelt mechanisms. The 48 combinations, derived through the permutation and
combination of parameterization schemes for five sensitive physical processes, underscore
the impact of model structure on simulation results. Figure 4 emphasizes that regions
with higher uncertainties are concentrated in high-altitude areas such as the Tianshan
Mountains and Altay Mountains, suggesting that distinctions between parameterization
schemes are primarily manifested during the snowmelt stage. While different combinations
of schemes result in diverse snowmelt mechanisms, areas with lower altitudes and less
snow accumulation exhibit comparatively smaller uncertainties in the overall simulation
results for the multi-parametric scheme ensemble. Figure 5 delves into the number of pixels
within different uncertainty intervals in Northern Xinjiang. The majority of pixels have an
uncertainty range for snow depth below 0.1 m, with the highest number falling within the
0.02–0.04 m range, indicating generally low uncertainty in simulated snow depth. This
may stem from the small amount of accumulated snow in these pixels, resulting in minimal
errors or negligible differences among the 48 scheme combinations. Additionally, the
figure reveals a considerable number of pixels with a snow depth simulation uncertainty
range exceeding 0.1 m, signifying substantial variations in simulated snow depth results
in certain areas due to the sensitivity of parameterization schemes. These differences may
arise from the varied snow accumulation and melting mechanisms associated with the
diverse combination schemes.
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4. Conclusions

In this study, our focus was on quantifying the spatial patterns of parameterization
sensitivities across Northern Xinjiang, coupled with an examination of the uncertainty in
simulated snow depth arising from different parameterization scheme combinations. We
accomplished this by creating a simulation ensemble that combined various parameteriza-
tion schemes and used the Sobol total sensitivity index. The subsequent section outlines
the primary findings derived from this study.

Notably, in contrast to the basin region, the variations in snow depth simulation
outcomes among the 48 combination schemes exhibit more pronounced distinctions in
the mountainous region. Additionally, the ensemble’s snow depth simulation results
demonstrate a greater variance in the mountainous region compared to the basin area.
While the sensitivity of parameterization schemes is well established in single-point ex-
periments, the quantified results in northern Xinjiang reveal noteworthy distinctions in
key parameterization schemes influencing snow simulation. The sensitivity index of the
PCP parameterization scheme is consistently high across northern Xinjiang, with sensitiv-
ity indices approaching 1 in all areas, with notably higher sensitivity in the basin region
compared to the mountains, especially in the central area of the Junggar Basin. In contrast,
the sensitivity index of the TBOT parameterization scheme reaches a maximum value of
0.05 across the entire region, indicating low sensitivity. Additionally, the parameterization
schemes for SFC and ALB exhibit sensitivity in localized areas. In contrast to the basin re-
gion, the ensemble simulation results of snow depth in mountainous regions exhibit greater
uncertainty, concentrated mainly between 0.2 and 0.3 m. In the basin, the uncertainty
is primarily below 0.1 m, with the majority of pixels falling within the 0.03–0.04 range.
These disparities underscore substantial variations in snow accumulation and melting
mechanisms among different combination schemes.

This study explores the sensitivity of regional parameterization schemes using the
Noah-MP model’s ensemble simulation results and the Sobol sensitivity index calculation
method. It is necessary to further investigate whether the sensitivity index calculation of
parameterization schemes at the regional level is influenced by the temporal and spatial
resolution of the driving data. Future research will employ data assimilation techniques
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to reduce the uncertainty of ensemble snow simulation results and clarify the impact of
different parameterization schemes on snow process simulation. The findings of this study
can serve as a reference for future ensemble simulation experiments.
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