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Abstract: Antarctic Total Column Ozone (TCO) gradually began to recover around 2000, and a large
number of studies have pointed out that the recovery of the Antarctic TCO is most significant in
the austral early spring (September). Based on the Bodeker Scientific Filled Total Column Ozone
and ERA5 reanalysis dataset covering 1979–2019, the variation characteristics of the Antarctic TCO
and stratospheric circulation for the TCO ‘depletion’ period (1979–1999) and the ‘recovery’ period
(2000–2019) are analyzed in September. Results show that: (1) Stratospheric elements significantly
related to the TCO have corresponding changes during the two eras. (2) The interannual variability
of the TCO and the above-mentioned stratospheric circulation elements in the recovery period are
stronger than those in the depletion period. (3) Compared with the depletion period, due to the
stronger amplitude of the planetary wave 1, stronger Eliassen–Palm (EP) flux corresponds to EP flux
convergence, larger negative eddy heat flux, and positive eddy momentum flux in the stratosphere
during the recovery period. The polar temperature rises in the lower and middle stratosphere and
the polar vortex weakens in the middle and upper stratosphere, accompanied by the diminished area
of PSC. This contributes to the understanding of Antarctic ozone recovery.

Keywords: antarctic total column ozone; depletion period; recovery period; stratospheric circulation;
Eliassen–Palm flux

1. Introduction

From the late 1970s to the early 1990s, the Total Column Ozone (TCO) decreased
rapidly over Antarctica during the austral spring (September–November), forming the
Antarctic ozone hole [1], which was mainly caused by the significant increase in ozone-
depleting substances (ODSs) as a result of additional anthropogenic emissions of chloroflu-
orocarbons (CFCs) and bromocarbons [2]. Although ozone depletion will be exacerbated
by the large amounts of volcanic aerosols produced by volcanic eruptions [3], ozone has
been showing signs of healing since around 2000 [4–7], which is the year of peak ODSs [8,9].
Studies have shown that ozone recovery is most evident in September [10], and the signal of
increasing ozone is strongest between 1 and 20 September due to the changes in ODSs [11].
As one of the reasons for ozone recovery in September, Solomon et al. [10] suggest that,
on the one hand, it is the chemical impact that is attributed to the gradual reduction in
halogenated gases due to the implementation of the Montreal Protocol. On the other hand,
it is the dynamic impact due to the influence of stratospheric temperature and circulation.
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The interdecadal trends of Antarctic ozone can be well explained by the changes in
ODSs [12,13], while the interannual variation in ozone is mainly influenced by stratospheric
temperature [14,15] and planetary waves [16–18]. When the Antarctic stratospheric tem-
perature decreases to a certain temperature, Polar Stratospheric Clouds (PSC) begin to
form and the area gradually increases, resulting in the heterogeneous chemical process of
chlorine gas on the surface of these PSCs to destroy ozone [6]. Additionally, the cooling
stratospheric temperature enhances the meridional temperature gradient from mid-latitude
to polar regions, strengthens the polar vortex through the thermal wind balance [19], and
delays the rupture time of the polar vortex [20]. Low-ozone concentration airs are restricted
by the dynamic properties of a stronger and later burst of polar vortexes in the polar
regions, providing material isolation for ozone hole development [21,22]. In addition,
more upward or downward Eliassen–Palm (EP) flux, corresponding to the divergence
of EP flux, propagates to the stratosphere and weakens the residual circulation and the
ozone transport from mid-latitude to polar regions. The accompanying anomalous upward
adiabatic cooling reduces the stratospheric temperature and enhances the polar vortex to
eventually affect the ozone hole [23,24].

Antarctic ozone has an important impact on changes in the climate system. For
example, the loss of Antarctic ozone cools the stratospheric polar region through radiation
cooling and strengthens the circumpolar westerlies and polar vortex. The influence of
Antarctic ozone depletion extends to the troposphere through complex interplays [25],
enhances the southern annular mode, strengthens the westerly jet, shifts toward the pole,
and deepens the Amundsen Sea lows. Moreover, the Hadley call and the subtropical arid
zone move towards the polar region [26–29]. In addition, the existence of the Antarctic
ozone hole also affects the ocean [30,31] and sea ice [32,33]. The climate effect of ozone
recovery seems to be opposite to the climate change caused by ozone depletion [26–28,34].
In conclusion, there is a close but complex causal relationship between Antarctic ozone
and stratospheric circulation. However, under the interdecadal change in TCO around
2000, the characteristics of stratospheric circulation anomalies and planetary waves are not
well understood in the two preceding and following eras of the TCO ‘depletion’ period
(1979–1999) and the ‘recovery’ period (2000–2019). Therefore, this paper plans to investigate
the variation characteristics of stratospheric circulation and planetary waves during the
two eras. The article is organized as follows. The data and methods are briefly described
in Section 2. In Section 3, the variation characteristics of TCO, stratospheric temperature,
polar vortex, and PSC area over Antarctica are studied by diagnosing the recovery period
and the depletion period. The variation characteristics of planetary waves during the two
eras are then discussed. Finally, the conclusion and discussion are given in Section 4.

2. Data and Methods
2.1. Data

The timeframe of all datasets is from 1979 to 2019.
The TCO dataset is provided by the Bodeker Scientific Filled Total Column Ozone

(BS–TCO) Database V3.5.1, with a horizontal resolution of 1◦ × 1.25◦ [35].
Stratospheric temperature, geopotential height, and wind field are obtained from the

European Center for Medium-Range Weather Forecasts (ECMWF) ERA5, with a horizontal
resolution of 0.25◦ × 0.25◦ [36].

The indices used in this study are as follows:

(1) Polar TCO index from the BS–TCO dataset is TCO averaged over 63◦S~90◦S [10].
(2) Polar TCO index from Satellite (S–TCO) is provided by the National Aeronautics and

Space Administration (NASA) Goddard Space Flight Center online database, missing
for 1994 and 1995.

(3) Equivalent effective stratospheric chlorine (EESC) is obtained from the Goddard Space
Flight Center, which has been widely used to relate predictions of human-generated
ODS abundances to future ozone changes [5,12]. It uses the parameters suggested by
Newman et al. [8,13] and corresponds to the WMO A1-2014 scenarios, with an age
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spectrum width of 2.75 year (symbol a is an abbreviation of year), a constant factor of
60, and a mean age-of-air of 5.5 a. This parameter is different from the classical EESC,
which is thought to be more suitable for the polar region.

(4) The index of the PSC area is also from the NASA Goddard Space Flight Center.
(5) Due to the close correlation between TCO and polar (60◦S~90◦S) temperature, in

particular with 50 hPa [12], the index of stratospheric temperature is represented by
temperature averaged over 60◦S~90◦S (polar temperature, PT) at 50 hPa.

(6) In the same way as the temperature, the polar vortex is greatly related to TCO, in
which a 10 hPa polar vortex variability explains approximately 85% of the variance
of polar TCO anomalies [37]. The index of the stratospheric polar vortex is also
represented by geopotential height averaged over 60◦S~90◦S (polar geopotential
height, PGH) at 10 hPa.

(7) Additionally, the index of the stratospheric polar vortex is calculated by the zonal-
mean zonal wind (U) at 60◦S (U at 60◦S, U60) and 30 hPa, which has the highest
correlation with TCO and approaches the center of the mean position of the polar
vortex in the mid-stratosphere. The polar vortex tends to enhance (weaken) the
reduced (elevated) PGH and the accelerating (decelerating) U60.

2.2. Methods

With the methods of linear regression analysis, the tendency rate of the TCO, strato-
spheric temperature, polar vortex, and PSC area were analyzed in the two eras. Correlation
analysis was used to explore the relationship between the TCO and stratospheric temper-
ature, polar vortex, and PSC area. Additionally, all datasets were detrended to eliminate
the correlation coefficient. Wavelet analysis was used to analyze the interannual variability
of total Antarctic ozone and stratospheric elements [38]. The main dynamic processes are
discussed by planetary wave, which is expressed by EP flux. EP flux has been widely used
to diagnose the propagation of atmospheric fluctuations and wave–flow interaction [39,40].
The formulas for EP flux and its divergence are as follows in spherical p coordinates [41]:

F =
(

Fφ, Fp) = (−a cos φ(v′u′), f a cos φ (v′θ′)/θp) (1)

∇·F =
1

a cos φ

∂

∂φ
(Fφ cos φ) +

∂

∂p
(Fp) (2)

where F is EP flux, ∇·F is its divergence (EP div), u and v represent zonal and meridional
wind, θ is the potential temperature, a is the radius of the Earth, f is the Coriolis parameter,
φ is the latitude, p is the pressure (hPa), the overbars denote zonal averages, and the primes
denote departure from the zonal average. v′θ′ is the eddy heat flux (EHF). v′u′ is the
eddy momentum flux (EMF). EP flux convergence (divergence) will lead to the weakening
(strengthening) of zonal flow. The EHF, being consistent with EP flux divergence [42], is
related to the vertical component of EP flux [43] and reflects upward wave propagations [44].
The propagation of planetary waves can change EMF by adjusting the wave-driving rate of
the polar vortex [39]. In the southern hemisphere, a negative EHF reflects upward wave
propagation, while a positive EMF reflects the enhanced poleward motion [45]. Table 1
shows the abbreviations and full names of terms used in the text.
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Table 1. Abbreviations and full names of terms used in the text.

Abbreviations The Full Name

TCO Total Column Ozone
ODSs Ozone-Depleting Substances
EESC Equivalent Effective Stratospheric Chlorine

PSC area Polar Stratospheric Cloud Area
PT Temperature Averaged Over 60◦S~90◦S

PGH Geopotential Height Averaged Over 60◦S~90◦S
U60 Zonal-Mean Zonal Wind (U) at 60◦S
EMF Eddy Momentum Flux
EHF Eddy Heat Flux

3. Results
3.1. The Variation Characteristics of Antarctic Total Column Ozone and Stratospheric Circulation
during the Recovery Period and Depletion Period

Antarctic ozone is related to stratospheric temperature [14]. Stratospheric temperature
affects the formation of PSCs on the one hand and cooperates with polar vortex on the
other [6,22]. The Antarctic ozone experiences an interdecadal change characteristic of
decreasing before 2000 and then rising after 2000 [7]. In consideration of that the variations
in temperature, wind, and geopotential height are interrelated within the framework of a
common physical process. So, do stratospheric temperature, polar vortex, and PSC area
change correspondingly?

3.1.1. The Temporal Characteristics of Antarctic Total Column Ozone

Based on the BS–TCO, S–TCO, and EESC data, Figure 1a shows the time series of
Antarctic polar TCO in September and EESC during the past 41 years (1979–2019). The
polar TCO derived from different datasets shows consistent interannual variation and
linear trend. The polar TCO coming from BS–TCO and S–TCO both increase at a rate of
22.2 Du·decade−1, with an average of 193.6 Du and 212.2 Du, respectively, in the recovery
period. The trend from the BS–TCO dataset has passed the 0.05 significance test. The polar
TCO coming from BS–TCO and S–TCO decreases significantly at a rate of 48.4 Du·decade−1

with an average of 212.6 Du and 49.6 Du·decade−1 with an average of 235.2 Du, respectively,
in the depletion period. The trend and average are very different between the two periods.
Following the phasing out of ODSs under the Montreal Protocol, the level of EESC stops
rising before 2000 and decreases after 2000 in the polar stratosphere, corresponding to the
depletion and recovery of TCO. The trend in the recovery period is numerically about twice
as slow as the trend in the depletion period, partly due to the slow decreasing rate and long
atmospheric lifetime of EESC, partly possibly due to short data records. Since the trend
values obtained from the two datasets exhibit little difference and the S–TCO is incomplete,
the BS–TCO dataset is used in the following analysis.

Antarctic ozone is directly related to the heterogeneous chemical process on the surface
of PSC [6,46]. Figure 1b shows the time series of polar TCO and PSC area in the last 41 years.
It can be seen that the PSC area is similar to the evolution of polar TCO and significantly
related to polar TCO with a determination coefficient of about 0.7. The PSC area decreases
slowly at a rate of 2.6 million·Km2·decade−1 with an average of 17.5 million·Km2 in
the recovery period, corresponding to the increased polar TCO. The PSC area increases
significantly at a rate of 2.7 million·Km2·decade−1 with an average of 14.9 million·Km2 in
the depletion period, being consistent with the decreased polar TCO. Therefore, the PSC
area first increases and then decreases around 2000.
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line, units: million·Km2) in September during 1979−2019. The left Y coordinate is for polar TCO. The 
right Y coordinate is for the inverse scale of EESC in (a) and for the PSC area in (b). The values on 
the top of the figure are linear trends in the recovery period (2000−2019) and depletion period 
(1979−1999). R2 in (b) is the determination coefficient for the whole period. * indicates that the linear 
trends and correlation coefficients are significant at the 0.05 confidence level. The black lines are 
linear fits of the time series during the two periods. The dashed lines are the averages of the time 
series during the two periods. 
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m·s−1·decade−1 with an average of 60.1 m·s−1. It can be seen that the trends of each strato-
spheric circulation element are not obvious, but correspond to the slow increase in TCO. 
During the depletion period, 50 hPa PT and 10 hPa PGH show a decreasing trend at a rate 
of 0.7 K·decade−1 with an average of 194.1 K and 6.1 dagpm·decade−1 with an average of 
2825.3 dagpm, respectively, while 30 hPa U60 increases at a rate of 1.3 m·s−1·decade−1 with 
an average of 62.6 m·s−1. It shows that the cooling temperature, the reduced geopotential 
height, and the accelerating zonal wind correspond to the decreased polar TCO. 

The above analysis results show that TCO and the temperature at 50 hPa, as well as 
the geopotential height at 10 hPa (PSC area and the zonal wind at 30 hPa), maintain a 
significant and stable positive (negative) relationship during the whole analysis period. In 
the depletion period, the stratospheric temperature decreases significantly, while the po-
lar vortex increases significantly, and the zonal wind is stronger. At this time, the PSC area 
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riod, the higher stratospheric temperature, the weaker polar vortex, the smaller zonal 
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Figure 1. Time series of (a) Antarctic polar TCO averaged over 63◦S~90◦S (dotted lines unit: Du) and
EESC (purple line unit: ppt), as well as (b) polar TCO (blue square line) and PSC area (red dotted line,
units: million·Km2) in September during 1979–2019. The left Y coordinate is for polar TCO. The right
Y coordinate is for the inverse scale of EESC in (a) and for the PSC area in (b). The values on the top
of the figure are linear trends in the recovery period (2000–2019) and depletion period (1979–1999).
R2 in (b) is the determination coefficient for the whole period. * Indicates that the linear trends and
correlation coefficients are significant at the 0.05 confidence level. The black lines are linear fits of the
time series during the two periods. The dashed lines are the averages of the time series during the
two periods.

3.1.2. The Temporal Characteristics of Stratospheric Temperature and Polar Vortex

The evolution characteristics of stratospheric temperature, geopotential height, and
zonal wind have been analyzed in the recent 41 years. Figure 2 shows the time series of the
polar TCO, 50 hPa PT, 10 hPa PGH, and 30 hPa U60 in the recent 41 years; 50 hPa PT, 10 hPa
PGH, and 30 hPa U60 have a remarkable correlation with polar TCO with a determination
coefficient of about 0.5. During the recovery period, 50 hPa PT and 10 hPa PGH increase at a
rate of 1.8 K·decade−1 with an average of 195.5 K and 11.4 dagpm·decade−1 with an average
of 2836.1 dagpm, respectively, while 30 hPa U60 decreases at a rate of 1.4 m·s−1·decade−1

with an average of 60.1 m·s−1. It can be seen that the trends of each stratospheric circulation
element are not obvious, but correspond to the slow increase in TCO. During the depletion
period, 50 hPa PT and 10 hPa PGH show a decreasing trend at a rate of 0.7 K·decade−1

with an average of 194.1 K and 6.1 dagpm·decade−1 with an average of 2825.3 dagpm,
respectively, while 30 hPa U60 increases at a rate of 1.3 m·s−1·decade−1 with an average of
62.6 m·s−1. It shows that the cooling temperature, the reduced geopotential height, and the
accelerating zonal wind correspond to the decreased polar TCO.

The above analysis results show that TCO and the temperature at 50 hPa, as well as
the geopotential height at 10 hPa (PSC area and the zonal wind at 30 hPa), maintain a
significant and stable positive (negative) relationship during the whole analysis period. In
the depletion period, the stratospheric temperature decreases significantly, while the polar
vortex increases significantly, and the zonal wind is stronger. At this time, the PSC area
increases significantly, corresponding to the sharp decrease in TCO. In the recovery period,
the higher stratospheric temperature, the weaker polar vortex, the smaller zonal wind, and
the decreased PSC area, in which the trends are not obvious, agree with the slow increase
in TCO.
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3.1.3. The Spatial Characteristics of Antarctic Total Column Ozone and Stratospheric
Circulation

To compare the spatial difference in TCO, stratospheric temperature, and polar vortex
over Antarctica between the two eras, the composite of TCO and 50 hPa temperature
anomalies, as well as 10 hPa geopotential height and 30 hPa zonal wind anomalies in
comparison with the climatic mean state, are displayed in Figure 3 during the two periods.
This indicates that significantly negative TCO anomalies are observed from Queen Maud
Land to West Antarctica (cold shadings in Figure 3a) and the anomaly centers are located
in the Haakon VII Sea (near 0◦) during the recovery period. The positive TCO anomalies in
Wilkes Land and its northern areas (warm shadings in Figure 3a) correspond to the positive
anomaly center of the temperature (red contours in Figure 3a) and geopotential height
(warm shadings in Figure 3c), as well as the anomalous eastward wind around 60◦S (blue
contours in Figure 3c). The distributions of TCO and stratospheric circulation anomalies
during the depletion period are opposite to those during the recovery period Therefore,
notable changes in TCO, stratospheric temperature, and polar vortex anomalies can be seen
between the two periods. The positive (negative) TCO anomalies over Antarctica agree
with the warming (cooling) of polar temperature and the weakening (strengthening) of the
polar vortex.

Aiming at further understanding the linear trends of Antarctic TCO, stratospheric
temperature, and polar vortex in the two eras, the spatial distributions of linear trends of
TCO, 50 hPa temperature, 10 hPa geopotential height, and 30 hPa zonal wind are shown in
Figure 4. During the recovery period, TCO (warm shadings in Figure 4a) and stratospheric
temperature (red contours in Figure 4a) show a significant increasing trend over Antarctica,
with the center located in the Ross Sea (near 180◦). Geopotential height increases in the
southern South Pacific (warm shadings in Figure 4c), accompanied by the decelerating
zonal wind (blue contours in Figure 4c). During the depletion period, TCO (cold shadings
in Figure 4b) and temperature (blue contours in Figure 4b) decrease significantly over
Antarctica. Geopotential height decreases considerably over West Antarctica (cold shadings
in Figure 4d) in combination with the accelerating zonal wind (red contours in Figure 4d).
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Figure 3. Composite of (a,b) Antarctic TCO (shadings, unit: Du) and 50 hPa temperature (contours,
unit: K), and (c,d) 10 hPa geopotential height (shadings, unit: dagpm), and 30 hPa zonal wind
(contours, unit: m·s−1) anomalies in September during the (a,c) recovery period and (b,d) depletion
period, in comparison with the climatic mean state. The climatic mean state is the average value of
each element from 1980 to 2010. The dotted areas and yellow grid areas represent the anomalies in
the (a,b) TCO and temperature, and (c,d) geopotential height and zonal wind that are statistically
significant at the 0.1 confidence level, respectively. The outermost latitude is 30◦S and the latitude
interval is 15◦.

3.1.4. The Interannual Variability of Antarctic Total Column Ozone and Stratospheric
Circulation

The spatial characteristics of Antarctic TCO, stratospheric temperature, and polar
vortex are significantly different between the recovery and depletion periods. For the
purpose of contrasting the degree of interannual variation of the TCO and stratospheric
circulation over Antarctica during the two periods, Figure 5 shows the composite variance
of the TCO and 50 hPa temperature, as well as 10 hPa geopotential height and 30 hPa zonal
wind during the two periods. As can be seen, the largest interannual variances of each
element are located in Wilkes Land and its north during the recovery period (Figure 5a,c),
and in the northeast of Queen Maude Land during the depletion period (Figure 5b,d). In
addition, the interannual variance in the recovery period is greater than that in the depletion
period and the center is consistent with that of the abnormal center on the whole (Figure 3).
Therefore, the interannual variance distributions of TCO, stratospheric temperature, and
polar vortex in the two periods are significantly different.
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To further understand the interannual variability of Antarctic TCO and stratospheric
circulation during the two periods, Figure 6 shows the Morlet wavelet analysis of polar
TCO and 50 hPa PT during the two periods. As can be seen, the interannual variation in
polar TCO and 50 hPa PT in the two periods is similar to the main cycle being 2–4 years.
Lu et al. [47] and Zou and Gao [48] found that the Antarctic ozone has a quasi-biennial
oscillation period, which is consistent with the results of this paper. In the 2–4 year cycle,
the maximum power spectrum of the polar TCO was 1878 in the recovery period and 322
in the depletion period, while the maximum power spectrum of 50 hPa PT was 50 in the
recovery period and 6.75 in the depletion period. The wavelet analysis of the PSC area,
10 hPa PGH, and 30 hPa U60 were similar to 50 hPa PT. Therefore, the power spectrum
of the TCO and stratospheric circulation in the 2–4 year cycle during the recovery period
are much greater than that during the depletion period, showing stronger interannual
variability characteristics.
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Combined with the above analysis results, it can be seen that the TCO is closely related
to the PSC area, 50 hPa temperature, 10 hPa geopotential height, and 30 hPa zonal wind
in the two eras. The relationship of each element is stable under the interdecadal change
in the TCO: the rising (falling) of polar temperature, as well as the elevated (reduced)
geopotential height, and the decelerating (accelerating) zonal wind result in the weakening
(strengthening) of the polar vortex, combining with the increased (diminished) PSC area,
thus, corresponding to the recovery (depletion) of the TCO. Additionally, the interannual
variability of the TCO and stratospheric circulation in the recovery period is much greater
than that in the depletion period.

3.2. The Variation Characteristics of Planetary Waves on Antarctic Total Column Ozone during the
Recovery Period and Depletion Period

The above analyses prove that the 50 hPa temperature, 10 hPa geopotential height, and
30 hPa zonal wind are different during the recovery and depletion period. Are there also
differences in the change in stratospheric circulation at each stratospheric layer between
the two periods? First, the composite difference in stratospheric temperature, geopotential
height, and zonal wind anomalies as a function of altitude and latitude were compared
between the two periods. Compared with the depletion period, the temperature and geopo-
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tential height are positive anomalies in the polar region during the recovery period. The
large value of temperature (geopotential height) is located in the lower and middle strato-
sphere (the middle and upper stratosphere). The zonal wind shows a negative anomaly
near 60◦S in the middle and upper stratosphere. Not only are the 50 hPa temperature,
10 hPa geopotential height, and 30 hPa zonal wind significantly different, but the tempera-
ture in the middle and lower stratosphere and the polar vortex in the middle and upper
stratosphere are also significantly different between the two periods.

The linear trends of stratospheric temperature and polar vortex during the recovery
and depletion periods are further analyzed. Figure 7 exhibits the linear trend of strato-
spheric temperature and geopotential height as a function of altitude and latitude in the
two periods. It illustrates that the temperature shows a positive trend throughout the
stratosphere and the maximum trends appear in the lower and middle stratosphere during
the recovery period (Figure 7a). Additionally, the geopotential height shows a positive
trend (Figure 7c), and the zonal wind shows a negative trend in the middle and upper
stratosphere, indicating a rising temperature in the lower and middle stratosphere and the
gradual weakening of the polar vortex in the middle and upper stratosphere. During the
depletion period, the temperature shows a negative trend in the middle and lower strato-
sphere, and the maximum trend is in the middle stratosphere (Figure 7b), corresponding to
the negative trend of geopotential height (Figure 7d) and the positive trend of zonal wind
in the middle and upper stratosphere. This demonstrates the falling temperature in the
lower and middle stratosphere and the strengthening polar vortex in the middle and upper
stratosphere. The trends of stratospheric circulation are not obvious, consistent with the
result from Figure 2. This is possibly because of its inhomogeneity in zonal distribution.
As a consequence, the changes in temperature and polar vortex in the recovery period are
opposite to that in the depletion period. The changes in temperature are mainly located in
the middle and lower stratosphere, while the changes in polar vortex are in the middle and
upper stratosphere.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 18 
 

 

recovery period are opposite to that in the depletion period. The changes in temperature 
are mainly located in the middle and lower stratosphere, while the changes in polar vortex 
are in the middle and upper stratosphere. 

 
Figure 7. The linear trends of (a,b) temperature (unit: K·a−1) and (c,d) geopotential height (unit: 
dagpm·a−1) as a function of altitude and latitude in September during the (a,c) recovery period and 
(b,d) depletion period. The dotted areas are significant at the 0.01 confidence level. 

The stratospheric temperature and polar vortex driven by planetary waves can affect 
the Antarctic ozone [23,24]. The difference in EP flux and EP flux divergence in the two 
periods are compared. The anomaly distribution in the recovery period is the opposite of 
that in the depletion period. In the recovery period, there is more upward EP flux and EP 
flux convergence in the stratosphere. The more downward EP flux corresponds to EP flux 
divergence during the depletion period, indicating the significant differences in EP flux 
and EP flux divergence between the two periods. 

The linear trends of EP flux and EP flux divergence calculated from waves 1–3 as a 
function of altitude and latitude in the two periods are further displayed in Figure 8. Dur-
ing the recovery period, the stronger EP flux propagates from the troposphere to the strat-
osphere and EP flux convergence occurs in the middle and upper stratosphere above 10 
hPa (cold shadings in Figure 8a). The stronger planetary wave forcings correspond to the 
positive trend of polar temperature in the lower and middle stratosphere and polar geo-
potential height in the middle and upper stratosphere (Figure 7a,c), as well as the negative 
trend of zonal flow in the middle and upper stratosphere being consistent with the recov-
ery of the TCO. Additionally, in the vicinity of 3 hPa, EP flux is from the weak EP flux 
divergence in the low latitude (warm shadings in Figure 8a) to the EP flux convergence in 
the polar region. The stronger poleward movements are in favor of the transport of ozone-
rich air from the equator to the polar, thus being consistent with the recovery of the TCO 
in the polar regions. In addition, the weak EP flux divergence exists near the polar region 
below 10 hPa (warm shadings in Figure 8a), which corresponds to the positive trend of 
zonal wind and the negative trend of geopotential height (cold shadings in Figure 7c). 

Figure 7. The linear trends of (a,b) temperature (unit: K·a−1) and (c,d) geopotential height (unit:
dagpm·a−1) as a function of altitude and latitude in September during the (a,c) recovery period and
(b,d) depletion period. The dotted areas are significant at the 0.01 confidence level.
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The stratospheric temperature and polar vortex driven by planetary waves can affect
the Antarctic ozone [23,24]. The difference in EP flux and EP flux divergence in the two
periods are compared. The anomaly distribution in the recovery period is the opposite of
that in the depletion period. In the recovery period, there is more upward EP flux and EP
flux convergence in the stratosphere. The more downward EP flux corresponds to EP flux
divergence during the depletion period, indicating the significant differences in EP flux
and EP flux divergence between the two periods.

The linear trends of EP flux and EP flux divergence calculated from waves 1–3 as
a function of altitude and latitude in the two periods are further displayed in Figure 8.
During the recovery period, the stronger EP flux propagates from the troposphere to the
stratosphere and EP flux convergence occurs in the middle and upper stratosphere above
10 hPa (cold shadings in Figure 8a). The stronger planetary wave forcings correspond
to the positive trend of polar temperature in the lower and middle stratosphere and
polar geopotential height in the middle and upper stratosphere (Figure 7a,c), as well as
the negative trend of zonal flow in the middle and upper stratosphere being consistent
with the recovery of the TCO. Additionally, in the vicinity of 3 hPa, EP flux is from the
weak EP flux divergence in the low latitude (warm shadings in Figure 8a) to the EP flux
convergence in the polar region. The stronger poleward movements are in favor of the
transport of ozone-rich air from the equator to the polar, thus being consistent with the
recovery of the TCO in the polar regions. In addition, the weak EP flux divergence exists
near the polar region below 10 hPa (warm shadings in Figure 8a), which corresponds
to the positive trend of zonal wind and the negative trend of geopotential height (cold
shadings in Figure 7c). During the depletion period, the weaker EP flux exists from the
troposphere to the stratosphere, corresponding to EP flux divergence at high latitudes in
the middle stratosphere (warm shadings in Figure 8b). The weaker planetary wave forcings
correspond to the negative trend of polar temperature in the lower and middle stratosphere
and the polar geopotential height in the middle and upper stratosphere (Figure 7b,d). At
this time, zonal flow accelerates in the middle and upper stratosphere, in favor of the
depletion of the TCO. Additionally, EP flux is from EP flux divergence in the polar region to
EP flux convergence in the low latitudes (cold shadings in Figure 8b). The weaker poleward
movements are in favor of the transport of ozone from the polar to the equator, thus being
consistent with the depletion of the TCO in the polar regions.

Eddy heat flux and eddy momentum flux can reflect the direction of planetary
waves [40,45]. Figure 9 shows the difference in the linear trends of EHF and EMF calculated
by waves 1–3 as a function of altitude and latitude between the two periods. During
the recovery period, EHF decreases largely near the polar region of 10 hPa (Figure 9a),
accompanied by more and stronger EP flux and EP flux convergence (Figure 8a). Compared
with the recovery period, the smaller decreased EHF near the upper stratospheric polar
region corresponds to weaker EP flux and EP flux divergence at high latitudes during the
depletion period (Figure 8b). In addition, the increased EMF above 30 hPa at midlatitudes
indicates that the poleward movements enhance (Figure 9b), and the planetary waves bring
the ozone from the middle and low latitudes to the polar regions (Figure 8a), in keeping
with the decelerating zonal flow and the increased ozone. During the depletion period, the
decreased EMF in the stratosphere indicates that the poleward movements weaken and
more planetary waves carry ozone away from the polar region (Figure 8b). This agrees
with the accelerating zonal flow and the decreased ozone.
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Figure 8. The linear trends of EP flux (vectors, unit: m3·s−2·a−1) and EP flux divergence (shadings,
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Planetary waves, particularly for wave 1, dominate the total wave in the strato-
sphere [42,49], Figure 10 shows the climatological distributions and composite anomalies
for geopotential height calculated from wave 1, as well as the linear trends for geopoten-
tial height and temperature calculated from wave 1, at 100 hPa in September during the
recovery period and depletion period. This demonstrates that positive geopotential height
is observed from the east of the southern Indian Ocean to the center of the South Pacific
(red contours in Figure 10a,b), while negative geopotential height is over the east of the
South Pacific to the South Atlantic (blue contours in Figure 10a,b) during the two periods.
During the recovery period, positive anomalies in the southeast Pacific (warm shadings in
Figure 10a) and negative anomalies in the South Atlantic (cold shadings in Figure 10a) are
superimposed with the climatological geopotential height, indicating the larger amplitude
of geopotential height. From the perspective of the linear trend, the geopotential height
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wave 1 and temperature wave 1 are in different phases (Figure 10b), resulting in stronger
baroclinic disturbance. During the depletion period, the anomalies for geopotential height
are with out-of-phase superposition on the climatological geopotential height (Figure 10c).
The geopotential height wave 1 and temperature wave 1 are in the same phases (Figure 10d),
leading to weaker baroclinic disturbance.
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In summary, the stronger (weaker) planetary wave amplitudes and baroclinic distur-
bances lead to stronger (weaker) upward planetary wave propagation from the troposphere
to the stratosphere, as well as EP flux convergence (divergence), larger (smaller) negative
EHF, and positive (negative) EMF. This is in accordance with the rising (falling) temperature
in the lower and middle stratosphere and the weakened (enhanced) polar vortex in the
middle and upper stratosphere, in combination with the diminished (increased) PSC area,
being advantageous to the recovery (depletion) of the TCO.

4. Conclusions and Discussion

Based on the BS–TCO and ERA5 datasets during 1979–2019, this study explores the
variation characteristics of TCO, stratospheric temperature, polar vortex, and PSC area
over Antarctica under the interdecadal change in TCO around 2000 for the TCO ‘depletion’
period (1979–1999) and the ‘recovery’ period (2000–2019). The variation characteristics of
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planetary waves are then discussed during the two periods. The results are concluded as
follows.

The TCO over Antarctica in September increases significantly after 2000 and decreases
significantly before 2000 as a result of the change in ODSs. During the whole period, the
TCO and the temperature, as well as the geopotential height (PSC area and the zonal wind)
maintain a significant and stable positive (negative) relationship. Correspondingly, around
2000, the polar temperature in the middle and lower stratosphere experiences a process
of first cooling and then warming, the polar vortex in the middle and upper stratosphere
first strengthens and then weakens, and the PSC area first increases and then diminishes.
The trends of stratospheric polar temperature and the polar vortex are not significant but
are consistent with the changes in the TCO. However, the interannual variability of the
TCO and the above-mentioned stratospheric circulation elements in the recovery period are
stronger than in the depletion period. The complete picture of the variation characteristics
of the TCO and stratospheric circulation during the recovery and depletion periods is
presented in Figure 11.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 18 
 

 

During the recovery period (Figure 11a), due to the stronger amplitude of planetary 
wave 1 and the baroclinic disturbance in the upper troposphere (Figure 10a), stronger up-
ward EP flux existed in the stratosphere, accompanied by EP flux convergence (Figure 8a), 
larger negative eddy heat flux, and positive eddy momentum flux (Figure 9) in the middle 
and upper stratosphere. The polar temperature rose (Figures 2a, 4a and 7a) in the lower 
and middle stratosphere and the polar vortex weakened (Figures 2b, 4c and 7c) in the 
middle and upper stratosphere. The area of PSC diminished (Figure 1b), in keeping with 
the recovery of the Antarctic TCO (Figures 1a and 4a). During the depletion period (Figure 
11b), the weaker planetary wave 1 amplitude and baroclinic disturbance in the upper trop-
osphere (Figure 10c,d), resulted in weaker EP flux, together with EP flux divergence in the 
middle stratosphere (Figure 8b), smaller negative eddy heat flux and negative eddy mo-
mentum flux (Figure 9), when compared with the recovery period. The polar temperature 
fell (Figures 2a, 4b and 7b) in the middle and low stratosphere and the polar vortex was 
enhanced (Figures 2b, 4d and 7d) in the middle and upper stratosphere, accompanied by 
the increased area of PSC (Figure 1b), corresponding to the depletion of the Antarctic TCO 
(Figures 1a and 4b). 

 
Figure 11. Schematic diagram of the possible pathways for different evolutions of the Antarctic Total 
Column Ozone during the (a) recovery period and (b) depletion period. 

The varying characteristics of the Antarctic ozone and stratospheric circulation are 
compared in this paper using monthly data from the past 41 years during the Antarctic 
TCO recovery period and depletion period. Stratospheric elements significantly related to 
the TCO experienced corresponding changes. The stronger interannual variability of the 
TCO and the stratospheric circulation elements possibly means that the dynamic pro-
cesses of stratospheric circulation had a closer relationship with the TCO in the recovery 
period. But the time series of the TCO in Figures 1 and 2 both have three local maximums 
in 1988, 2002, and 2019, because of sudden stratospheric warming [50,51]. Regarding the 
cause of the sudden stratospheric warming, some studies have suggested that it is due to 
the interaction between planetary waves and zonal winds [43], so this paper takes the 
three years of sudden stratospheric warming events into consideration as well. The results 
obtained after removing the data in these years are similar to those in this paper, so these 
three years do not affect the results presented in this paper. It is worth mentioning that 
the temporal and spatial characteristics of the Antarctic TCO from ECMWF are similar to 
those from BS–TCO. In addition, EP flux has a 2–4-year cycle and the power spectrum 

Figure 11. Schematic diagram of the possible pathways for different evolutions of the Antarctic Total
Column Ozone during the (a) recovery period and (b) depletion period.

During the recovery period (Figure 11a), due to the stronger amplitude of planetary
wave 1 and the baroclinic disturbance in the upper troposphere (Figure 10a), stronger
upward EP flux existed in the stratosphere, accompanied by EP flux convergence (Figure 8a),
larger negative eddy heat flux, and positive eddy momentum flux (Figure 9) in the middle
and upper stratosphere. The polar temperature rose (Figures 2a, 4a and 7a) in the lower and
middle stratosphere and the polar vortex weakened (Figures 2b, 4c and 7c) in the middle
and upper stratosphere. The area of PSC diminished (Figure 1b), in keeping with the
recovery of the Antarctic TCO (Figures 1a and 4a). During the depletion period (Figure 11b),
the weaker planetary wave 1 amplitude and baroclinic disturbance in the upper troposphere
(Figure 10c,d), resulted in weaker EP flux, together with EP flux divergence in the middle
stratosphere (Figure 8b), smaller negative eddy heat flux and negative eddy momentum
flux (Figure 9), when compared with the recovery period. The polar temperature fell
(Figures 2a, 4b and 7b) in the middle and low stratosphere and the polar vortex was
enhanced (Figures 2b, 4d and 7d) in the middle and upper stratosphere, accompanied by
the increased area of PSC (Figure 1b), corresponding to the depletion of the Antarctic TCO
(Figures 1a and 4b).
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The varying characteristics of the Antarctic ozone and stratospheric circulation are
compared in this paper using monthly data from the past 41 years during the Antarctic
TCO recovery period and depletion period. Stratospheric elements significantly related to
the TCO experienced corresponding changes. The stronger interannual variability of the
TCO and the stratospheric circulation elements possibly means that the dynamic processes
of stratospheric circulation had a closer relationship with the TCO in the recovery period.
But the time series of the TCO in Figures 1 and 2 both have three local maximums in
1988, 2002, and 2019, because of sudden stratospheric warming [50,51]. Regarding the
cause of the sudden stratospheric warming, some studies have suggested that it is due
to the interaction between planetary waves and zonal winds [43], so this paper takes the
three years of sudden stratospheric warming events into consideration as well. The results
obtained after removing the data in these years are similar to those in this paper, so these
three years do not affect the results presented in this paper. It is worth mentioning that the
temporal and spatial characteristics of the Antarctic TCO from ECMWF are similar to those
from BS–TCO. In addition, EP flux has a 2–4-year cycle and the power spectrum during the
recovery period is much greater than that during the depletion period, showing stronger
interannual variability characteristics. But the difference and interannual variability of EP
flux are not significant between the two periods. Therefore, it is not analyzed deeply in this
paper.

Due to the complex relationship between ozone and stratospheric temperature, and
the continuous increase in greenhouse gases contributing to the cooling of the lower
stratosphere in the depletion period and hindering the warming of the stratosphere in the
recovery period [52], the order of precedence between TCO and stratospheric circulation
is more difficult to distinguish. Solomon et al. [10] studied the contribution of dynamic
and chemical processes to the ozone recovery trend through models and emphasized the
important contribution of dynamic processes to ozone recovery in September. Additionally,
an example of the relationship between stratospheric sudden warming and ozone studied
for Syowa station in Antarctica based on the daily data, points out that stratospheric
warming is affected by dynamic processes and ozone changes have a weak effect on
stratospheric warming [53,54]. In conclusion, the formation of Antarctic ozone is influenced
by atmospheric dynamics and atmospheric chemistry. It is necessary to select typical cases
to analyze and further investigate the level of influence of dynamic processes on the
TCO [55] using coupled dynamic chemical models in the recovery periods. In terms of
the diagnosis of large-scale dynamic transport processes, a variety of diagnostic methods
should be used for dynamic analysis, such as the residual circulation and reflective surfaces.
Residual circulation driven by planetary wave activity [49] can also affect Antarctic ozone,
but the long-term trends of this are still controversial [4,56]. All these problems need to be
studied further.
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wind, geopotential height, and temperature datasets come from the European Center for Medium-
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