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Abstract: Coastal acoustic tomography (CAT) is a remote sensing technique that utilizes acoustic
methodologies to measure the dynamic characteristics of the ocean in expansive marine domains.
This approach leverages the speed of sound propagation to derive vital ocean parameters such as
temperature and salinity by inversely estimating the acoustic ray speed during its traversal through
the aquatic medium. Concurrently, analyzing the speed of different acoustic waves in their round-trip
propagation enables the inverse estimation of dynamic hydrographic features, including flow velocity
and directional attributes. An accurate forecasting of inversion answers in CAT rapidly contributes to
a comprehensive analysis of the evolving ocean environment and its inherent characteristics. Graph
neural network (GNN) is a new network architecture with strong spatial modeling and extraordinary
generalization. We proposed a novel method: employing GraphSAGE to predict inversion answers
in OAT, using experimental datasets collected at the Huangcai Reservoir for prediction. The results
show an average error 0.01% for sound speed prediction and 0.29% for temperature predictions
along each station pairwise. This adequately fulfills the real-time and exigent requirements for
practical deployment.

Keywords: coastal acoustic tomography; prediction; graph neural network; water temperature

1. Introduction

Since the 20th century, humanity has embarked upon a more proactive exploration
of the ocean. The ocean harbors a wealth of minerals, biology, physics, and chemistry,
making a meticulous analysis of the ocean environment immensely practical [1]. Coastal
acoustic tomography developed by ocean acoustic tomography (OAT), a remote sensing
technique utilizing acoustic methodologies, is employed to measure dynamic oceanic
characteristics across extensive marine domains [2,3]. Given the significant influence of
ocean parameters like temperature, salinity, flow direction, and sound speed [4], utilizing
the speed of acoustic wave propagation aids in inversely deriving water temperature and
salinity through their respective impacts on sound speed. Moreover, by analyzing the speed
difference of acoustic waves in the round-trip propagation, one can inversely estimate
flow velocity and direction within the water. This iterative process is known as inversion.
Predicting inversion answers in ocean acoustic tomography facilitates a thorough analysis
of the evolving ocean environment and its intrinsic characteristics.

Remote Sens. 2024, 16, 646. https://doi.org/10.3390/rs16040646 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040646
https://doi.org/10.3390/rs16040646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0145-5448
https://orcid.org/0000-0001-5046-5701
https://orcid.org/0000-0002-6812-9076
https://doi.org/10.3390/rs16040646
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040646?type=check_update&version=1


Remote Sens. 2024, 16, 646 2 of 16

Previously, the station calibration method of the acoustic tomography system was
proposed [5]. This method innovatively solves the problem of positioning error in tra-
ditional acoustic detection, and it greatly improves the accuracy of water temperature
reconstruction in marine and lake environments through the fine calibration of observation
data. Mature acoustic tomography techniques have been used to accurately measure water
temperature and flow in reservoirs and to map multi-layer flow fields in small-scale shallow
water reservoirs [6,7]. Thus, predicted analysis profoundly contributes to a comprehensive
understanding of ocean dynamics and plays a vital role in ocean sciences and resources.

The graph neural network (GNN) [8] is a new neural network to extract features and
inherent patterns by learning graph-structured data. Its fundamental principle is obtaining
a mapping function, which enable nodes within the graph to aggregate not only their
individual features but also the features of neighboring nodes. This amalgamation results
in the generation of a novel representation for nodes.

The integration of GNN into the prediction of inversion answers in OAT is of great
significance. It serves as a crucial reference in the reconstruction of tomographic answers,
profoundly enhancing comprehension of the ocean environment and its evolutionary dynamics.

During OAT measurements, an array of underwater sound transmitters and receivers
are strategically positioned around the target water body [9]. Specific transmitters emit
sound signals while others are designated for signal reception, measuring sound wave
propagation times to calculate sound speeds accurately. Employing electronic computation,
the average speed and speed differences of a round trip are subjected to inverse computa-
tions. This analytical process enables the determination of the spatial distribution of ocean
parameters, including temperature, salinity, flow velocity, and flow direction [10,11].

This study introduces an approach employing GraphSAGE [12] to predict inversion
results in OAT utilizing experimental data and inversion results collected at the Huang-
cai Reservoir [13]. We assessed the prediction accuracy and computational efficiency of
GraphSAGE for the inversion temperature and sound speed.

2. Method and Experiment

In this section, a comprehensive exposition on the provenance of the experimental
dataset, the methodology employed for OAT inversion, and a thorough elucidation of the
architecture and loss function pertaining to GraphSAGE are provided. Furthermore, we
delineate the evaluation metrics utilized for analyzing prediction answers and expound
upon the configuration of the experimental environment, intricacies of the setup, and the
sequential progression of the experiments.

2.1. Dataset Introduction

The experimental data were collected during the period from September 15th to 16th,
2020, at three CAT stations designated as S1, S2, and S3, which are situated on the eastern
flank of the Huangcai Reservoir in Changsha, China [13]. Throughout the experiment, each
transceiver emitted acoustic waves modulated with 10th-order M-sequences at one-minute
intervals to enhance the signal-to-noise ratio. Terrain measurements between the three data
collection points were conducted via a ship-mounted Acoustic-Doppler Current Profiler
(ADCP), while navigating along the pathways connecting each pair of measurement points
(Figure 1, blue arrow).

The water temperature and flow reconstruction results for the acoustic transmission
section were analyzed using the credible zone method. Subsequently, the credibility and
accuracy of the reconstructed inversion results are verified by comparing with temperature
data acquired from dedicated sensors.

The experimental dataset comprises a total of 4393 instances, encompassing inver-
sion data related to water temperature, flow velocity, and sound speed, which comprises
1642 data points between S1 and S2, 1390 data points between S1 and S3, and 1361 data
points between S2 and S3. The dataset is shown in Figure 2. Subsequently, we proportion-
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ally partitioned it into training, validation, and testing sets in a ratio of 3:1:1, as required for
training and evaluating the GNN.
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layer (7.5 m, 20 m, 29 m), red lines indicate the results passing through the 1 h weighted moving 
average). 

2.2. Principle of Acoustic Tomography Inversion 
Assuming acoustic wave propagation in the underwater environment, and provided 

a sound speed profile, Figure 3 illustrates the structural arrangement of acoustic rays. 

Figure 1. Geographical layout of the Huangcai Reservoir and its surrounding areas. The left panel
provides an overview, while the right panel zooms in on the southeast portion of the reservoir. This
detailed view highlights the locations of CAT stations (S1, S2, and S3), the TD point, and the trajectory
of ADCP sailings. The green solid lines represent the projection of acoustic ray paths in the horizontal
slice. Additionally, the upper right corner of the magnified figure features a photograph of the CAT
system utilized at station S1.
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2.2. Principle of Acoustic Tomography Inversion

Assuming acoustic wave propagation in the underwater environment, and provided a
sound speed profile, Figure 3 illustrates the structural arrangement of acoustic rays.

Based on the references, after rearranging the three acoustic ray equations, the follow-
ing Equation (1) can be obtained.
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where lij represents the length of the ith ray across the jth layer. C0j and δC1 are the
reference sound speed and sound speed deviation of the jth layer. The travel time deviation
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δt = t1+t2
2 − t0, t1 and t2 are reciprocal travel times, and t0 is the reference travel time along

the acoustic ray path.
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Figure 3. Sound propagation structure and layer division. Two sound transceivers are deployed
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multi-path sound propagation is achieved. (a) Sound speed profile. (b) Corresponding acoustic rays.

Equation (1) can be easily solved using the direct matrix method. Nevertheless, in
cases where the number of layers and rays is unequal, the associated equations pose an
ill-posed problem. Equation (1) can be formulated as follows:

y = Ex + n (2)

where y = {δti} is a column vector about the travel time deviations of different rays.

E =

{
lij

C2
0j

}
is a matrix obtained after ray simulation. n represents errors. x =

{
δCj

}
is

the unknown column vector about the sound speed deviations. Regularized inversion is
introduced to solve Equation (2). The expected solution is:

x̂ =
(

ETE + λHTH
)−1

ETy (3)

where λ is a parameter determined by limiting the expected error to a threshold, and it is
updated during the experiment to trace the dynamic environment. H is the regularization
matrix used to smooth the solution by the moving average of three consecutive layers.

Upon obtaining the sound speed profiles for each layer, the corresponding temper-
atures can be derived using the sound speed formula proposed by Mackenzie [14], as
outlined in the following steps.

The approach employed to reconstruct the two-dimensional temperature field along
a vertical slice is an extension of the layer-averaged water temperature reconstruction
method. Analogously, the ray structure illustrated in Figure 3 is utilized in this methodology.
Following the layer division, the eastward profile is segmented into three distinct sections.
The vertical profile is further partitioned into three layers and arranged in a 3 × 3 grid
configuration, as depicted in Figure 4. These layers and grids serve as the foundation for
establishing the layer-averaged water temperatures and constructing the two-dimensional
temperature field.

We can deduce the following equations:

l14
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l34
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+ l36
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+ l37
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+ l38
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+ l39
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= t03 + δt3

(4)
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Note that the reference sound speed of each layer will remain the same. After taking
the Taylor expansion, we obtain:
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Equation (6) is an ill-posed problem, and it can also be solved by regularized inversion,
as shown in Equation (3).

2.3. GNN Model Structure and Experimental Procedure
2.3.1. GraphSAGE Model and Principles

GraphSAGE [12] is a spatial graph convolutional network that leverages convolu-
tional operations between nodes and their neighboring nodes to extract features from the
neighboring nodes, as illustrated in Figure 5. Its main principle can be primarily delineated
into two components: sampling and aggregation.
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Figure 5. Visualization of GraphSAGE. (a) Sample neighborhood. Pink represents all features
associated with red dots. (b) Aggregate feature information from neighbors. Colored points are
associated with their respective neighboring points. (c) Predict graph feature with aggregated
information. Save the relationships as labels and attempt to predict the relationships in the vicinity of
the red point.

(1) Sampling

Step 1: Initiate feature vectors for all nodes within the input graph.
Step 2: Specify the number of nodes to be sampled and the number of neighboring

nodes. If the sampling node number is greater the number of neighbors, select all neighbor-
ing nodes followed by a subsequent random resampling of the neighbors. In cases where
the sampling node number is less than the number of neighbors, conduct a random sample
process within the neighboring nodes.

(2) Aggregation

The aggregation process encompasses many main methodologies, such as Mean
Aggregate, LSTM Aggregate, and Pooling Aggregate. Their respective mathematical
expressions are as follows:

hk
v = σ(MEAN(Whk−1

v , ∀u ∈ N(v))) (7)

hk
v = σ(LSTM(Whk−1

v , ∀u ∈ N(v))) (8)

hk
v = MAX(σ(Whk−1

v ), ∀u ∈ N(v))) (9)

where MEAN, LSTM, and MAX correspond to procedures involving computing the mean,
trigonometric function transformation, and determining the maximum value, respectively.

(3) Loss Function

The loss function for GraphSAGE is expressed by Equation (10), which encompasses a
graph-based loss function applied to the output representations zu, ∀u ∈ V. This involves
the adjustment of the weight matrix to maintain computational trace integrity for each
batch Wk, ∀k ∈ {1, . . . , K} and the update of parameters for the aggregator function
through stochastic gradient descent. The underlying graph-based loss function incentivizes
neighboring nodes to display similar representations while compelling distinct nodes to
exhibit markedly different representations.

JG(zu) = − log
(

σ
(

z⊤u zv

))
− Q ·Evn∼Pn(v) log

(
σ
(
−z⊤u zvn

))
(10)

where the v signifies nodes co-occurring near u within fixed-length random walks, σ refers
to the Sigmoid function, Pn represents the negative sampling distribution, and Q defines the
number of negative samples. Notably, in contrast to previous embedding methodologies,
the representations zu utilized as inputs for this loss function are derived from features
encompassed within the local neighborhood of the node, rather than being trained as
distinct embeddings for each node through an embedding lookup process.
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2.3.2. Evaluation Metrics

In order to conduct a rigorous assessment of the experimental answers, we employed
four key evaluation metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and R-Squared.

(1) RMSE is a prevalent metric utilized to quantify the disparity between predicted values
and observed true values. It involves computing the square of the differences between
predicted and true values, averaging these squares, and subsequently taking the
square root. The mathematical expression is as shown in Formula (11):

RMSE =

√
1
n

i=1

∑
n
(ŷi − yi)

2 (11)

In this context, we are considering a set of observed true values and their correspond-
ing predicted values denoted as yi and ŷi, respectively, where n represents the number of
nodes. A lower RMSE value signifies a superior fit of the predictive model to the observed
true values.

(2) MAE is a prevalent metric used to assess the disparity between predicted values
and observed true values. It quantifies the accuracy of predictions by computing the
mean of the absolute differences between predicted and true values. The calculation
formula is depicted as (12):

MAE =
1
n

i=1

∑
n
|ŷi − yi| (12)

In this context, we are given a set of observed true values and their corresponding
predicted values denoted as yi and ŷi, respectively, where n represents the number of nodes.
A lower MAE value signifies a superior fit of the predictive model to the observed true
values. It is important to note that MAE is sensitive to outliers due to its utilization of
absolute values.

(3) MAPE is a prevalent metric employed to assess the magnitude of errors in predicted
values concerning observed true values. It measures the accuracy of predictions by
computing the average percentage of absolute errors relative to the true values. The
calculation formula is denoted as (13):

MAPE =
1
n

i=1

∑
n

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (13)

In this context, we are considering a set of observed true values and their correspond-
ing predicted values denoted as yi and ŷi, respectively, where n represents the number of
nodes, and the MAPE value is expressed as a percentage. It signifies the average percentage
error of predicted values relative to the true values. A smaller MAPE indicates a more
accurate fit of the predictive model to the observation. However, a limitation of MAPE is
its susceptibility to computational instability when actual observations contain zeros or
values approaching zero.

(4) R-Squared, a common metric for assessing the goodness of fit in regression models,
assumes values within the range of -inf to 1. It gauges the degree to which the
independent variable accounts for the variation observed in the dependent variable.

In a specific context, given a set of observed true values and their respective predicted
values denoted as yi and ŷi, respectively, with n representing the number of nodes, the
actual observed mean y is calculated as follows:

y =
1
n∑n

i=1 yi (14)
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Subsequently, calculate the Total Sum of Squares (TSS):

TSS = ∑n
i=1 (yi − y)2 (15)

Continuing, compute the Residual Sum of Squares (RSS):

RSS = ∑n
i=1 (ŷi − yi)

2 (16)

In conclusion, the calculation formula for R-Squared is expressed as:

R-Squared = 1 − RSS
TSS

(17)

2.3.3. Experiment Environment and Procedure Introduction

Huangcai Reservoir, with a total storage capacity of 153 million m3, is a large-scale
artificial water storage project that mainly focuses on irrigation, flood control, power
generation and tourism. The forest and grass coverage rate of the Huangcai Reservoir
scenic area reaches 96%, and the ecological environment is very superior. Surrounded by
mountains around the reservoir, the environment is beautiful, without any pollution, and
it has been identified as high-quality drinking water. The reservoir area is a subtropical
monsoon mixed climate, the annual average water temperature changes between 0 and
30 ◦C. The annual average temperature in the basin is 16.8 ◦C, and the average water depth
is 20 m without stratification. The soil at the bottom of the reservoir is fertile, and there are
many aquatic floats, among which silicon vegetables and golden algae are the main ones.

The experiment was conducted utilizing a system operating on the Win11 operating
system. The experimental machine was equipped with an Intel(R) Core(TM) i7-12700H
CPU and an NVIDIA GeForce RTX 3060 GPU. The GPU was powered by CUDA 11.3
(NVIDIA’s deep learning module) and cuDNN 8.2.1 (NVIDIA’s deep learning library).
The system possessed a total of 40 GB of RAM. The experiment employed Python 3.8 and
PyTorch 1.10.0, and the process of this experiment is as shown in Figure 6.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

CPU and an NVIDIA GeForce RTX 3060 GPU. The GPU was powered by CUDA 11.3 
(NVIDIA’s deep learning module) and cuDNN 8.2.1 (NVIDIA’s deep learning library). 
The system possessed a total of 40 GB of RAM. The experiment employed Python 3.8 and 
PyTorch 1.10.0, and the process of this experiment is as shown in Figure 6. 

 
Figure 6. Prediction flow chart of CAT data inversion results. 

Initially, CAT data were acquired from the experimental apparatus. Subsequent to 
inversion procedures, fundamental data encompassing sound speed, flow velocity, and 
temperature were derived. Aligned with the experimental objectives, the emphasis was 
placed on temperature prediction within the region with sound speed prediction serving 
as a supplementary facet of the experiment. Due to the experimental data being acquired 
from acoustic tomography experiments conducted in Huangcai Reservoir, it is notewor-
thy that the salinity value within the lake remains constant at 0, exhibiting no variation 
with changing depths. The data underwent filtration using Matlab R2022b with the ex-
traction of sound speed and temperature data constituting the dataset. Following time-
series-based processing of the data, the dataset was partitioned into training, validation, 
and test sets in a ratio of 3:1:1. GraphSAGE was employed to predict the training data 
during the training phase. The resultant model was then utilized for feature extraction to 
forecast future temperature and sound speed. Comparative analysis of the predicted out-
comes against the validation set facilitated the identification of an optimal model, culmi-
nating in its evaluation through metric assessments on the test set. 

3. Results 
We employed GraphSAGE to train the available data from the S1→S2, S1→S3, and 

S2→S3 relationships. We utilized a step size of 5, indicating that each prediction is made 
based on every five time-step consecutive real data values to predict the next time-step 
data value, thus extending this procedure throughout the entire training dataset. Three 
rounds of training and prediction were conducted for each relationship, and the results 
were averaged. Specifically, the answers of each prediction for S1→S2 are depicted in Fig-
ure 7, while the associated evaluation metrics are elaborated in Tables 1 and 2. The results 
for each prediction pertaining to S1→S3 are presented in Figure 8 with evaluation metrics 
detailed in Tables 3 and 4. The results for each prediction concerning S2→S3 are shown in 
Figure 9, which are accompanied by the evaluation metrics outlined in Tables 5 and 6. 

Figure 6. Prediction flow chart of CAT data inversion results.

Initially, CAT data were acquired from the experimental apparatus. Subsequent to
inversion procedures, fundamental data encompassing sound speed, flow velocity, and
temperature were derived. Aligned with the experimental objectives, the emphasis was
placed on temperature prediction within the region with sound speed prediction serving
as a supplementary facet of the experiment. Due to the experimental data being acquired
from acoustic tomography experiments conducted in Huangcai Reservoir, it is noteworthy
that the salinity value within the lake remains constant at 0, exhibiting no variation with
changing depths. The data underwent filtration using Matlab R2022b with the extraction of
sound speed and temperature data constituting the dataset. Following time-series-based
processing of the data, the dataset was partitioned into training, validation, and test sets
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in a ratio of 3:1:1. GraphSAGE was employed to predict the training data during the
training phase. The resultant model was then utilized for feature extraction to forecast
future temperature and sound speed. Comparative analysis of the predicted outcomes
against the validation set facilitated the identification of an optimal model, culminating in
its evaluation through metric assessments on the test set.

3. Results

We employed GraphSAGE to train the available data from the S1→S2, S1→S3, and
S2→S3 relationships. We utilized a step size of 5, indicating that each prediction is made
based on every five time-step consecutive real data values to predict the next time-step data
value, thus extending this procedure throughout the entire training dataset. Three rounds
of training and prediction were conducted for each relationship, and the results were
averaged. Specifically, the answers of each prediction for S1→S2 are depicted in Figure 7,
while the associated evaluation metrics are elaborated in Tables 1 and 2. The results for
each prediction pertaining to S1→S3 are presented in Figure 8 with evaluation metrics
detailed in Tables 3 and 4. The results for each prediction concerning S2→S3 are shown in
Figure 9, which are accompanied by the evaluation metrics outlined in Tables 5 and 6.
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Figure 7. Temperature and sound speed prediction results of S1→S2. The blue line represents the
predicted value and the red line represents the true value. (a) Results of the initial temperature
prediction. (b) Results of the initial sound speed prediction. (c) Results of the second temperature
prediction. (d) Results of the second sound speed prediction. (e) Results of the third temperature
prediction. (f) Results of the third sound speed prediction.
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Table 1. S1→S2 temperature prediction result.

Experiment Times RMSE MAE MAPE R-Squared

1 0.127 0.095 0.40% 0.994
2 0.118 0.091 0.37% 0.995
3 0.107 0.079 0.33% 0.995

Average 0.117 0.088 0.37% 0.995

Table 2. S1→S2 sound speed prediction result.

Experiment Times RMSE MAE MAPE R-Squared

1 0.363 0.272 0.02% 0.993
2 0.374 0.264 0.02% 0.993
3 0.414 0.289 0.02% 0.992

Average 0.383 0.275 0.02% 0.993
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Figure 8. Temperature and sound speed prediction results of S1→S3. The blue line represents the
predicted value and the red line represents the true value. (a) Results of the initial temperature
prediction. (b) Results of the initial sound speed prediction. (c) Results of the second temperature
prediction. (d) Results of the second sound speed prediction. (e) Results of the third temperature
prediction. (f) Results of the third sound speed prediction.
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Table 3. S1→S3 temperature prediction result.

Experiment Times RMSE MAE MAPE R-Squared

1 0.074 0.055 0.22% 0.995
2 0.075 0.057 0.22% 0.995
3 0.074 0.055 0.22% 0.995

Average 0.074 0.056 0.22% 0.995

Table 4. S1→S3 sound speed prediction result.

Experiment Times RMSE MAE MAPE R-Squared

1 0.199 0.149 0.01% 0.996
2 0.208 0.156 0.01% 0.995
3 0.205 0.155 0.01% 0.995

Average 0.204 0.153 0.01% 0.995
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Figure 9. Temperature and sound speed prediction results of S2→S3. The blue line represents the
predicted value and the red line represents the true value. (a) Results of the initial temperature
prediction. (b) Results of the initial sound speed prediction. (c) Results of the second temperature
prediction. (d) Results of the second sound speed prediction. (e) Results of the third temperature
prediction. (f) Results of the third sound speed prediction.
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Table 5. S2→S3 temperature prediction result.

Experiment Times RMSE MAE MAPE R-Squared

1 0.095 0.067 0.27% 0.996
2 0.084 0.058 0.24% 0.997
3 0.094 0.070 0.29% 0.996

Average 0.091 0.065 0.27% 0.996

Table 6. S2→S3 sound speed prediction result.

Experiment Times RMSE MAE MAPE R-Squared

1 0.253 0.180 0.01% 0.997
2 0.239 0.173 0.01% 0.997
3 0.258 0.179 0.01% 0.996

Average 0.250 0.177 0.01% 0.997

4. Discussion
4.1. Comparison between True Values and Predictions

Following the training and testing phases, we conducted a comparative analysis
involving the obtained true temperature and sound speed fields with the predicted results.
We utilize the first five rows of data in the test set as input, predict the temperature and
sound speed data at the next signal transmission time using the trained model, draw a
temperature vertical profile, and compare it with the true temperature value obtained by
inversion. The comparative assessments for the S1→S2 relationship are visually depicted
in Figure 10, while those for the S1→S3 relationship are shown in Figure 11. Additionally,
the comparative results for the S2→S3 relationship can be observed in Figure 12.
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Figure 10. Temperature and sound speed prediction results of S1→S2. (a) True data of the initial
temperature. (b) Results of the initial temperature prediction. (c) True data of the initial sound speed.
(d) Results of the initial sound speed prediction. (e) True data of the second temperature. (f) Results of
the second temperature prediction. (g) True data of the second sound speed. (h) Results of the second
sound speed prediction. (i) True data of the third temperature. (j) Results of the third temperature
prediction. (k) True data of the third sound speed. (l) Results of the third sound speed prediction.
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Figure 11. Temperature and sound speed prediction results of S1→S3. (a) True data of the initial
temperature. (b) Results of the initial temperature prediction. (c) True data of the initial sound speed.
(d) Results of the initial sound speed prediction. (e) True data of the second temperature. (f) Results of
the second temperature prediction. (g) True data of the second sound speed. (h) Results of the second
sound speed prediction. (i) True data of the third temperature. (j) Results of the third temperature
prediction. (k) True data of the third sound speed. (l) Results of the third sound speed prediction.
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Figure 12. Temperature and sound speed prediction results of S2→S3. (a) True data of the initial
temperature. (b) Results of the initial temperature prediction. (c) True data of the initial sound speed.
(d) Results of the initial sound speed prediction. (e) True data of the second temperature. (f) Results of
the second temperature prediction. (g) True data of the second sound speed. (h) Results of the second
sound speed prediction. (i) True data of the third temperature. (j) Results of the third temperature
prediction. (k) True data of the third sound speed. (l) Results of the third sound speed prediction.
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4.2. Analysis of Results

The fluctuation range of lake acoustic tomography data is small, and there is no
large-scale mutation, so it can learn the characteristics of temperature change well in the
process of training and prediction. In addition, the small number of datasets also enables
the prediction error to be controlled in a small interval.

When analyzing the S1→S2 station, the result demonstrates better performance. The
temperature field inversion yields an RMSE score of 0.117, an MAE score of 0.088, a low
MAPE of 0.37%, and an outstanding goodness of fit represented by an R-Squared value of
0.995. Similarly, for the sound speed field inversion at the S1→S2 station, the evaluation
metrics show the model’s performance with an RMSE score of 0.383, an MAE score of 0.275,
a minimal MAPE of 0.02%, and a strong goodness of fit denoted by an R-Squared value
of 0.993.

The second S1→S3 station exhibits good predictive and inversion answers. Specifically,
the temperature field inversion results in highly favorable evaluation metrics, including an
RMSE of 0.074, MAE of 0.056, a minimal MAPE of 0.22%, and a R-Squared value of 0.995,
which proves an outstanding fitness. Similarly, for the sound speed field inversion at the
S1→S3 station, the model demonstrates good performance with an RMSE of 0.204, an MAE
of 0.153, a low MAPE of 0.01%, and an R-Squared value of 0.995.

The third S2→S3 station demonstrates outstanding predictive and inversion perfor-
mance. In terms of the temperature field inversion, it achieves a favorable RMSE score of
0.091, an MAE of 0.065, a low MAPE of 0.27%, and an impressive R-Squared value of 0.996,
indicating a high degree of goodness of fit. Similarly, for the sound speed field inversion at
the S2→S3 station, the model exhibits good performance, yielding an RMSE of 0.250, an
MAE of 0.177, a low MAPE of 0.01%, and a R-Squared value of 0.997.

When discussing the feasibility and application challenges of GNN-based small-scale
water temperature prediction for coastal water temperature prediction, it is necessary to
consider its feasibility in marine environments: The environmental differences between
lakes and oceans are large with relatively small and closed lake waters and vast spatial
extents, deep variations, and complex ocean currents. Acoustic wave propagation in the
ocean is affected by various factors such as salinity, temperature, and pressure, and different
salinities will lead to changes in sound speed, which will affect the accuracy of water
temperature measurement. The graph neural network model must be able to learn and
adapt to this complex relationship caused by salinity changes. In a marine environment,
the graph neural network needs to have sufficient generalization ability to cope with
various complex situations that have not appeared in lakes, such as marine biological
activities, seabed topography changes, etc., which will affect the mapping relationship
between acoustic signals and water temperatures. Water bodies with different salinities
have different effects on the absorption and scattering characteristics of acoustic waves,
which indirectly affects the observation results of water temperature. The model needs
to integrate these physicochemical parameters to improve the prediction accuracy. In
summary, when applying GNN-based coastal acoustic imaging technology to predict water
temperature, it is necessary not only to overcome various technical and data challenges
brought about by the marine environment but also to fully understand and take into
account the influence of factors such as salinity differences on the model prediction results
and the potential role of the physical and chemical properties of the target area.

5. Conclusions

This study introduces an approach, GraphSAGE, for the inversion temperature and
sound speed prediction under an OAT experiment environment. The results show the
excellent performance. For the S1→S2 station, the temperature field inversion yields an
RMSE score of 0.117, an MAE score of 0.088, an exceptionally low MAPE of 0.37%, and an
outstanding goodness of fit represented by an R-Squared value of 0.995. Similarly, for the
sound speed field inversion at the S1→S2 station, the evaluation metrics show the model’s
performance with an RMSE score of 0.383, an MAE score of 0.275, a minimal MAPE of
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0.02%, and a strong goodness of fit denoted by an R-Squared value of 0.993. For the second
S1→S3 station, in terms of the temperature field inversion, the evaluation metrics yield
highly favorable scores, with an RMSE of 0.074, an MAE at 0.056, a minute MAPE of only
0.22%, and an exceptional R-Squared value of 0.995, attesting to the superior goodness of fit.
In the context of the sound speed field inversion at the S1→S3 station, the model performs
exceptionally well with an RMSE of 0.204, an MAE of 0.153, an exceedingly low MAPE of
0.01%, and an outstanding R-Squared value of 0.995. Moreover, for the third S2→S3 station,
it also exhibits excellent predictive and inversion performance. Regarding the temperature
field inversion, it achieves a favorable RMSE score of 0.091, an MAE of 0.065, a low MAPE of
0.27%, and an impressive R-Squared value of 0.996, signifying a high level of goodness of fit.
In the context of the sound speed field inversion at the S2→S3 station, the model performs
exceptionally well, with an RMSE of 0.250, an MAE of 0.177, an exceedingly low MAPE of
0.01%, and an outstanding R-Squared value of 0.997.

Based on the experimental results, it can be confirmed that the proposed method in this
paper can provide reference for the reconstruction of tomographic results, particularly in the
context of revealing the future evolution of ocean environment features. This method holds
significant application significance and practical value in predicting OAT inversion results.
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