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Abstract: High-resolution remote sensing image-based vegetation monitoring is a hot topic in remote
sensing technology and applications. However, when facing large-scale monitoring across different
sensors in broad areas, the current methods suffer from fragmentation and weak generalization
capabilities. To address this issue, this paper proposes a multisource high-resolution remote sensing
image-based vegetation extraction method that considers the comprehensive perception of multiple
features. First, this method utilizes a random forest model to perform feature selection for the
vegetation index, selecting an index that enhances the otherness between vegetation and other land
features. Based on this, a multifeature synthesis perception convolutional network (MSCIN) is
constructed, which enhances the extraction of multiscale feature information, global information
interaction, and feature cross-fusion. The MSCIN network simultaneously constructs dual-branch
parallel networks for spectral features and vegetation index features, strengthening multiscale feature
extraction while reducing the loss of detailed features by simplifying the dense connection module.
Furthermore, to facilitate global information interaction between the original spectral information
and vegetation index features, a dual-path multihead cross-attention fusion module is designed.
This module enhances the differentiation of vegetation from other land features and improves
the network’s generalization performance, enabling vegetation extraction from multisource high-
resolution remote sensing data. To validate the effectiveness of this method, we randomly selected
six test areas within Anhui Province and compared the results with three different data sources
and other typical methods (NDVI, RFC, OCBDL, and HRNet). The results demonstrate that the
MSCIN method proposed in this paper, under the premise of using only GF2 satellite images as
samples, exhibits robust accuracy in extraction results across different sensors. It overcomes the rapid
degradation of accuracy observed in other methods with various sensors and addresses issues such
as internal fragmentation, false positives, and false negatives caused by sample generalization and
image diversity.

Keywords: feature fusion; multisource high-resolution imagery; vegetation extraction

1. Introduction

Vegetation is an essential component of the Earth’s ecosystems, holding significant
importance for ecological conservation and development [1]. Vegetation extraction based
on the spectral, textural, spatial, temporal, and other features of high-resolution remote
sensing images plays a vital role in resource surveys, urban planning, land surveys, and
forest fire monitoring [2–4]. However, when dealing with large-scale vegetation monitor-
ing across wide areas and different sensors, current methods often face challenges such
as reduced model generalization, misclassification, internal fragmentation, and unclear
boundaries [5–8].
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Currently, the main methods for vegetation extraction research include threshold seg-
mentation based on vegetation indices [9,10]. This method constructs spectral indices based
on the differences in reflectance between the red band and near-infrared band to extract
vegetation [10]. While this method can extract vegetation from images, it may struggle
to identify vegetation obscured by tall buildings. In sparsely vegetated areas, vegetation
index-based methods may also struggle to accurately estimate vegetation coverage. Many
machine learning methods have been used for vegetation extraction, such as maximum
likelihood classification (MLC) [11], support vector machine (SVM) [12], and random forest
(RF) [13]. Although these machine learning methods can achieve high accuracy in imagery,
feature and threshold conditions need to be manually designed [14], making it challenging
to achieve automatic extraction from broad and multisource data.

Due to its outstanding performance in the field of computer vision, deep learning has
gradually been applied in vegetation monitoring applications of remote sensing images,
becoming one of the important methods [15–21]. In vegetation remote sensing, deep
learning methods are divided into semantic segmentation-based methods [22,23] and
pixel-based methods [24–26]. These methods independently learn relevant data features
in an end-to-end manner, meeting the growing demand for vegetation assessment and
monitoring in diverse remote sensing data. Convolutional neural networks (CNNs) in deep
learning methods can accurately reveal the spatial characteristics of vegetation from various
remote sensing sensors [27]. Subsequently, many researchers have used CNN models for
semantic segmentation-based vegetation extraction, including VGGNet [28], ResNet [29],
and DenseNet [30]. However, due to the continuous convolutional and pooling operations,
these methods lose some spatial details, making it difficult to accurately predict spatially
sensitive tasks [14]. Networks with similar structures include UNet [23], HRNet [31], and
others. Zou et al. [23] and others have used the UNet architecture to distinguish land
cover and crop types, achieving high accuracy on retained data in the Midwest of the
United States. Xu et al. [31] and others have used HRNet to classify urban green spaces
with a certain level of accuracy. Although the abovementioned semantic segmentation
methods achieve good accuracy in vegetation extraction, their essence is to aggregate
homogeneous pixels, often ignoring some fine-grained features. They cannot consider the
internal details of vegetation features and are prone to confusion with other coexisting
land features [32]. Moreover, semantic segmentation methods require precise boundary
information when creating labels, making it difficult to distinguish mixed pixels at the
boundaries of vegetation and other land cover areas. Creating sample labels on multisource
remote sensing images is challenging, which further leads to convergence difficulties in
training semantic segmentation models.

Single Pixel-based classification only requires adding some labeled pixels in sample
images of specific scenes, allowing us to quickly and easily adapt to new scenes [24].
Therefore, using pixel-based methods for sampling allows us to regularly retrain classifiers
and enables rapid sample collection. Many scholars have also implemented vegetation
and crop extraction based on pixel-based methods [33,34]. Although these methods have
achieved some success in vegetation remote sensing through continuous improvement,
using only spectral information can lead to issues of vegetation omission and overestimation
across different data sources.

To better address these problems, methods that combine multiple features, such as
spectral and vegetation indices, have been proposed and widely applied [26,34], com-
bining different fusion methods with various classification approaches to achieve better
classification results [31,35,36].

However, most remote sensing vegetation extraction methods only extract vegetation
based on spatial–spectral features from a single data source or initially combine vegetation
index features by concatenation [37] for input into the network for training. Using only
spectral features for vegetation extraction can result in significant differences in spectral
values due to factors such as temporal and radiometric variations, making it difficult to
achieve high-precision vegetation extraction across different data sources. The spectral fea-
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ture values differ greatly from index feature values, and when index features are introduced
through concatenation, they are often overlooked, making it difficult to achieve mutual
complementary correction among multiple features, leading to issues such as omission
and overestimation in vegetation extraction from different data sources [38]. In addition,
the selection of vegetation index features relies solely on manual experience and lacks
quantitative screening methods, which makes it difficult to scientifically and reasonably
verify the effectiveness of these indices [39].

In response to the above issues, this paper presents innovative solutions. Using
spectral features expanded by a 5 × 5 neighborhood of target pixels combined with feature
selection, parallel vegetation index branches are synchronously analyzed to narrow the
differences in feature values between different sensors while expanding the receptive
field. At the same time, a simplified dense connection method is introduced into the
network to enhance information sharing and weight between multi-scale and multi-feature;
a multi-channel enhanced feature cross-fusion method under the self-attention mechanism
is constructed, that is, cross-modal feature fusion between self shallow initial features
and enhanced index features, to establish the correlation of multi-feature comprehensive
perception and achieve complementary global information.

The primary contributions of our work can be summarized as follows:

1. We constructed a convolutional network (MSICN) for vegetation extraction that
considers the comprehensive perception of multiple features, introducing simplified
dense connections and cross-attention mechanisms to enhance information sharing
and weighting among multiscale and multi-feature layers, achieving multi-feature
representation, enhancement, fusion, and extraction of vegetation.

2. Using random forests for the selection of vegetation index features, the impact of
vegetation index features on the accuracy of vegetation extraction across different
data sources was determined.

3. The universality and generalization of the network across different data sources were verified.

2. Related Work
2.1. Pixel-Based Inversion Method for Vegetation Extraction

This method, based on pixel inversion, can be divided into modeling for individual
pixels and modeling for neighboring pixels for inversion. This method assigns each pixel
in the image to predefined categories independently, with each pixel being considered as
an independent sample, and its characteristic pixels are composed of spectral information
from itself or surrounding pixels. With the rise in deep learning, it is gradually being
used for vegetation extraction based on pixel inversion. The commonly used deep learn-
ing networks based on pixel inversion currently include convolutional neural networks
(CNNs) [33], Recurrent Neural Networks (RNNs) [33], and Long Short-Term Memory
(LSTM) Networks [38]. Mazzia et al. [33] constructed vegetation classification models and
PixelR-CNN models based solely on single pixel spectral information to achieve vege-
tation classification and land cover and crop classification, respectively. Fang et al. [40]
proposed a deep spatio-spectral feature fusion network, using CNN to learn single-pixel
spectral information and LSTM to learn crop classification. However, methods based on
single-pixel inversion cannot consider the spectral information of surrounding pixels and
spatial contextual information, which may lead to increased salt-and-pepper noise, unclear
boundaries, and other issues. Liu et al. [41] proposed a CNN-based method which crops the
image into small-scale slices composed of multiple neighboring pixels to predict vegetation
categories. Inspired by this, we extend the single pixel samples to 5 × 5 size slices for
modeling to alleviate spatial inconsistency and boundary fragmentation issues caused by
pixel inversion methods.

2.2. Vegetation Index Feature fusion Method

In order to deal with the variability between individual pixels under different sensors
and the changes in vegetation conditions, methods of multi-feature fusion of spectra and
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vegetation indices have been proposed and widely applied [33,34], combining different fu-
sion methods with different classification methods to achieve better classification purposes.
In order to fully utilize the potential of vegetation index features, many studies directly
concatenate vegetation index features in dimensions as multiple feature inputs of the net-
work. Radke et al. [35] proposed the Y-NET network was designed using spectral features
from different bands and vegetation index features combined with terrain data to monitor
vegetation growth status. Chen et al. [31] used the difference value of NDVI between winter
and summer combined with spectral information added to the network input layer and
trained using the HRnet network for classifying urban green spaces. In order to better focus
on vegetation index features [42], Wu et al. [36] integrated spectral features and vegetation
index features through channel attention mechanism in the network to extract soybeans,
corn, and rice in the Hulunbuir region using Sentinel-2 images. These methods are of
great significance for the comprehensive utilization of spectral features and index features,
but there are still certain limitations in feature complementary correction. To address this,
Lee et al. [43] proposed the ‘cross’ attention, and Zeng et al. [44] designed a two-branch
transformer structure to learn features at different scales. Inspired by this, we propose to
separate the spectral branch and the index feature branch, while designing a multi-channel
enhanced feature cross-fusion method based on self-attention mechanism [45], to achieve
cross-modal feature cross-fusion of shallow initial features and enhanced index features,
thus realizing global information complementarity.

3. Materials and Methods

This paper presents a multisource high-resolution remote sensing image vegetation
extraction method that accounts for the comprehensive perception of multiple features
and synchronously analyzes spectral features and vegetation index features. Due to the
potential of vegetation index features to improve vegetation extraction accuracy and reduce
the differences in vegetation feature values across different sensors, the approach proposed
in this paper initially employs a random forest model to feature-select vegetation indices,
filtering out indices that can enhance the interclass differences between vegetation and
other land objects. Simultaneously, a multifeature integrated perception convolutional
network (MSCIN) with multiscale feature enhancement, global information interaction,
and feature cross-fusion capabilities is constructed. It combines spectral feature branches
with index feature branches that have been jointly filtered and introduces a simplified
dense connection module and a dual-path cross-multihead cross-attention feature fusion
module to enhance the interaction and fusion of features, aiming to achieve higher-precision
vegetation extraction across different sensors.

3.1. Vegetation Index Selection

This paper conducted a feature importance assessment for 12 common and widely
used vegetation indices (Table 1). Feature selection was performed by calculating the
various vegetation indices using the spectral values of the center pixel of the collected
samples. This paper uses a random forest regression model [46] to establish a feature
mapping relationship between vegetation index features and labels for feature selection.
Random forest feature importance ranking refers to sorting the contribution of each feature
to the prediction target in the random forest model to determine the relative importance of
each feature. The model consisted of 20 decision trees [47] with a depth of 4. After fitting the
data, the model assessed the importance of vegetation index features. Features with higher
numerical values in the results obtained by the random forest model were considered more
important for prediction accuracy. This allowed us to determine the sensitivity of vegetation
index features to the model and eliminate feature sets that contributed minimally to the
classification model. Through random forest feature importance ranking, it is possible
to effectively determine which features in vegetation index features are most critical for
extracting vegetation information. This targeted selection and utilization of these features
for deep learning model training and prediction helps the model better learn vegetation
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characteristics, improve the performance of vegetation extraction models, reduce feature
space, enhance feature expressiveness, improve model generalization ability, and enhance
model interpretability, thus effectively extracting vegetation information. The importance
ranking of the spectral bands and vegetation indices was determined using the method
described above, as shown in Figure 1.

Table 1. Image band dataset detailed specification.

Index Name Formulation Reference

NDVI Normalized Difference VI (NIR − Red)/(NIR + Red) [9]
GNDVI Green Normalized Difference VI (NIR − Green)/(NIR + Green) [48]

EVI Enhanced VI 2.5 ×(NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1)] [49]
OSAVI Optimized Soil Adjusted VI (NIR − Red)/(NIR + Red + 0.16) [50]

RVI Ratio VI NIR/Red [51]
DVI Difference VI NIR − Red [52]
TVI Transform VI 0.5 × [120 × (NIR − Green) − 200 × (Red − Green)] [53]
GVI Green VI (NIR/(NIR + Green)) − (Red/(Red + Green)) [54]
GI Green Index (NIR/Green) − 1 [55]

NDGI Normalized Difference Green Index (Green − SWIR)/(Green + SWIR) [56]

MCARI Modified Soil Adjusted VI (1.2 × (NIR − Red) − 2.5 × (Blue − Red))/
Sqrt((2 × NIR + 1) ˆ2 − (6 × NIR − 5 × sqrt(Red)) − 0.5) [57]

TCARI Transform Soil Adjusted VI 3 × ((NIR − Red) − 0.2 × (NIR − Green) × (NIR/Red)) [57]
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Figure 1. Vegetation index feature importance ranking chart.

From the importance ranking in Figure 1, it can be seen that this paper selects the top
four vegetation index features and inputs them in parallel with the original image spectral
features into the model to improve vegetation extraction accuracy.

3.2. Method

This paper combined the vegetation indices selected by the random forest regression
model with the spectral features of remote sensing images for synchronous analysis. These
features were input into the network in parallel, and deep feature fusion was performed
after exchanging different scale features. Considering the spatial correlation between
adjacent pixels, annotated pixel samples were used as central pixels, and their surrounding
5 × 5 neighborhood windows were extended as inputs to the model. The parallel multiscale
network extraction method was used to extract spatial features and index features at scales
of 1 × 1, 3 × 3, and 5 × 5. A simplified dense connection method was introduced, and
the network was expanded in the vertical direction using downsampling to enhance
feature extraction and reuse at different resolutions through multiple parallel subnetworks.
Additionally, a dual-path multihead attention feature fusion module was constructed,
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which, under the establishment of multifeature comprehensive perception and correlation,
achieved complementary interactions between spectral features and vegetation index
features across channels, as shown in Figure 2.
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Specifically, the spectrum and index 5 × 5 samples were simultaneously input into
two branches, divided into three scales (1 × 1, 3 × 3, 5 × 5) centered around the target
pixel. Inside the two branches, multiple parallel subnetworks were used, and a simplified
dense connection module was added to simultaneously learn spectral and index features
of different sizes. Multiple downsampling dense connections were used to ensure that
vegetation features at different scales received information from the upper parallel sub-
networks, allowing feature interaction and correction among the various features. To
further enhance and improve the fusion effect of spectral and index features, this paper
designed a dual-path cross-attention feature fusion module based on a visual transformer’s
self-attention with the maximum receptive field. This module was placed between the
5 × 5 and 3 × 3 branches and achieved cross-modal feature fusion between shallow initial
features and enhanced index features. It established global information complementarity
under the perception of multifeature integration and used mixed-channel embedding to
produce enhanced output features. Convolutional layers were used for feature selection
and integration between the two output branches, gradually integrating features at differ-
ent scales. Additionally, skip connections were designed within the three scales of index
branch networks to enhance the fusion of vegetation index features at different scales.
Multiple parallel subnetworks are concatenated after continuous convolution, generating
1 × 1 spectral feature branches and 1 × 1 index feature branches for merging. Additionally,
a depthwise separable convolution layer (DWCConv 3 × 3) was added for fine feature
extraction and reduced parameter computation. Finally, the classification results of the
target pixel were generated by dual-layer fully connected layers and softmax.

(1) Simplified Dense Block

Inspired by the feature reuse achieved by dense connection blocks in DenseNet [30],
this paper designed a multiscale dense connection module to enhance the exchange of
feature information among three scales: 5 × 5, 3 × 3, and 1 × 1. In this module, each subnet-
work can receive feature information from other parallel networks, enabling information
exchange at different scales and improving feature representation. Specifically, a regular
convolutional network generates L connections in L layers. However, in the multifeature
connection module we adopted, features from the previous layer were passed on in a
stacked manner to subsequent layers. In the 5 × 5 and 3 × 3 branches, we performed down-
sampling in the vertical direction to expand the network’s width. Features from the 5 × 5
branch were overlaid and mapped to the 3 × 3 and 1 × 1 branch networks through feature
concatenation, and then the features from the 3 × 3 branch were overlaid onto the 1 × 1
branch network. Each branch network was concatenated with other branch networks in the
channel dimension, retaining feature information at different scales and achieving feature
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fusion. This not only effectively alleviates the problem of gradient vanishing but also
reduces the number of parameters, enhancing the feature extraction and reuse capabilities.

(2) Dual-Path Multihead Cross-Attention Feature Fusion

In remote sensing image analysis, multispectral data in different bands contain rich
information. It can provide reflectance information of different surface bands, thereby
providing strong support for research on vegetation cover, land use, and environmental
changes, among other aspects. However, the information contained in the different bands
of multispectral data is complex, and the complementarity between these pieces of in-
formation can be better utilized through certain information fusion strategies. Therefore,
we designed a dual-path multihead cross-attention feature fusion module to enhance the
interaction between multispectral data and vegetation indices, improving the accuracy and
effectiveness of vegetation identification in remote sensing images, as shown in Figure 3.
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Traditional self-attention mechanisms [49], when dealing with image features, first
pass the input features through the PatchEmbedding layer and head operations to generate
query, key, and value representations for each attention head. Then, by calculating the inner
product of query (Q) and key (K), attention scores are obtained, and finally, different features
are combined through weighted summation to achieve information transmission and fusion.
However, this method requires significant memory and computational resources when
processing high-resolution images, limiting its feasibility in practical applications. The
process can be expressed as follows:

E(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

where Q represents the vector of query, K represents the vector of key, V represents the
vector of value, and dk represents the dimension of the key.

Changing the computation order of query Q, key K, and value V can significantly
reduce the computational complexity. Inspired by this, in this module, input features F (H,
W, C) were flattened to F (N, C). Then, linear embedding was used to generate Q, K, and V for
each attention head. Each head computed attention scores G (MS) and G (VI) for KV, which
were derived from multispectral branches and vegetation index branches, respectively.
After softmax normalization, the attention scores GVI from vegetation index features were
cross-multiplied with spectral features QMS, forcing the vegetation index branch to focus
attention on spectral features. Similarly, attention scores GMS from spectral features were
cross-multiplied with vegetation index features QVI, forcing the spectral feature branch
to focus attention on vegetation index features. Branches in the two sequences interacted
complementarily, thus achieving feature fusion. This can be expressed as follows:

GMS = KT
MSVMS (2)
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GvI = KT
vIVvI (3)

EMS(QVI , KMS, VMS) =
QVI√

n

(
GMS√

n

)
(4)

EVI(QMS, KVI , VVI) =
QMS√

n

(
GVI√

n

)
(5)

where QMS and QVI, respectively, represent the vectors of the spectrum branch and index
branch for query, KMS and KVI, respectively, represent the vectors of the spectrum branch
and index branch for key, VMS and VVI, respectively, represent the vectors of the spec-
trum branch and index branch for value, GMS represents the global context vectors of the
spectrum branch and index branch, and n represents the dimension of the vectors.

In this module, the multihead mechanism helped allocate appropriate attention
weights in different feature subspaces, reducing the transmission and accumulation of
redundant information in the network. This enables better capture of useful information for
vegetation classification, enhancing the generalization of CNNs across different datasets.

4. Experiments and Results
4.1. Dataset Acquisition and Preprocessing
4.1.1. Study Area

Anhui Province covers a total area of 140,100 square kilometers, with a permanent
population of 61.27 million people. Anhui Province is located between east longitude
114◦54′ to 119◦37′ and north latitude 29◦41′ to 34◦38′, as shown on the map. Anhui
Province is situated in a transitional zone from a warm temperate to subtropical region.
It includes 16 prefecture-level cities, and its main geographical features are plains, hills,
and mountains. The annual average temperature is 17.1 degrees Celsius, with an average
annual precipitation of 978 millimeters. Different climates and social factors may lead to
variations in vegetation cover across different regions of Anhui Province. In this study,
six random regions were selected for validation in the vegetation-rich areas of central and
southern Anhui Province, as shown in Figure 4. The selected area includes different types
of vegetation in urban areas, mountainous areas, and rural areas.
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4.1.2. Dataset Acquisition

In this research, high-resolution remote sensing satellite imagery was primarily used.
This includes vegetation extraction using GF2, GF7, and PlanetScope data. GF-2 is China’s
domestically developed civil optical remote sensing satellite with a spatial resolution better
than 1 meter, equipped with two high-resolution sensors, one with 1-meter panchromatic
and the other with 4-meter multispectral imagery. GF-7 is China’s first civil submeter high-
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resolution optical stereo mapping satellite, providing better than 0.8-meter panchromatic
stereo images and 3.2-meter multispectral imagery. PlanetScope is a satellite constellation
consisting of approximately 130 satellites with a resolution of 3 meters per pixel. These
high-resolution remote sensing images offer rich spectral and spatial information. Image
processing for high-resolution data includes atmospheric correction, image fusion, mosaick-
ing, and relative radiometric calibration, among other operations. Planet images undergo
orthorectification and radiometric calibration to eliminate the impact of factors such as
atmospheric scattering and terrain. Table 2 presents the main parameters of the GF-2, GF-7,
and PlanetScope data.

Table 2. Image band dataset detailed specification.

Dataset Band No. Band Name Resolution Wavelength
(nm)

GF-2

Pan Pan 1 450–900
B1 Blue 4 450–520
B2 Green 4 520–590
B3 Red 4 630–690
B4 Near-infrared 4 770–890

GF-7

Pan Pan ≤0.8 450–900
B1 Blue ≥3.2 450–520
B2 Green ≥3.2 520–590
B3 Red ≥3.2 630–690
B4 Near-infrared ≥3.2 770–890

Planet

B1 Blue 3 465–515
B2 Green 3 547–593
B3 Red 3 650–680
B4 Near-infrared 3 845–885

4.1.3. Data Preprocessing

Considering the richness of vegetation types, this paper, based on GF2 remote sensing
satellite imagery, created a training sample set for extracting typical terrain features of
vegetation. This involved addressing variations in texture sparsity and spectral character-
istics. By comparing samples from different vegetation categories, the paper thoroughly
explored typical feature types within the images in conjunction with data quality. The
sample library produced in this paper utilized data from two GF2 images in Ma’anshan
City, Anhui Province, acquired in October 2022. Pixels were collected from these two
images to generate training samples.

Constructing a vegetation sample set corresponding to GF2 remote sensing imagery
can be divided into two steps. The first step is to better represent vegetation features using
standard false-color images combined with the 4-3-2 bands, where vegetation features
are characterized by the color red, delineated through visual interpretation. The second
step involves iterative fine adjustments based on the initial delineation. We sampled
a total of 393 patches and collected samples within these patches at their interiors and
boundaries, resulting in 266,547 vegetation pixels and 435,205 background pixels. Due to
GPU limitations, it was not feasible to use the entire image as input for model training. To
ensure sample representativeness and model stability, after obtaining sample coordinates,
we extended a 5 × 5 neighborhood window around the sampled pixels, with other pixels
within the window providing spatial and spectral information to the central pixel. For
the validation data, combined with various data source images, we manually visually
interpreted the vegetation outlines in the images to obtain real ground truth data.

4.2. Experimental Settings

The model proposed in this study and the comparative methods were experimen-
tally evaluated using the TensorFlow 2.4.0 framework in a Python 3.7 environment. All
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experiments were conducted on a machine equipped with a 1080Ti graphics card. In this
paper, the Adam optimizer was employed to optimize the network. During the training
process, all experiments utilized the same hyperparameters, including the number of train-
ing epochs (40 epochs), batch size (512), and initial learning rate (0.001). In the classification
task of the model, the balanced cross-entropy loss function was adopted to address the
issue of class imbalance by introducing weights to different class samples. The specific
formula is

Balance Cross Entropy = − 1
N

ΣN
i=1wi(yilog(pi) + (1 − yi)log(1 − pi)) (6)

The binary cross-entropy loss function was chosen, which measures the discrepancy be-
tween the probability distribution of model outputs and the true labels, enabling the model
to more accurately predict the class of samples during the training process. The specific
formula is

Binary Cross Entropy Loss = − 1
N

ΣN
i=1(yilog(pi) + (1 − yi)log(1 − pi)) (7)

where N is the total number of samples, wi is the weight of sample i, yi is the true label
of sample i, and pi is the probability predicted by the model that sample i belongs to the
positive class.

The activation function of the output layer in the model for classification tasks is the
Sigmoid function. It confines the output of neurons within the range of [0, 1], producing
outputs similar to probabilities, and is commonly used to interpret the output as the
probability of an event occurring.

4.3. Evaluation Metrics

This paper considered vegetation extraction as a binary classification problem, catego-
rizing the prediction results into vegetation and nonvegetation. To validate the effectiveness
of the method proposed in this paper for vegetation extraction, four evaluation metrics
were used: overall accuracy (OA), the F1 score, intersection over union (IOU), and precision.
OA refers to the ratio of the sum of correctly identified pixels in the test image to the
total number of pixels in all identified categories. The F1 score is the harmonic mean of
precision and recall, which can evaluate the model’s ability to handle imbalanced datasets
or sensitivity to misclassified categories. IOU measures the overlap between the model’s
predicted results and the ground truth annotation regions, commonly used to assess the
accuracy and robustness of the model. The kappa coefficient (Kappa), an assessment of
remote sensing interpretation accuracy, estimates the consistency between predictions and
ground references. The formulas for these evaluation metrics are as follows:

OA =
TP + TN

TP + FP + TN + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2TP

2TP + FP + FN
(11)

Iou =
TP

TP + FP + FN
(12)

pe =
(TP + FP)·(TP + FN) + (TN + FP)·(TN + FN)

(TP + FP + TN + FN)2 (13)
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Kappa =
OA − pe

1 − pe
(14)

where true positive (TP) and true negative (TN) represent the number of pixels correctly
predicted as positive and negative classes, respectively. False positive (FP) and false
negative (FN) represent the number of nonobject pixels incorrectly classified as positive
and the number of object pixels incorrectly classified as negative, respectively.

4.4. Experimental Results

By randomly selecting six areas within the study area, the qualitative and quantitative
evaluation results of MSICN in these six areas are shown in Figure 5 and Table 3. The
results of vegetation extraction in the GF2 image area indicate that our proposed method
performs well in densely populated and complex urban areas. In particular, the extraction
of boundaries between roads, buildings, shadows, and vegetation coexistence areas is
relatively clear and, overall, intact.
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Table 3. Image band dataset detailed specification.

Test Area Imagery Method F1 Precision IOU Recall OA Kappa

A,B GF2 MSICN 0.9243 0.9253 0.8646 0.9285 0.9285 0.8558

C,D GF7 MSICN 0.9133 0.9405 0.8421 0.8734 0.9203 0.8681

E,F Planet MSICN 0.9219 0.9135 0.8696 0.9196 0.9182 0.8328

This is because MSICN can integrate multiscale features and effectively distinguish
different types of vegetation. In the GF7 and planet image areas, the results show that our
proposed method can adapt to vegetation extraction from different data sources, especially
in areas with sparse vegetation, achieving good extraction results. This indicates that the
auxiliary structures we designed can capture the correlations between features more deeply,
effectively integrate vegetation features in different scenarios, help the model consider
broader global information when integrating information, and reduce the influence of noise.
In summary, our proposed method demonstrates good robustness in vegetation extraction
from different data sources in various scenarios.

5. Discussion and Analysis
5.1. Comparative Experimental Results Analysis

To validate the effectiveness of the MSICN network, we conducted comparative
analyses by simply thresholding NDVI [9], RFC [12], OCBDL [35], and HRNet [31].
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In this study, six regions were randomly selected from GF2, GF7, and planet images for
model effectiveness evaluation. These six regions (A–F) were widely distributed in different
spatial locations, collected from different images, and have relatively complex backgrounds.
The quantitative results for the three data sources are listed in Table 4. Figure 6 displays
the qualitative results for various scenes from these three data sources. In Figure 6, green
represents vegetation areas.

Table 4. The average accuracy of each method was evaluated on three data sources.

Test Area Imagery Method F1 Precision IOU Recall OA Kappa

A,B GF2

NDVI 0.8934 0.8913 0.8343 0.9084 0.9103 0.8433
RFC 0.8715 0.8213 0.7398 0.8503 0.8640 0.7283

OSBDL 0.8824 0.8911 0.7911 0.8540 0.8853 0.7649
HRnet 0.8969 0.8662 0.8139 0.9054 0.9023 0.8032

MSICN 0.9243 0.9253 0.8646 0.9285 0.9285 0.8558

C,D GF7

NDVI 0.8207 0.8342 0.7967 0.8136 0.8518 0.7123
RFC 0.6399 0.6235 0.5526 0.6879 0.7234 0.5330

OCBDL 0.7905 0.9349 0.7590 0.7672 0.8169 0.7423
HRnet 0.7798 0.7112 0.7036 0.7289 0.8067 0.6660

MSICN 0.9133 0.9405 0.8421 0.8734 0.9203 0.8681

E,F Planet

NDVI 0.8998 0.8740 0.8339 0.8275 0.7868 0.7216
RFC 0.8170 0.8909 0.6907 0.6952 0.7337 0.5714

OCBDL 0.8802 0.8852 0.7860 0.7955 0.8190 0.6907
HRnet 0.9171 0.9465 0.8470 0.8899 0.8579 0.7841

MSICN 0.9219 0.9135 0.8696 0.9196 0.9182 0.8328

From the visual results, it can be seen that the five methods have certain vegetation
extraction capabilities in different validation areas, but there are significant differences in
the identification results across different data sources. In the NDVI threshold segmentation
method, we repeatedly experimented with manual experience to select the most suitable
threshold of 0.46 on GF2 imagery and applied this threshold to other data sources. As
shown in Figure 6, on the GF2 imagery, the results extracted by the five methods were
relatively accurate. However, on the GF7 and Planet imagery, due to differences from the
sample’s true label data source, the general applicability of these methods was reduced,
resulting in decreased accuracy and completeness of extraction. In contrast, our MSCIN
method was better able to detect vegetation information across different data sources, with
fewer instances of overextraction and underextraction.

Subfigures (In Figure 6) A(3)–(7) and B(3)–(7) represent the vegetation extraction results
in the GF2 image regions. Figure 6 shows that all models performed well in vegetation
extraction, and they can extract vegetation quite comprehensively in mountainous areas.
However, in some complex urban areas (A(3)–(7)), where urban roads, buildings, and
vegetation are mixed, misclassifications are more likely to occur. When compared to other
methods, our approach resulted in fewer instances of FPs and FNs, with more complete
boundary extraction. Specifically, the IOU, OA, and Kappa coefficient reached 86.46%,
92.85%, and 85.58%, respectively. Subfigures (In Figure 6) C(3)–(7) and F(3)–(7) represent
the extraction results in the GF7 and planet image regions. Figure 6 D(4) and F(4) show that
RFC exhibits a large number of FNs and FPs on both data images. While NDVI, OCBDL
and HRnet provide more complete vegetation extraction compared to RFC, they still exhibit
partial FNs and FPs, particularly in sparsely vegetated areas where some omissions occur
and extensive FPs occur in bare soil areas. Notably, OSBCL also exhibits the phenomenon
of water being misclassified as vegetation patches in the planet images, as seen in Figure 6
F(5). Our method provides relatively complete vegetation extraction with fewer instances
of FNs and FPs in both GF7 and planet images. In GF7 images, our method achieved
IOU, OA, and kappa coefficients of 84.21%, 92.03%, and 86.81%, respectively. In the planet
images, our method achieved IOU, OA, and kappa coefficients of 86.96%, 91.82%, and
83.28%, respectively. This indicates that MSICN maintains high internal consistency and
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boundary accuracy in vegetation extraction across different data sources, demonstrating
strong generalization capabilities.
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Overall, the experimental results based on the three data sources show that the vege-
tation extraction results generated by MSICN were superior to the other four methods in
terms of quantitative metric evaluation in visual presentation. Classical algorithms do not
consider the complementary information between spectral features and vegetation index
features, making them prone to omissions and false detections across different data sources.
In contrast, MSICN performs complementary and corrective feature fusion, demonstrating
good adaptability to different scene conditions. These advantages are attributed to the
inclusion of the cross-feature fusion module in MSICN, which considers multilevel features,
resulting in more accurate identification results.

5.2. Ablation and Analysis

The above results indicate that our method, by introducing dense connections
and dual-path cross-attention mechanisms between spectral and index features, has
significantly reduced extraction noise, improved vegetation extraction accuracy, and
enhanced model generalization.

5.2.1. The Effectiveness of Vegetation Feature Selection

In this chapter, in order to demonstrate the improvement in vegetation extraction
performance after feature selection in this study, we, respectively, input spectral features
combined with 12 vegetation index features (NDVI, GNDVI, EVI, OSAVI, RVI, DVI, TVI,
GVI, GI, NDGI, and TCARI) and spectral features combined with the remaining 8 unimpor-
tant vegetation indices (RVI, DVI, TVI, GVI, GI, NDGI, and TCARI) into the model. Table 5



Remote Sens. 2024, 16, 712 14 of 24

shows the quantitative results of the two sets of ablation experiments in six regions, and
Figure 7 shows the qualitative results of the two sets of ablation experiments.

Table 5. Evaluation of the accuracy of the first group of ablation experiments.

Imagery Method F1 IOU Recall OA Kappa

GF2
Spectral+8 indices 0.8634 0.8111 0.8642 0.8613 0.8124
Spectral+12 indices 0.9131 0.8588 0.9042 0.8921 0.8343

Ours 0.9243 0.8646 0.9285 0.9285 0.8558

GF7
Spectral+8 indices 0.8612 0.7617 0.7911 0.8536 0.7008
Spectral+12 indices 0.8903 0.8357 0.8549 0.8917 0.7731

Ours 0.9133 0.8421 0.8734 0.9203 0.8681

Planet
Spectral+8 indices 0.7586 0.7125 0.7269 0.8407 0.6651
Spectral+12 indices 0.8405 0.7682 0.8701 0.8533 0.7381

Ours 0.9219 0.8696 0.9196 0.9182 0.8328
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In the first set of experiments, we combined the eight indices with low contribution
after feature selection with spectral indices into the network. From the quantitative results,
the accuracy of vegetation on different data sources decreased. Regarding the GF2 data,
the F1, IOU, OA, and Kappa coefficients decreased by 6%, 5%, 6%, 4%; for the GF7 data,
they also decreased by 5%, 8%, 7%, 16%; and for the Planet data, they decreased by 16%,
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15%, 7%, 17%. In the second set of experiments, we combined the 12 vegetation indices
selected by feature selection with spectral features into the network. From the quantitative
results, in the GF2 data, the F1, IOU, OA, and Kappa coefficients decreased by 1%, 0.5%,
4%, 2%; in GF7 data, they also decreased by 2%, 0.6%, 3%, 10%; and in the Planet data, they
decreased by 8%, 10%, 6%, 9%.

From Figure 7, it can be seen that the combination of spectral information with the
eight index features, screened out by feature selection in vegetation monitoring, resulted
in blurred boundaries, misclassification of small roads, and misclassification of large
bare areas, especially across different data sources. The method of combining spectral
information with the 12 vegetation index features also leads to misclassification of building
shadows and mixed vegetation areas in complex urban landscapes, with a small amount of
underclassification on GF7 and Planet.

The above results indicate that after feature selection, selecting vegetation index
features with higher contribution, improves the accuracy of vegetation extraction, making
the network better suited for different datasets.

5.2.2. The Effectiveness of Spectral and Index Feature Fusion

In this chapter, to demonstrate the overall effect of spectral and vegetation index fusion
on vegetation extraction, we conducted ablation experiments to remove the index feature
branch and spectral feature branch separately. Table 6 shows the quantitative evaluation
results of the two sets of ablation experiments in six regions, and Figures 8–10 show the
qualitative results of the two sets of ablation experiments for three data sources.

Table 6. Evaluation of the accuracy of the second group of ablation experiments.

Imagery Method F1 IOU Recall OA Kappa

GF2
only image data 0.8855 0.7958 0.8548 0.8834 0.7629

only vegetation index 0.8870 0.8005 0.8978 0.8936 0.7831
Ours 0.9243 0.8646 0.9285 0.9285 0.8558

GF7
only image data 0.7759 0.6393 0.6471 0.8003 0.6145

only vegetation index 0.8443 0.7322 0.8205 0.8744 0.7649
Ours 0.9133 0.8421 0.8734 0.9203 0.8681

Planet
only image data 0.8164 0.6898 0.6943 0.7327 0.6993

only vegetation index 0.8007 0.7254 0.8179 0.7723 0.7279
Ours 0.9219 0.8696 0.9196 0.9182 0.8328

To validate the effect of spectral feature and vegetation index fusion on the original
data, in the first set of experiments, we used only the original image’s four-band data as a
single input, removing the index feature branch. This resulted in a significant decrease in
vegetation extraction accuracy across different data sources. For the GF2 data, the F1 score,
IOU, OA, and kappa coefficient decreased by 3%, 7%, 5%, and 9%, respectively. For the GF7
data, the corresponding values decreased by 14%, 20%, 12%, and 25%, and for the planet
data, they decreased by 10%, 18%, 19%, and 13%. In the second set of experiments, we used
only the vegetation feature branch as input, adopting a pure index-based approach for
vegetation extraction. For the GF2 data, the F1, IOU, OA, and kappa coefficient decreased
by 4%, 6%, 3%, and 7%, respectively. For the GF7 data, the corresponding values decreased
by 7%, 10%, 5%, and 10%, and for the planet data, they decreased by 12%, 14%, 15%,
and 10%.

Figure 8 shows that using only image date or solely the vegetation index features
resulted in relatively small overall differences in GF2 imagery. The overall performance
manifested as incomplete boundaries and internal fragmentation. Figure 9 shows that in the
GF7 imagery, there were significant issues with oversegmentation in vegetation extraction
results, especially when using only image date, where some bare areas and shadows were
misclassified as vegetation. Figure 10 demonstrates that in planet imagery, there were also
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numerous cases of oversegmentation in vegetation extraction results, with some bare soil,
water bodies, and buildings being identified as vegetation and significant internal noise.
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These results indicate that using only spectral image data alone makes it challenging to
achieve high-precision vegetation extraction across different data sources, resulting in many
cases of both undersegmentation and oversegmentation. While using only the vegetation
index feature branch for vegetation extraction can work across different data sources, the
overall extraction accuracy is lower compared to the approach of the parallel input of image
data and index features. Therefore, in complex background areas of different data sources,
it is only through the combination of image data and vegetation index features as dual
inputs to the network that high-precision vegetation extraction can be better achieved.

5.2.3. The Role of Simplified Dense Connections and Dual-Path Cross-Attention
Mechanisms in the Network

To further explore the enhancement of simplified dense connections and dual-path
multihead cross-attention feature fusion modules on vegetation extraction and the effec-
tiveness of model design, we conducted two sets of ablation experiments. Figures 11–13
show the vegetation extraction results of the two sets of ablation experiments, and Table 7
presents the quantitative evaluation results of the two sets of ablation experiments across
different data sources.

Table 7. Evaluation of the accuracy of the third group of ablation experiments.

Imagery Method F1 IOU Recall OA Kappa

GF2
No simplified dense block 0.8963 0.8052 0.8833 0.8980 0.7937

No cross-attention feature fusion 0.8869 0.7799 0.8339 0.8783 0.7582
Ours 0.9243 0.8646 0.9285 0.9285 0.8558

GF7
No simplified dense block 0.8346 0.7168 0.7573 0.8767 0.7379

No cross-attention feature fusion 0.7953 0.6673 0.6823 0.8237 0.6524
Ours 0.9133 0.8421 0.8734 0.9203 0.8681

Planet
No simplified dense block 0.9014 0.8207 0.8488 0.8747 0.7298

No cross-attention feature fusion 0.8649 0.7477 0.8281 0.8220 0.6150
Ours 0.9219 0.8696 0.9196 0.9182 0.8328
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To validate the effectiveness of the dual-path multihead cross-attention feature fusion
module, we conducted the first set of ablation experiments by removing the feature fusion
module. In the GF2 image region, the F1, IOU, OA, and Kappa coefficients decreased by
4%, 8%, 5%, and 1%, respectively. In the GF7 image region, these metrics decreased by
12%, 17%, 10%, and 24%, and in the planet image region, they decreased by 6%, 12%, 9%,
22%, performing even worse than other models. Details in the magnified red rectangles in
Figures 11–13 show that in different data sources, recognition results without multihead
cross-attention feature fusion exhibited more FPs and incomplete boundaries compared to
MSICN, especially in the GF7 and planet image regions. For example, in the GF2 image
region, in complex urban areas, vegetation under large building shadows could not be
accurately extracted after removing the multihead cross-attention feature fusion. In the GF7
and planet image regions, the results of removing the dual-path multihead cross-attention
feature fusion included many misclassifications of farmland as vegetation. This indicates
that the dual-path multihead cross-attention feature fusion module is an indispensable
part of MSICN, playing a crucial role in maintaining the internal consistency of recognition
results and accurate extraction across different data sources.

To validate the effectiveness of the simplified dense connections, we conducted the
second set of ablation experiments by removing the dense connection module. In the GF2
image region, the removal of the simplified dense connections resulted in a decrease of 3%
in F1, 6% in IOU, 5% in Recall, 3% in OA, and 6% in Kappa coefficients. In the GF7 image
region, the removal of simplified dense connections led to a decrease of 8% in F1, 4% in
IOU, 2% in recall, 4% in OA, and 13% in Kappa coefficients. In the planet image region, the
removal of simplified dense connections resulted in a decrease of 2% in F1, 5% in IOU, 7%
in Recall, 4% in OA, and 1% in Kappa coefficients. Details in the magnified rectangles in
Figures 11–13 show that the removal of simplified dense connections in MSICN led to FPs,
internal fragmentation, and incomplete boundaries in different data sources.

Through the above validation and analysis, we can see that due to the simplified dense
connections, the deep learning neural network’s ability to extract vegetation features is
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enhanced. The dual-path multi-head cross-attention feature fusion allows the model to
better understand the correlation between different features, extract rich information from
them, and simultaneously focus on pixel-level spatial information and vegetation semantic
features. This enables the model to better handle the accurate identification of vegetation
in complex backgrounds, resist noise and changes caused by factors such as lighting and
seasonal variations, and improve the accuracy and robustness of vegetation extraction.

5.3. Universal Validation Analysis

To validate the universality of our approach, we selected three larger regions within
the study area for verification and analysis. Table 8 presents the quantitative results, and
Figure 14 provides the qualitative results of vegetation extraction for the three data sources.
Figure 15 displays detailed vegetation extraction results. From the quantitative results, it
can be observed that our method outperforms other methods in terms of accuracy when
extracting vegetation across different data sources and regions.

Table 8. Visualized results of universality verification of different data sources.

Imagery Method F1 Precision IOU Recall OA Kappa

GF2

RFC 0.7720 0.7546 0.6887 0.8109 0.8237 0.7283
OCBDL 0.8502 0.7908 0.7395 0.9014 0.8530 0.7411

HRet 0.8479 0.8217 0.7666 0.8594 0.8859 0.7680
MSICN 0.8862 0.8842 0.7957 0.8882 0.8965 0.8113

GF7

RFC 0.6318 0.6617 0.5618 0.6704 0.7103 0.5217
OCBDL 0.7211 0.9145 0.7590 0.7155 0.7325 0.7390

HRet 0.8339 0.7704 0.7564 0.7010 0.8307 0.7219
MSICN 0.9058 0.8805 0.8972 0.8995 0.9072 0.9167

Planet

RFC 0.7745 0.7868 0.7770 0.7851 0.7106 0.6778
OCBDL 0.8109 0.8843 0.7820 0.7927 0.7224 0.6923
HRnet 0.8241 0.9465 0.8108 0.8669 0.8579 0.7841

MSICN 0.8964 0.8883 0.8740 0.8948 0.8702 0.8258
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Due to differences in feature values between different sensors, other methods often
suffer from a significant number of omissions and FPs when applied to slightly larger
regions across different data sources. As shown in Subfigure G(1) (In Figure 15), the
random forest method misclassified water bodies as vegetation, and in Subfigures G(1)–(3),
H(1)–(3), and I(1)–(3) (In Figure 15), there were numerous instances where bare soil areas
were incorrectly identified as vegetation. In densely vegetated mountainous areas, there
were also considerable omissions of vegetation shadows. Our method, which combines
vegetation index features and incorporates auxiliary modules to enhance deep feature
interaction, to some extent, reduces the differences in feature values. This allows the
model to maintain robustness in larger regions across different data sources. As shown
in Subfigures G(4), H(4), and I(4) (In Figure 15), our method achieved good vegetation
extraction results in all three data sources, with fewer instances of omissions and FPs.

6. Conclusions

To overcome the challenges of achieving high-precision remote sensing vegetation
extraction across wide-ranging and diverse data sources and to address the issues of
omission and misclassification among different remote sensing data sources, this paper
proposed a multifeature integrated perception method for high-resolution remote sensing
vegetation extraction to enhance the ability to capture vegetation features and improve the
vegetation extraction accuracy by fusing spectral features and vegetation index features.
A multifeature integrated perception convolutional network (MSCIN) was constructed,
which enhances multiscale feature information, global information interaction, and feature
cross-fusion. In this model, spectral features and vegetation index features selected through
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a random forest model are used as dual parallel inputs to reduce differences in land feature
values between different sensors. Additionally, a multiscale convolutional module was
constructed to capture spectral and index features in the target pixel domain. A simplified
dense connection and multihead cross-feature fusion module were designed to strengthen
the global information interaction among multiple features, enabling the multifeature
expression, enhancement, fusion, and extraction of vegetation. To validate the vegetation
extraction capability of this method across different remote sensing data sources, the
model, trained with high-resolution satellite images from GF-2, was tested on test areas
selected from GF-2, GF-7, and planet images in different regions. A comparison with three
typical methods, NDVI, RFC, OCBDL, and HRNet, was conducted. The results show that
compared to other methods, this paper’s method achieved robust vegetation extraction
with the ability to overcome issues such as internal fragmentation and unclear boundaries.
It also reduced omission and commission errors in vegetation regions, exhibiting superior
performance metrics, including the F1 score, IoU, recall, OA, and Kappa coefficient. Two
sets of ablation experiments showed the critical role played by the fusion of vegetation index
features and spectral features, as well as the simplified dense connection and dual-path
cross-attention mechanism in enhancing vegetation extraction precision and completeness.
The method proposed in this paper demonstrates high adaptability and generalization
capabilities in vegetation extraction, enabling high-precision vegetation extraction across
single data source samples.
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