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Abstract: Urban biodiversity and ecosystem services depend on the quality, quantity, and connec-
tivity of urban green areas (UGAs), which are crucial for enhancing urban livability and resilience.
However, assessing these connectivity metrics in urban landscapes often suffers from outdated land
cover classifications and insufficient spatial resolution. Spectral data from Earth Observation, though
promising, remains underutilized in analyzing UGAs’ connectivity. This study tests the impact of
dataset choices on UGAs’ connectivity assessment, comparing land cover classification (Urban Atlas)
and spectral data (Normalized Difference Vegetation Index, NDVI). Conducted in seven European
cities, the analysis included 219 UGAs of varying sizes and connectivity levels, using three connectiv-
ity metrics (size, proximity index, and surrounding green area) at different spatial scales. The results
showed substantial disparities in connectivity metrics, especially at finer scales and shorter distances.
These differences are more pronounced in cities with contiguous UGAs, where Urban Atlas faces chal-
lenges related to typology issues and minimum mapping units. Overall, spectral data provides a more
comprehensive and standardized evaluation of UGAs’ connectivity, reducing reliance on local typology
classifications. Consequently, we advocate for integrating spectral data into UGAs’ connectivity analysis
to advance urban biodiversity and ecosystem services research. This integration offers a comprehensive
and standardized framework for guiding urban planning and management practices.

Keywords: urban green areas; urban green spatial patterns; landscape metrics; habitat
fragmentation; urban atlas; spectral data; spatial resolution; minimum mapping unit; thematic
resolution; urban heterogeneity

1. Introduction

Urbanization, with its increasing population concentration in cities, poses a substan-
tial challenge amid the global call for sustainable practices [1,2]. Urban expansion has
transformed natural landscapes into complex, ever-changing ecosystems shaped by human
influence [3]. Within these urban ecosystems, urban green areas (UGAs) are identified
as key elements in addressing this challenge and promoting sustainability due to their
crucial role in maintaining ecological balance and enhancing the quality of urban life [4].
UGAs encompass a diverse range of typologies and sizes, including native vegetation
remnants, urban forests, parks, brownfields, and street trees [5]. This diversity results in
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rich variation in vegetation composition and structure, creating niche habitats that support
a wide range of plant and animal species [6–8]. Additionally, the variety of UGA typologies
significantly influences their ecological functions and, consequently, their ability to provide
essential ecosystem services that are pivotal for human health and well-being, making
cities more livable and environmentally friendly [4,9–11]. These services include mitigating
urban heat islands [12], reducing air pollution [13], providing spaces for recreation, exercise,
and social gatherings [14], and contributing to the aesthetic appeal of urban landscapes [15].

The effectiveness of UGAs in promoting biodiversity and supporting ecosystem ser-
vices hinges on three key landscape components. These components include the quan-
tity of UGAs, their quality influenced by vegetation composition and structure, and
their spatial relationships with other land cover types (i.e., the permeability of the sur-
rounding matrix). Larger UGAs typically tend to support a greater diversity of plant
and animal species by providing a diverse range of favorable habitats and niches [16].
Moreover, high-quality habitats within UGAs can support a broader range of ecosystem
functions and services, which can be amplified when the landscape is well-connected
and permeable [8,11,17,18]. By understanding the importance of these components and
promoting integrated urban green planning, cities can become more resilient in the face of
environmental challenges [1,3]. However, in many European cities, UGAs are characterized
by their small sizes and fragmented configurations [19], compromising their ecological
quality. These fragmented UGAs limit their ability to support diverse species communities
and hinder species dispersal and movement within the urban landscape [8,20]. Conse-
quently, these factors affect urban biodiversity and disrupt vital ecological processes [17].
Nevertheless, integrating smaller UGAs with their larger counterparts holds the potential to
enhance functional connectivity, facilitate species movement within the urban matrix [3,8],
and amplify the myriad services that ecosystems provide [18].

To address these challenges, assessing the connectivity of the urban landscape becomes
paramount because green connectivity contributes to the resilience and adaptability of ur-
ban ecosystems. Efficient connectivity within the urban landscape promotes the movement
of organisms and genetic material, facilitates the flow of essential nutrients, and ensures
the overall functionality of ecosystems within and among green patches [20]. Therefore, it
is essential to develop specific connectivity indicators to evaluate urban green connectivity
comprehensively. Landscape metrics have emerged as powerful and accessible tools for
quantifying the spatial arrangement of UGAs within urban settings [18]. These metrics
enable quantitative comparisons of UGA connectivity across diverse cities [19,21], offer-
ing valuable insights into both localized patch-level and comprehensive landscape-level
evaluations. While landscape metrics provide a robust framework for assessing urban
green connectivity, the choice of data sources and datasets used in these assessments can
significantly impact their accuracy and reliability.

Land cover maps are commonly used for urban connectivity measurements as they
allow for the differentiation of land cover classes, including vegetation, built-up areas, and
water bodies [22,23]. However, these data, while providing spatial completeness and conti-
nuity, have limitations in capturing all urban land cover complexities. This limitation arises
from the challenges of interpreting and categorizing the heterogeneous nature of urban set-
tings [22,24]. Consequently, these maps may not adequately represent some UGAs within
urban landscapes, where land cover transitions can occur at much finer scales compared
to rural settings [24–27]. Additionally, most city-specific land cover maps are developed
using distinct classification rules, leading to challenges in standardizing data and making
comparisons across different cities and countries [21]. The variations in classification rules,
particularly in terms of thematic (number of classes) and spatial resolutions (minimum
mapping unit, pixel size, and study area extent), can lead to disparities in connectivity
estimates [28–32]. However, the European Environment Agency’s Urban Atlas offers a
promising solution. This dataset provides a high-spatial-resolution classification of urban
land cover for standardized analysis across Europe [33], potentially addressing some of the
aforementioned limitations.
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Spectral data from Earth observation provide an alternative approach for assessing
urban connectivity. These data, which encompass the Normalized Difference Vegetation
Index (NDVI), offer several advantages, including reproducibility and standardization
on a European scale, thus delivering valuable insights into differentiating land cover,
understanding environmental shifts in urban settings, and grasping the spatial patterns of
UGA connectivity [34]. Additionally, spectral data’s precision allows for the identification
and characterization of small patches within the urban landscape [27,35], a critical aspect for
accurately estimating urban green connectivity and understanding its role in supporting
biodiversity and ecosystem services. This level of precision is particularly important,
as small patches and corridors play a crucial role in supporting urban biodiversity and
promoting ecological functions [8,34,36]. Despite these advantages, most published studies
continue to rely on less precise land cover classifications.

To address this gap in knowledge, our study seeks to examine how dataset choice
affects the quantification of urban green connectivity, focusing on three key indicators:
(i) green area size; (ii) proximity index; and (iii) the amount of surrounding green area across
different spatial scales. We conducted this research in seven European cities, comparing
two datasets: (1) the Urban Atlas land cover classification and (2) NDVI spectral data.
Although other authors have quantified the impact of using different datasets on the
values of urban green connectivity indicators, we used two novel approaches. Firstly, we
considered the relative values for connectivity indicators rather than the absolute values by
comparing the position in the rank of connectivity. This allows us to partially overcome
the problems associated with assuming linear trends: if the absolute values of connectivity
change but the relative position of green areas regarding connectivity remains the same,
then the ecological value of both data sources would be the same, because we cannot assume
a priori that ecological relationships are linear. Secondly, we tested the conditions under
which the data source impacts the connectivity indicators the most. For that, we considered
a gradient of green area size and climate, testing if specific conditions would result in
more impact from using different datasets. Moreover, given the importance of UGAs’
quantity, proximity, and quality in supporting ecological functions and services, our goal is
to facilitate research in these scientific areas. We aim to identify the most appropriate and
reliable dataset for calculating connectivity indicators capable of identifying, quantifying,
and monitoring a variety of UGAs on a European scale over time. This insight can inform
urban planners and policymakers about the importance of using the most appropriate
data sources for making well-informed decisions. These informed choices can boost urban
sustainability and resilience while preserving and promoting the benefits of UGAs.

2. Material and Methods
2.1. Study Area

This study was conducted across seven European cities, each chosen to represent
a diverse range of urban settings, spanning a climatic gradient and exhibiting varying
degrees of spatial heterogeneity (Table 1). These cities included Almada and Lisbon in
Portugal, Paris in France, Zurich in Switzerland, Antwerp in Belgium, Poznan in Poland,
and Tartu in Estonia. The selection of these cities aimed to encompass a spectrum of
urbanization intensities, ranging from cities with well-established urban areas like Paris to
those with more recent developments such as Almada. Additionally, these cities vary in
size, with Tartu being relatively smaller compared to Antwerp, in population density (for
instance, Paris versus Poznan), and in the proportions of urban vegetation (e.g., Zurich in
comparison to Antwerp).
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Table 1. Overview of each city studied, including its area (in hectares), population density
(inhabitants/km2 in 2021; Census, 2021), size, and percentage of urban green area (in hectares
and percentage based on the Urban Atlas, including the following classes: (i) “Green urban areas”;
(ii) “Forests”; (iii) “Discontinuous very low-density urban fabric”; and (iv) “Discontinuous low-
density urban fabric”), number of UGAs (based on the Urban Atlas and the class “Green urban
areas”), climate zone, mean annual temperature (in ◦C, calculated from WorldClim data), mean
annual precipitation (in mm from WorldClim data), and mean aridity index values within the city
(calculated from CGIAR-CSI).

City City Area
(ha)

Pop. Density
(hab.km2)

Green Area
(ha and %)

No. of
UGAs Climate Temperature

(◦C)
Precipitation
(mm)

Aridity
Index

Almada 6999 3728 1580 (23%) 130 Mediterranean 16.2 685 0.71

Antwerp 22,416 2438 2436 (11%) 111 Temperate
maritime 10.5 796 1.09

Lisbon 8687 6429 1393 (16%) 170 Mediterranean 16.7 712 0.73
Paris 10,492 20,238 1706 (16%) 420 Temperate 11.9 649 0.77

Poznan 25,628 2088 4869 (19%) 425 Temperate
continental 8.6 505 0.70

Tartu 3882 2240 479 (12%) 128 Hemi-boreal 5.5 617 1.03

Zurich 9200 4867 2774 (30%) 197 Temperate,
mild 9.5 1115 1.48

To maintain consistency in this analysis, this study employed the administrative mu-
nicipal boundaries of each city (see red lines in Figure 1) based on the Local Administrative
Units level 2 (LAU-2 level). This approach allowed for standardized and comparable
analyses across the different cities, mitigating potential biases introduced by variations in
size and spatial scale.
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city maps is uniform (1:120,000).



Remote Sens. 2024, 16, 771 5 of 18

2.2. Data Collection

In our comparative analyses, we utilized two primary datasets: (1) the Urban Atlas, a
land cover classification, and (2) NDVI spectral data extracted from Sentinel-2A satellite
imagery. These two data sources were selected for comparison, as they have been used to
support other published [6,37–40] and forthcoming studies that used a sampling approach
based on an orthogonal gradient of patch area and connectivity to inventory various
taxa in UGA across the seven European cities in 2017. For these data, we used the most
concurrent and updated version of the Urban Atlas (2012 edition) and the most updated
Earth observation data from Sentinel (2017, as the sensor was only operational since 2016).
To ensure comparability between both datasets, adjustments were made to account for their
spatial and thematic differences. These adjustments involved aligning the spatial resolution
and extent of the datasets, as well as harmonizing the classification schemes. This process
allowed for a more accurate and meaningful comparison between these two datasets and
facilitated the assessment of their suitability for quantifying urban green connectivity.

2.2.1. Land Cover Classification and Green Area Selection to Sample

The Urban Atlas dataset used in our study encompasses 27 land cover classes, repre-
senting various urban features, such as urban fabric, industry and commerce, transporta-
tion, open and vegetated areas, and water bodies. This dataset provides consistent and
comparable land cover information at a scale of 1:10,000 for all the sampled cities. The 2012
revision of this dataset was employed, which includes minimum mapping units for dif-
ferent land cover categories. Artificial surfaces, including the “Green Urban Areas” class,
were mapped with a minimum unit of 0.25 hectares (ha), while natural and semi-natural
surfaces had a minimum unit of 1 ha. A minimum mapping width of 10 m (m) between
two patches was considered to avoid mapping small, fragmented patches separately [33].

To ensure consistency and comparability across these cities, a standardized approach
was adopted to define UGAs within the Urban Atlas dataset. Any patches with a high
likelihood of containing trees were considered suitable. We conducted a preliminary
analysis, examining the average NDVI values for each land cover class in the Urban Atlas
dataset (see Supplementary Table S1), which ensured uniform UGA definitions across the
sampled cities. In this way, this analysis provided valuable insights into vegetation density
within different land cover classes, facilitated the identification of probable tree-containing
areas, and established a consistent framework for assessing the presence and extent of
UGAs across the sampled cities. This approach promoted homogeneity in the analysis and
simplified straightforward comparisons with NDVI spectral data (Table 2).

Table 2. Overview of the selected Urban Atlas classes and the NDVI threshold.

Selected Classes Minimum Mapping Unit Criteria

Selected
urban atlas

classes

Green urban areas a,b 0.25 ha

Classes with at least 70% of the total
class area covered by vegetation and a

high probability of having trees.

Forests b 1 ha
Discontinuous very low-density urban
fabric (soil sealing level (S.L.) < 10%) b 0.25 ha

Discontinuous low-density urban fabric
(S.L. 10–30%) b 0.25 ha

NDVI
threshold NDVI ≥ 0.5

0.01 ha or 0.125 ha, depending
on the estimated landscape

metric

Class characterized by UGAs with high
vegetative vigor, including trees and

irrigated/fertilized lawns. This class is
functionally important throughout the
year and has a homogeneous land-use

intensity.
a. The Urban Atlas class is viewed as focal patches, representing potential sampling sites for urban biodiversity
with homogeneous land-use intensity. b. All UGAs with the potential for tree presence were used to calculate
landscape metrics, considering the neighborhood of sampling sites (proximity index and amount of surrounding
green areas at multiple distances).
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To select a subset of UGAs for our analysis, we conducted a systematic sampling
approach. From a total of 1581 UGAs across all cities, 36 UGAs per city were randomly
selected. The selection process considered two key landscape indicators: patch size and
connectivity. We used an orthogonal gradient to distribute the selected UGAs across six size
classes and six connectivity classes [37]. The size classes were defined as follows: [0–0.4],
[0.4–0.8], [0.8–1.6], [1.6–3.2], [3.2–6.4], and >6.4 ha. The connectivity classes were defined
based on a proximity index and categorized as follows: [0–5], [5–15], [15–45], [45–135],
[135–405], and >405. These classes ensured a diverse representation of UGAs with varying
patch sizes and connectivity levels. However, due to the specific characteristics of certain
cities (Almada, Paris, and Tartu), it was not possible to find UGAs that met all the defined
size and connectivity criteria. As a result, a smaller number of UGAs were selected for
these cities: 16 for Almada, 28 for Paris, and 31 for Tartu. Overall, our systematic sampling
approach resulted in a final land cover sample of 219 focal patches across the studied cities
(Table 3). These samples were used to assess the degree of connectivity using both the
Urban Atlas land cover dataset and the NDVI spectral data.

Table 3. A summary of the size and connectivity of the UGAs in the seven European cities.

Almada Antwerp Lisbon Paris Poznan Tartu Zurich

Number of patches 16 36 36 28 36 31 36
Total patch area (ha) 100.04 334.39 181.56 693.24 252.37 165.04 130.70

Total connectivity 25,103.36 13,026.80 43,339.28 51,271.32 23,718.58 2746.40 38,282.03

Patch size
(ha)

Max 43.56 108.59 30.85 588.09 103.34 30.79 27.45
Min 0.30 0.38 0.33 0.26 0.26 0.31 0.27

Average 6.25 9.29 5.04 24.76 7.01 5.32 3.63
Median 1.89 2.66 2.62 1.01 2.34 1.76 1.88

Standard
deviation 10.70 24.03 6.86 110.53 17.96 7.55 5.20

Patch con-
nectivity

Max 23,807.54 3995.62 12,202.27 45,794.28 12,829.47 624.85 26,935.38
Min 1.30 1.52 0.64 1.77 2.16 1.95 4.87

Average 1568.96 361.86 1203.87 1831.12 658.85 88.59 1063.39
Median 10.99 53.03 22.72 6.94 16.40 14.97 42.60

Standard
deviation 5931.57 828.97 3132.94 8634.21 2168.17 161.03 4504.75

2.2.2. Spectral Earth Observation Data

In our study, seven Sentinel-2A images were downloaded from the USGS Earth Ex-
plorer archives (https://earthexplorer.usgs.gov (accessed on 4 October 2021)).
These images have a high spatial resolution of 10 m, which is ideal for analyzing veg-
etation in urban landscapes [41]. These images were acquired during the peak tree biomass
period, typically in the summer season, with less than 10% cloud cover (see Supplementary
Table S2 for a detailed description).

To prepare the Sentinel-2A images for our analysis, we performed atmospheric correc-
tion using the Sen2Cor plugin (Sen2Cor, v2.1.2) from the Sentinel-2 toolbox (SNAP, 5.0.7).
This correction removes the effects of atmospheric interference and provides accurate and
reliable vegetation information. Once the atmospheric correction was applied, we calculated
the NDVI for each pixel in these images. The NDVI is calculated using the following equation:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

where ρNIR and ρRed are the near-infrared and red band responses, respectively.
NDVI values range from −1 to +1, with varying ranges corresponding to different surface
types: (i) negative values are usually indicate water bodies or clouds; (ii) values between
0.0 and 0.49 represent mixed surfaces, including barren soils, highly impervious surfaces,

https://earthexplorer.usgs.gov
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sparse vegetation, or areas under water stress like grasslands; and (iii) values above 0.5
indicate areas with dense vegetation and high vitality, such as urban parks and forests.
Although the NDVI’s insensitivity to changes in biomass at high levels is recognized, this
behavior is more pronounced in agricultural and forestry areas than in urban settings,
where vegetation tends to be less dense, more heterogeneous, and sparser. Therefore, in
urban environments, the NDVI typically does not reach saturation levels as frequently as
observed in denser vegetation areas, enabling better differentiation among various types of
urban greenery. In our study, a threshold of 0.5 was set to detect similar spectral signatures
and identify all patches with a high probability of tree presence (Table 2), ensuring com-
parability between the two datasets. This threshold minimizes the risk of overestimating
green cover using spectral data compared to land cover assessments. Subsequently, the
NDVI data were categorized into two groups: UGAs with trees (NDVI ≥ 0.5) and other
surfaces lacking trees (NDVI < 0.5).

To delineate focal patches with trees (NDVI ≥ 0.5), the NDVI data were converted
into polygons, representing distinct geometric shapes. This conversion process excluded
polygons without trees (NDVI < 0.5), ensuring that only polygons corresponding to UGAs
were included in further analysis.

2.3. Landscape Metrics as Urban Green Connectivity Indicators

While there are no universally established guidelines for selecting landscape met-
rics [42], certain landscape components have been recognized as important for supporting
urban biodiversity and enhancing ecosystem services. In this context, three specific indica-
tors were chosen to assess these components: (i) green area size; (ii) proximity index; and
(iii) the amount of surrounding green area at multiple distances (Figure 2).
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2.3.1. Green Area Size

The size of individual patches within a landscape matrix affects the overall connectivity
of habitats, influencing the quantity and quality of suitable habitat required for maintaining
viable populations [23]. Larger UGAs generally provide more space for various plant
and animal species to thrive, offering a diverse range of favorable habitats and niches.
This encourages the coexistence of different organisms, contributing to a more resilient and
balanced ecosystem [16].

In this study, the area or proportion of urban greenery in the cities was calculated.
Considering the Urban Atlas dataset, the area of each patch belonging to the “green
urban area” class was quantified, typically measured in ha. For the spectral data, the
area of greenery was quantified using the polygons described previously (NDVI ≥ 0.5).
These polygons represent areas with a high likelihood of trees or dense vegetation.

2.3.2. Proximity Index

A well-connected and permeable urban landscape has the potential to create additional
habitats, like interconnected green corridors, which offer shelter, food resources, and nesting
sites for birds, insects, and small mammalian species [6,17]. This, in turn, can enhance
a range of ecological benefits and functions within urban settings. Hence, the proximity
index (PROX) plays a crucial role in gauging the permeability of the landscape matrix
by facilitating the evaluation of the connectivity or isolation of UGAs within an urban
landscape [43].

The PROX metric characterizes the surrounding area of each UGA by considering the
area of patches with the same land cover type and the distances to nearby patches with
suitable habitat. It is defined as follows:

PROX =
n

∑
s=1

aijs

hijs
2

where aijs represents the area (in m2) of patch ijs within a specified neighborhood distance
(in m) of the patch ij; hijs is the distance (m) between patches ijs and ij based on the nearest
edge-to-edge distance; and n is the number of patches within a given search radius. In this
analysis, the search radius for each focal patch was set to 5 km. This value accounts for
the limitations of the available mapping data (e.g., the Urban Atlas dataset) and considers
potential wildlife mobility ranges. In fact, lower buffer values (from 500 m onwards) had
minimal impact on PROX values due to the squaring of distances, which limits the influence
of patches beyond a certain distance [37].

The PROX metric was estimated using the ArcGIS extension V-LATE (Vector-based
Landscape Analysis Tools), developed by the authors of [44]. Given the large number of
patches generated from the NDVI ≥ 0.5 data, a reduction in the number of potential neigh-
bors was implemented to simplify data processing, mitigate time and RAM constraints, and
enhance computational efficiency. Specifically, UGAs smaller than 0.125 ha (1250 m2) were
removed from consideration. Higher PROX scores are assigned to less isolated patches,
indicating larger, more contiguous, and closer UGAs, which can facilitate the movement of
organisms and enhance ecological connectivity [42].

2.3.3. Amount of Surrounding Green Area at Multiple Distances

The number of UGAs in the proximity of a focal patch yields valuable insights into the
availability and distribution of potentially suitable habitats for promoting biodiversity within
urban areas, essentially serving as a critical indicator in assessing the potential of creating and
maintaining these habitats. This evaluation encompasses quantifying the total area of all polygons
representing UGAs with a high probability of containing trees or dense vegetation within their
respective buffer zones, making it an indicator that reflects both the quantity and quality of
the urban landscape. This indicator can be measured at multiple distances, thereby avoiding
assumptions regarding the maximum influence distance and decay function associated with
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distance. Unlike PROX, which requires a predefined search radius, the number of surrounding
green areas can be calculated over various distances (Figure 2).

Using the Urban Atlas dataset, we measured several buffer zones around the edges
of UGAs at different distances (10, 20, 40, 80, 120, 160, 200, 260, 320, 640, 1280, 2560, and
5120 m). These buffer distances were chosen to capture different spatial scales and account
for species with varying mobility and dispersal abilities. Only two contrasting distances
(80 and 1280 m) were shown to represent species with low and high mobility/dispersity,
respectively. Using the Urban Atlas dataset, the total area of UGAs within each buffer
distance was computed. This involved measuring the extent of UGAs within the buffer
zones created around the focal patches. Additionally, for spectral data, the total area of
polygons with an NDVI ≥ 0.5 was calculated within each buffer distance.

2.4. Data Analysis

The comparative analysis involved examining the rank correlation between connec-
tivity indicators calculated using two different datasets. To compare the indicators, the
sampling sites were ranked based on their values within each dataset. For example, when
analyzing the size of green areas within a city with 36 focal patches, the smallest patch was
assigned a rank of 1, while the largest patch was assigned a rank of 36. This rank-based
approach allowed for the linear comparison of the relative positions of each focal patch in
the ranking between the two datasets. As neither dataset is considered the absolute “truth”,
a perfect regression line with a Pearson correlation coefficient (r) of 1 would indicate that
the metrics are not affected by the choice of dataset.

To assess the comparability of information provided by the land cover classification
dataset and the NDVI spectral data, a threshold of r = 0.8 was chosen. If the correlation coef-
ficient exceeded this threshold, it suggested that the two datasets yielded similar outcomes
regarding connectivity. It is important to note that reaching this threshold does not imply
that one dataset is preferable over the other; rather, it indicates that the choice of dataset
does not lead to different connectivity outcomes. p-values were reported in the analysis,
but significance levels were not considered in the Discussion Section. The focus was on
achieving the best possible fit between the datasets rather than determining statistical
significance. The statistical analysis and plotting were conducted in Excel, while the spatial
analysis was performed using ArcMap (v.10.5.1, ESRI).

3. Results
3.1. Green Area Size

When comparing the size of UGAs in seven European cities using ranking positions,
the results indicated differences between the two datasets (as shown in Figure 3). Consid-
ering all cities collectively, the correlation obtained was below the established threshold
(r = 0.39), suggesting a lack of strong agreement between the two datasets in terms of
UGA size. This discrepancy implies that smaller UGAs identified in the Urban Atlas land
cover classification may be perceived as larger when using NDVI spectral data, and vice
versa. Examining individual plots for each city, Almada, Paris, and Lisbon exhibited the
strongest correlations (r = 0.76, 0.73, and 0.57, respectively), although still falling below
the established threshold. In contrast, Poznan, Tartu, and Antwerp showed weaker linear
relationships, indicating significant disparities between the two datasets. In fact, Poznan
and Tartu even demonstrated negative correlations (r = −0.06 and r = −0.18, respectively),
indicating that the two datasets calculated different green area values. This discrepancy
highlights that the Urban Atlas and NDVI spectral data are not capturing the same extent
of UGAs. To explore the potential influence of urban green size on the results, the analysis
was repeated after excluding UGAs smaller than 1 ha. This adjustment resulted in an
increased correlation for Poznan (r = 0.15) and Tartu (r = 0.34), indicating that the exclusion
of smaller UGAs improved the agreement between the datasets. This suggests that the
Urban Atlas may underrepresent small UGAs.
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Figure 3. The relationship between patch rankings in a size gradient considers the linear relationship
between land cover classification (on the horizontal axis) and spectral data (on the vertical axis)
measured by the Pearson correlation coefficient. Small UGAs have a low rank position, while larger
UGAs have a high rank position. The dotted line indicates a perfect fit when either dataset would be
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3.2. Proximity Index

When examining connectivity using the PROX indicator, our analysis revealed sig-
nificant discrepancies between the land cover classification and spectral data (Figure 4).
The overall analysis across all cities showed a correlation coefficient (r = 0.42) that fell
below the established threshold. Upon analyzing each city individually, we found that the
behavior of the PROX indicator was more consistent across cities compared to the green
area size metric. However, the correlation coefficients still remained below the established
threshold, indicating discrepancies between the land cover classification and spectral data
in terms of connectivity assessment. The correlation coefficients for individual cities ranged
from 0.30 (Antwerp) to 0.64 (Almada), except for Tartu, which exhibited a non-significant
negative relationship (r = −0.34). The results in Tartu suggest that patches considered
contiguous by one method (NDVI spectral data) are fragmented according to the other
method (Urban Atlas land cover classification).
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Figure 4. The relationship between patch rankings in a connectivity gradient using the Pearson
correlation coefficient to consider the linear relationship between land cover classification (on the
horizontal axis) and spectral data (on the vertical axis). Patches with the lowest proximity index values
are more fragmented and thus rank lower, while patches with higher proximity index values, which
are contiguous and closer, rank higher. The dotted line represents a perfect fit when either dataset
would be equivalent (the 1:1 line), while the continuous line shows the actual fit. The significance
level is *** at p < 0.001, ** at p < 0.01 and * at p < 0.05.

3.3. Number of Surrounding Green Areas at Multiple Distances

Figure 5 shows the correlation between the two datasets for the surrounding green
area when short distances (80 m) are considered. Figure 6 depicts the same correlation but
over a longer distance (1280 m). Upon comparing these two figures, it becomes evident that
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the disparities between the datasets are more significant over short distances, indicating a
connection with the spatial extent of the buffers used.
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Figure 5. The relationship between patch rankings in a surrounding green area gradient (80 m from
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Figure 6. The relationship between patch rankings in a surrounding land cover area gradient
(at 1280 m from the edge), considering the linear relationship between land cover classification
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correlation coefficient. Patches without nearby UGAs have the lowest rank, while those with a
large number of nearby UGAs have a higher rank position. The dotted line indicates a perfect fit
when either dataset would be equivalent (the 1:1 line), while the continuous line shows the actual fit.
The significance level is *** at p < 0.001 and ** at p < 0.01.

In Figure 5, the behavior of this indicator varies considerably for short distances, de-
pending on the dataset. When each city was analyzed separately, the correlation coefficients
ranged from 0.05 (Tartu) to 0.70 (Zurich), indicating weak to strong linear relationships.
Moreover, many focal patches in the Urban Atlas dataset were assigned the same rank
position (e.g., 1st = 1) for a short buffer distance. This implies that no UGAs were detected
within an 80 m distance from the edge of the focal patch when using the Urban Atlas data.
However, this pattern was not observed when ranking was determined using NDVI spec-
tral data, as multiple UGAs were identified at the same distance. These findings highlight
that the two datasets exhibit significant discrepancies in terms of detecting surrounding
UGAs at short distances. The lack of UGAs identified within 80 m from the focal patch’s
edge in the Urban Atlas data suggests potential limitations in capturing smaller-scale
green features. In contrast, the NDVI spectral data appeared to provide more detailed
information, detecting multiple UGAs within the same distance.

When considering longer distances, the correlations between patch rankings showed
stronger agreement than over shorter distances (r = 0.77 for all cities). This correlation
coefficient was very close to the threshold established, indicating that this indicator was less
influenced by the choice of dataset for calculation. Individual plots in Figure 6 demonstrated
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that four out of the seven European cities exhibited a strong correlation, with r-values
exceeding 0.8. Zurich had the highest correlation coefficient of 0.92, followed by Almada
and Lisbon with a correlation of 0.86, and Antwerp with a correlation of 0.81. Although the
correlations were slightly lower in Paris, Tartu, and Poznan, the behavior of this indicator
remained consistent across all cities. These findings suggest that the number of green areas
near a focal patch, as measured by the Urban Atlas land cover classification, corresponds
to a similar number of UGAs as determined by the NDVI spectral data. The landscape
metric assessing surrounding green area over longer distances appears to be less affected
by the choice of dataset, exhibiting strong correlations across most cities. This implies that
when evaluating larger-scale connectivity and the extent of green areas surrounding focal
patches, the choice of dataset has a less significant impact on the outcomes.

4. Discussion
4.1. Impact of Dataset Choice on Urban Green Connectivity Analysis

Although there is no universally prescribed or optimal dataset for quantifying urban
landscape connectivity, the choice of dataset can have a significant impact on the outcomes,
leading to different connectivity analyses. This observation is consistent with the find-
ings of [45], who emphasized how different datasets can influence ecological analyses,
particularly when dealing with geographical or ecological gradients. Our study supports
these findings and highlights that the representation of urban green connectivity in various
European cities differs based on the chosen dataset and scale of analysis (see Supplemen-
tary Figure S1). Specifically, when comparing the Urban Atlas land cover classification to
NDVI spectral data, we found that the land cover classification tends to underestimate
connectivity, particularly at local scales. However, it is important to note that at a local
scale, where individual property owners or smaller UGAs play a significant role, the choice
of dataset becomes crucial for accurate and comprehensive assessments of urban green
connectivity. In these cases, relying solely on land cover classification data, such as the
Urban Atlas dataset, may lead to an underestimation of UGAs and hinder the identifi-
cation of smaller UGAs that are vital for local biodiversity, ecological connectivity, and
community well-being [8,17,20]. Furthermore, this finding gains particular importance
because management actions related to green infrastructure, such as tree planting or park
creation, often target the local scale. Therefore, it is crucial to consider the limitations
of the land cover classification when assessing urban green connectivity. Based on our
findings, we recommend using spectral data, such as NDVI, to characterize urban green
connectivity at the European scale. Spectral data can more accurately identify the presence
of urban vegetation, leading to a more comprehensive and standardized assessment of
UGAs, encompassing both their quantity and quality.

4.2. Factors Contributing to Disparities between Datasets

The disparities between the two datasets can be attributed to several key issues:
(1) scale effects on the minimum mapping unit; (2) thematic resolution; (3) spatial het-
erogeneity; and (4) spectral similarity in urban landscapes. In our study, we observed
that the absence of small, private, and informal UGAs in the land cover dataset had a
significant impact on the outcomes, particularly at the finer spatial scales when assessing
urban green connectivity at the patch level (Figures 3–5). This omission primarily stems
from differences in the minimum mapping unit and the choices made during the thematic
classification process. In the Urban Atlas dataset, the minimum mapping unit is larger
compared to the NDVI spectral data (0.25 vs. 0.125 ha, respectively). As a result, small
UGAs (<0.25 ha) are often grouped into adjacent, larger, and more abundant non-green land
cover types. This phenomenon has been documented in previous studies by [24,25,46,47].
Consequently, small UGAs like tree-lined squares or other small UGAs may be classified as
urban fabric and not included in the connectivity indicators as input data. This leads to
an underestimation of UGAs in the Urban Atlas dataset (as observed by [47]) and, conse-
quently, an overestimation of urban fragmentation, particularly in the northernmost cities.
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These findings support previous research indicating that aggregating different land covers
or habitats into broader classes can result in inaccurate estimates of connectivity [22,32,45].
In contrast, spectral data captured many of these small and isolated UGAs that were
missed in the land cover classification [47]. It should be noted that special precautions were
taken in our study to address differences in thematic resolution between the two datasets.
We included all the Urban Atlas classes that could potentially host trees and used a high
NDVI threshold (≥0.5) to ensure that we were examining similar types of land cover.
Despite these precautions, the discrepancies between the two datasets were even more
pronounced in our study compared to the findings of [24,47]. For instance, in Lodz (Poland),
Ref. [24] reported variations of 0.1% and 0.2% between the UGAs calculated by the Ur-
ban Atlas and Landsat imagery, whereas we observed differences of 1.5% in Lisbon and
52.9% in Tartu. In their study, the authors of [47] found that when employing Landsat
image analysis, a particular subset in Brussels contained over 5 km2 of UGAs, whereas
the Urban Atlas indicated less than 1 km2. In Antwerp, we identified 71 km2 of UGAs
based on Sentinel 2A images, whereas the Urban Atlas suggested approximately 30 km2.
These differences between studies can be partially attributed to the distinct spatial res-
olutions of Landsat and Sentinel imagery (30 m and 10 m, respectively), with Sentinel
images providing more detailed information on UGAs. Interestingly, when examining
the two datasets at broader scales, specifically over long distances, the analysis of urban
green connectivity yielded comparable results (Figure 6). This observation underscores the
significant disparities that can arise between the data used for urban planning purposes
at a broad scale (e.g., within a municipality) and the data obtained at a more local scale
(e.g., within a parish or city block). This distinction becomes particularly relevant in
cities characterized by numerous small, privately owned UGAs, where urban planning
interventions and decisions often need to be made at a more fine-grained, local scale.

The discrepancies between these two datasets can also be attributed to the spatial
heterogeneity and spectral similarity of various urban land covers, particularly in northern
European cities with their distinct characteristics. These cities often feature a less dense
urban matrix that is interspersed with small, privately owned UGAs [48]. The presence of a
mix of artificial and natural surfaces, each with its own unique spectral signature, poses chal-
lenges for accurate land cover mapping, even at high-spatial-resolution classifications [35].
In our analysis using the Urban Atlas dataset, we observed that the average NDVI values
for urban classes/surfaces were higher in Tartu and Poznan compared to the other cities
(Supplementary Table S1). This finding suggests that the land cover classification within the
Urban Atlas dataset is not uniform across European cities. This non-uniformity can affect
connectivity indicators since even within the urban classes, the NDVI averages exceeded the
defined threshold for distinguishing between the green and gray matrices (Supplementary
Table S1). However, it is important to note that using spectral data also has its challenges.
Spectral similarities can be observed among different surfaces, even when they possess
distinct functional characteristics (e.g., irrigated lawns versus trees), making it challenging
to accurately map UGAs. This issue is particularly relevant in wetter biogeographic regions,
where UGAs tend to be closer and more contiguous, posing difficulties in differentiating
between lawns and trees. On the other hand, in drier biogeographic regions (e.g., Almada
and Lisbon), the phenological cycle of lawns and trees may exhibit more pronounced
differences, simplifying the distinction between them [49]. Furthermore, it is crucial to con-
sider interannual variations in urban vegetation when calculating landscape metrics [45].
In wetter cities, there is a risk of overestimating urban green connectivity, while in drier
cities, it may be underestimated. Therefore, caution must be exercised when interpreting
and comparing connectivity results across cities with varying climate conditions.

In addition to the challenges posed by the spatial heterogeneity and spectral sim-
ilarity of Earth Observation data, it is important to recognize that the modifiable area
unit problem can further complicate classification efforts using spectral data. The use of
a NDVI threshold to categorize UGAs can oversimplify the variability within this class.
This variability includes not only different typologies of green areas but also variations in
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their management levels, which can impact their spectral signatures. As a consequence of
overlooking intra-class variability, there is a potential for misclassification, where areas with
distinct vegetation types are inaccurately grouped together under a single class label [50,51].
This limitation can obscure important distinctions and nuances in the urban landscape,
leading to less accurate assessments of tree cover and green areas and, consequently, urban
green connectivity. To mitigate this challenge, it is advisable to employ complementary
techniques that offer a more nuanced understanding of the urban landscape. For example,
integrating NDVI thresholds with advanced image segmentation algorithms and texture
analysis can improve classification accuracy by capturing finer details and subtle variations
in vegetation characteristics. Thus, it becomes possible to identify specific tree attributes
and differentiate between various types of vegetation cover and their associated manage-
ment practices within the urban green category. However, it is important to recognize
that the main objective of the study may prioritize the broad-scale identification of UGA,
as was the case for us, rather than the detailed characterization of individual features.
While limitations in identifying basic entities exist, associated with the modifiable area unit
problem, they may not significantly hinder the achievement of the study’s primary goals,
which focus on broader trends and patterns in urban greenery.

4.3. Advantages of Spectral Data in Urban Green Connectivity Analysis

Based on our findings, our study suggests that spectral data are generally preferable
to land cover classification for assessing urban green connectivity across cities with varying
climatic and urbanization gradients (but see Section 4.4 on when land cover is important).
Spectral data offer several advantages over land cover classification, making them a more
efficient, consistent, and standardized approach at a European scale. One significant ad-
vantage of spectral data is their ability to identify the presence of greenery, regardless
of its typology. This means that smaller, private, and informal UGAs, which may be
omitted or misclassified in land cover classification, are more effectively captured [24,47].
Any omission artificially increases fragmentation levels since all UGAs, regardless of their
structure, configuration, or composition, have the potential to improve urban connec-
tivity, support biodiversity, and contribute to ecological functions and services [8,17,18].
Using spectral data also helps to reduce biases caused by thematic or spatial issues related
to land cover classification, which is particularly important when analyzing short distances
or focusing on the patch level. By capturing the continuous and comprehensive nature of
spectral data, we can obtain a more accurate and detailed representation of urban green
connectivity, especially for organisms with low mobility or ecosystem services provided at
local scales [52]. Another advantage of spectral data is their temporal continuity, allowing
for the assessment of urban green connectivity over time and the consideration of land-use
change dynamics [22]. This is particularly valuable for monitoring and understanding the
dynamics of UGAs and their impacts on ecological processes and services. Furthermore, the
use of spectral data becomes even more significant in areas where land cover classification
products are lacking. Spectral data can be utilized to calculate landscape metrics in remote
or low-resource areas where land cover classification data may not be readily available.

4.4. Considerations for Land Cover Classification in Urban Green Connectivity Analysis

While spectral data are generally preferable for quantifying urban green connectivity,
land cover classification should not be completely dismissed. There are specific scenarios
where land cover classification can still provide valuable insights. Firstly, land cover
classification can be useful when seeking homogeneity between patches, especially when
focusing on specific types of tree-covered UGAs with similar land-use intensities. It allows
for the identification of patches that share similar characteristics, which can be relevant
for certain ecological analyses or management strategies. Secondly, when analyzing at
a broader scale, land cover classification can provide a more aggregated and simplified
representation of urban green connectivity. This can be beneficial for large-scale planning
and decision-making processes, where a more general overview is needed. Additionally, it
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is important to consider species’ habitat preferences in ecological analyses. Some species
may exhibit specific habitat requirements that are better captured by certain land cover
categories in a classification scheme. Therefore, land cover classification can be valuable
for understanding species–habitat relationships and supporting targeted conservation
efforts. However, it is crucial to improve the available land cover classification for urban
ecology applications. This improvement should focus on enhancing the completeness
of the classification by including all urban greenness typologies, reducing the minimum
mapping unit to capture smaller and more fragmented UGAs, and updating the data more
frequently to account for the rapid dynamics of urban environments. Future revisions of
the Urban Atlas, in particular, should strive to provide a comprehensive and ecologically
meaningful characterization of UGAs across Europe. This would involve considering not
only the land cover type but also the spatial configuration, vegetation structural complexity,
cultivation degree, and management regime type of the UGAs [41,53,54]. Such improved
data would serve as a valuable resource for promoting more sustainable urban planning and
management practices, integrating ecological considerations into decision-making processes.

5. Conclusions

Our study focused on seven European cities with varying levels of urbanization to
investigate how the choice of dataset influences the analysis of urban green connectivity.
We observed that the outcomes of this analysis are heavily influenced by the spatial and
thematic resolution of the datasets, particularly when examining connectivity at local scales,
such as the patch level. Among the different datasets, high-resolution spectral data emerged
as the most suitable and reliable method for studying urban green connectivity.

This preference arises from its ability to provide a more comprehensive depiction
of UGAs and yield standardized results applicable across Europe, regardless of specific
classification options. In contrast, although a common land cover classification, the Urban
Atlas, is available, our findings suggested that it may not exhibit homogeneity at the
European scale. This lack of consistency in classification could lead to an underestimation
of UGA connectivity, particularly in northern European cities, with potential significant
repercussions for urban planning and management practices.

To address these limitations, we highlight the importance of regularly updating land
cover classifications. These updates should encompass an ecologically based thematic
classification of UGAs, thereby enhancing research on the consequences of urban fragmen-
tation on biodiversity and ecosystem services. By refining the classification scheme and
incorporating ecological considerations, future studies can advance our understanding
of the impacts of urbanization on urban green connectivity, biodiversity, and ecosystem
services. We emphasize that urban planners and decision makers should stay updated on
the latest datasets and consider the ecological implications of their choices. This knowledge
can lead to more effective urban planning and management strategies that enhance urban
sustainability and resilience while ensuring that UGAs are well-preserved, connected, and
integrated into the urban landscape.
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