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Abstract: Urban visual localization is the process of determining the pose (position and attitude) of
the imaging sensor (or platform) with the help of existing geo-referenced data. This task is critical and
challenging for many applications, such as autonomous navigation, virtual and augmented reality,
and robotics, due to the dynamic and complex nature of urban environments that may obstruct
Global Navigation Satellite Systems (GNSS) signals. This paper proposes a block-wise matching
strategy for urban visual localization by using geo-referenced Google Street View (GSV) panoramas
as the database. To determine the pose of the monocular query images collected from a moving
vehicle, neighboring GSVs should be found to establish the correspondence through image-wise and
block-wise matching. First, each query image is semantically segmented and a template containing
all permanent objects is generated. The template is then utilized in conjunction with a template
matching approach to identify the corresponding patch from each GSV image within the database.
Through the conversion of the query template and corresponding GSV patch into feature vectors,
their image-wise similarity is computed pairwise. To ensure reliable matching, the query images are
temporally grouped into query blocks, while the GSV images are spatially organized into GSV blocks.
By using the previously computed image-wise similarities, we calculate a block-wise similarity for
each query block with respect to every GSV block. A query block and its corresponding GSV blocks of
top-ranked similarities are then input into a photogrammetric triangulation or structure from motion
process to determine the pose of every image in the query block. A total of three datasets, consisting
of two public ones and one newly collected on the Purdue campus, are utilized to demonstrate the
performance of the proposed method. It is shown it can achieve a meter-level positioning accuracy
and is robust to changes in acquisition conditions, such as image resolution, scene complexity, and
the time of day.

Keywords: monocular vision; visual localization; image similarity; template matching; deep learning;
google street view; panorama

1. Introduction

Monocular image localization is to determine the pose (position and attitude or point-
ing) of a camera using an image. For urban environments, it has numerous applications in
line of sight analysis, autonomous navigation, and robotics [1]. Hence, extensive efforts
have been made to explore robust and precise methods by exploiting multiple GIS data
as references, such as existing maps [2,3], semantic contexts in street views [4–7], geo-
referenced traffic signs [8], aerial and satellite imagery [9–12], and features learned by deep
neural networks [13].

However, accurately estimating the camera pose in urban environments is still chal-
lenging due to the unreliability and unavailability of GNSS data [4,5]. To address such
difficulties, many techniques take advantage of unique environmental characteristics to
determine the position of a vehicle. Among these techniques, Simultaneous Localization
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and Mapping (SLAM) is considered the most advantageous one due to its ability to create a
map of the surroundings while simultaneously locating the vehicle within it. Nonetheless,
when absolute positioning is required or revisiting is not possible, SLAM based meth-
ods can be problematic due to the accumulation of errors caused by local measurements
and expensive deployment costs [13]. Alternatively, an increasing number of studies are
focusing on harnessing public multi-source geospatial data, such as Google Street View
(GSV) and Mappy. The rapid improvement in the quality of these data sources and their
widespread distribution, covering a significant portion of the world, makes them valuable.
The 3D information they collect paves the way for enhanced functionalities like automated
route planning, navigation, 3D buildings, fly-over tours, street views, and the overlay of
public transport filters (subway and bus routes, travel schedules, etc.) [14]. This wealth
of information, as indicated by reference [15–17], offers visual, spatial, and geographic
insights, contributing to the creation of a unified global representation of our world.

We developed a framework for visual localization in urban areas with GSV panoramic
images (or GSV images for short) as reference. The central idea is to match the query images
captured on a moving vehicle, whose poses are to be determined, with the geo-referenced
GSV images in the same geographic area. Once the correspondence is established, pho-
togrammetric triangulation or structure from motion can then be used to determine the
pose of the query images. The method starts with matching every query image with all
GSV images in the database. A pre-trained semantic segmentation model, named Seg-
Former [18], is applied to segment the query image and extract a template containing all
time-invariant, i.e., permanent objects, such as buildings and roads. The corresponding
image patches are then found on every GSV image in the database using the Quality-Aware
Template Matching (QATM) method [19]. To determine the similarity of the query template
and GSV patch, a pre-trained Contrastive Language-Image Pretraining (CLIP) model [20]
is used to convert them into deep features, followed by computing their cosine similarity.
Such image-wise similarity is calculated for all pairs of query templates and GSV patches.
In the next step, we divide all query images into a number of query blocks by their acquisi-
tion time and all GSV images into GSV blocks by their locations. By using the image-wise
similarities, a block-wise similarity can be calculated that establishes the correspondence of
a query block to its several best-matched GSV blocks. Finally, the images of a query block
and the images of its top matched GSV blocks undergo a photogrammetric triangulation
or structure from motion process (including tie point selection and bundle adjustment)
to determine the poses of the query images. This process repeats for every query block
until the poses of all query images are determined. As a nominal practice, one query
block may consist of three query images, and one GSV block typically has three images.
For each query block, we select the top three corresponding GSV blocks. As such, the
photogrammetric triangulation could involve twelve images, including three query images
and nine GSV images, to assure its reliability. Since GSV images have known interior and
exterior orientation parameters (IOPs and EOPs), they essentially provide the geo-reference
needed for the bundle adjustment calculation.

The rest of this paper is divided as follows: Section 2 exposes the related work regard-
ing the state-of-the-art visual localization techniques and template matching approaches.
Section 3 introduces the proposed framework and focuses on the image-wise and block-
wise matching metrics computation. In Section 4, the results and effectiveness of our
approach using three different mobile image datasets are evaluated. Finally, Section 5
discusses the factors affecting the performance of the block-wise matching strategy, while
Section 6 concludes our work.

2. Related Work
2.1. Visual Localization with Perspective Images

Visual localization is critical for sophisticated computer vision applications. Most
existing technologies predominantly depend on reverse perspective image search based
on standard Field of View (FOV) and content-based image retrieval (CBIR). Initial studies
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concentrated on employing a Bag-of-Visual-Words (BoVW) model [21] to extract visual fea-
tures like ORB [22], SIFT [23], or SURF [24] for image representation and measuring image
similarity using the cosine distance [21,25]. The BoVW model is robust to variations in scale,
rotation, and translation, as it focuses on the presence and frequency of visual words rather
than their exact spatial locations. However, the spatial information among visual words
is ignored, which can lead to the loss of discriminative power in distinguishing images
belonging to different conceptual categories. The VLAD (Vector of Locally Aggregated De-
scriptors) [26] approach accomplishes the same objective with condensed representations,
allowing for the utilization of extensive datasets. Though VLAD shows good performance,
it ignores high-order statistics of local descriptors, and its dictionary needs to be optimized
for localization tasks. Over time, the improvements of these handcrafted feature based
methods have demonstrated greater resilience to recurring structures [27], alterations in
lighting and perspective [28], and even temporal changes, such as seasonal variations.

Recent advancements in deep neural networks (DNNs) have demonstrated that learn-
ing features from vast training datasets [29] can attain top-tier recognition accuracy, re-
sulting in a shift towards deep learning-centric visual localization approaches [30–33].
A comparison of various feature extraction methods for convolutional neural networks
(CNNs), as well as non-CNN techniques, is provided in [34]. NetVLAD [35] incorporates
a layer into a standard CNN, transforming the final convolutional layer into a compact
descriptor that emulates VLAD’s [26] functionality. Lately, a method utilizing learned
semantic descriptors [36] has surpassed NetVLAD and other prior methods on multiple
visual localization benchmark datasets.

2.2. Visual Localization with Panoramic Images

In comparison to localization issues utilizing perspective images, employing panoramic
images demonstrates broader applicability, as numerous geolocated street views are readily
available and accurately captured across multiple periods. Generally, visual localization
using panoramic images can be categorized into two distinct scenarios [37]. In the first
scenario, both database images and query images are panoramic images, resulting in a
panorama-to-panorama image matching problem [38–43]. In this case, image descriptors,
such as SIFT and CNN-derived image features, serve as essential components.

The second scenario encompasses query images captured by a smartphone or standard
monocular camera mounted on a moving vehicle, while the database comprises panoramic
street views acquired through fisheye cameras. Addressing this perspective-to-panorama
image matching challenge, prior research has generated simulated perspective images by
projecting panoramas along the equator (i.e., a horizontal line) with a specific FOV [17,36],
essentially transforming the problem into a perspective-to-perspective image matching
one. Nonetheless, this approach results in an increased database size and fails to deliver
high-quality matching outcomes due to an insufficient overlap ratio. To mitigate this issue,
researchers have suggested employing CNN feature representations for the matching be-
tween monocular and panoramas without generating perspective images [19,37]. A sliding
window is used on the CNN feature maps to search for matched monocular and panoramas.

2.3. Template Matching

Template matching is a computer vision technique that identifies the best correspond-
ing part of an image (source image) for a given image pattern (template image) [44].
Traditional template matching methods use Sum-of-Squared-Difference (SSD) [45] or Nor-
malized Cross-Correlation (NCC) [46,47] to estimate the similarity between the template
and the source image. However, these methods become less effective as the transformation
between the template image and the source image becomes more complex or nonrigid
with different scales, which is common in real-world scenarios. Additionally, factors such
as occlusions and color shifts make the above approaches more fragile and susceptible to
failure. To address these issues, various approaches have been proposed. For instance, the
Best-Buddies-Similarity (BBS) metric is introduced, which focuses on the nearest-neighbor
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matches to exclude potential and bad matches by using the background pixels [48]. In [49],
the Deformable Diversity Similarity (DDIS) concept is presented, which considers the
likelihood of template deformation and measures the range of nearest neighbor feature
matches between a template and a potential matching area within the search image. How-
ever, the decision of the threshold limits the usage of the mentioned methods. Hence,
deep neural networks (DNN) based methods are developed to mimic the functionality of
template matching [50,51] by extracting the deep features with pre-trained deep models.
Furthermore, QATM is proposed to take the uniqueness of pairs into consideration rather
than simply evaluating the matching score [19].

3. Methodology

Our work aims to address the urban visual localization problem under a mobile
scenario, which involves determining the pose of a sequence of monocular mobile images
by using the geo-referenced GSV images. We are targeting applications when GNSS signals
are weak or not available in complex urban environments or under difficult conditions.
Our method has three prerequisites. First, location knowledge of the geographic area of the
mobile images is necessary to access the GSV images that encompass the same area. Second,
treating the mobile images as query images and geo-referenced GSV images as source
images, we assume they should contain a sufficient number of permanent or time-invariant
objects for successful matching, since they are likely not collected during the same time.
Thirdly, the exterior orientation information of the GSV images should be known so that
they can be used for the pose determination of the query images in a world coordinate
system. To be more specific, the longitude, latitude, altitude, and northing angle of the GSV
images recorded by Google will be available as reference data. Since the GSV image is a
spherical panorama with a 360-degree view, the northing angle is defined as the clockwise
angle difference (0–360◦) between the geographic north direction and the direction from
the optical center to the center pixel of the GSV image. Lastly, the interior orientation of the
query images should be available as a common practice in photogrammetry. It should be
noted that no initial precise location for the query image is needed because the workflow
will search the entire GSV image database to identify the most suitable GSV images. Instead,
only the geographic area of the operation needs to be known in advance.

Figure 1 shows the workflow of our solution. It starts with calculating image-wise
similarities. The query images are semantically segmented using a pre-trained model
named SegFormer [18]. As the result of this segmentation, a template, i.e., a rectangular
region of the query image, is formed that encloses all permanent objects, such as buildings
and roads. Secondly, for each detected query template, we use the QATM technique [19] to
find the corresponding patches from all GSV images. In the next step, we use a pre-trained
Contrastive Language-Image Pretraining (CLIP) model [20] to convert a query template
and its corresponding GSV patch into feature vectors, which are then used to calculate the
cosine similarity as the measurement of image-wise similarity. Such image-wise similarity
calculation will be repeated for all pairs of query images and GSV images in the database.
Based on these image-wise similarities, the fourth step calculates the block-wise similarity.
To do so, we form a query block with n consecutive images in the sequence according
to their acquisition time. Similarly, starting from the most northwestern GSV image, m
spatially adjacent GSV images along the trajectory of the query images are iteratively
grouped into one GSV block. It should be noted that one query image and one GSV image
are only assigned to one corresponding block. Next, we calculate the block-wise similarity
between a query block and a GSV block. For each query and GSV block pair, we select
the best image-wise similarity for each query image and take the average for all query
images in the query block. This average of the top n image-wise similarities is used as the
block-wise similarity between the query block and the GSV block.
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Figure 1. Workflow of query image and GSV image matching. The pretrained SegFromer is first
applied to segment each query image to generate a template consisting of all permanent objects.
QATM is used to find a corresponding image patch on all GSV images for every query template. A
pair of a query template and GSV patch are converted to feature vectors using CLIP, whose cosine is
calculated as the image-wise similarity. Block-wise similarity is the average of the top image-wise
similarities within a block pair. For each query block, the GSV block with the highest blocks-wise
similarity is regarded as its best match.

For a query block, the GSV block with the max block-wise similarity is identified as
its best match. However, to assure reliable performance, for each query block, we select
several top matched GSV blocks for the subsequent photogrammetric triangulation. We
adopt Agisoft Metashape 2.0 (https://www.agisoft.com/, accessed on 31 December 2022)
for this process. Its input is the images in a query block and the images in all selected top
matched GSV blocks. It starts with routine tie point extraction and matching, followed
by a bundle adjustment calculation, in which the known exterior orientation of the GSV
images is used as reference. The poses of the images in a query block are the result of the
bundle adjustment.

3.1. Permanent Object Segmentation

We recognize that query images often contain time-variant objects like trees, cars,
people, and clouds, which are inconspicuous and not useful for finding similar images in
the GSV database. However, time-invariant objects like buildings and traffic signs retain
their spectral information over time and are considered permanent objects. To identify
these objects, we utilize the SegFormer [18] model trained using Cityscapes [52], available
from the MMSegmentation toolbox (https://github.com/open-mmlab/mmsegmentation,
accessed on 10 December 2023), to segment all query images and assign a class code to
every pixel. SegFormer presents a straightforward, efficient, and robust semantic segmen-
tation framework. This framework consists of a hierarchical Transformer encoder [53]
and a lightweight multilayer perception (MLP) decoder head. Given our goal of estimat-
ing the pose of a moving vehicle, it is impractical to train or fine-tune a deep model to
achieve improved segmentation performance, especially considering the constraints of
time and computational resources. The SegFormer model not only delivers top-tier results
in semantic segmentation but also exhibits excellent transferability [54]. This means that
once the model is trained on a specific street view image dataset, it can be directly applied
to other datasets without the need to train from scratch or fine-tune, resulting in strong
performance. The segmentation results with SegFormer consist of label maps, in which
each pixel is assigned to a specific class. These classes consist of 8 permanent objects, with

https://www.agisoft.com/
https://github.com/open-mmlab/mmsegmentation
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Cityscapes label IDs ranging from 0 to 7. The objects include road, sidewalk, building, wall,
fence, pole, traffic light, and traffic signs, as displayed in Figure 2.
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Figure 2. Colored permanent objects segmentation output and label legend of a query image captured
using a smartphone inside a moving vehicle. Only the image patch, or the yellow rectangle denoted
as T, encompassing all permanent objects (label ID = 0~7) will be used as a query template for
searching the correspondence from the GSV images.

After segmenting the query image, we extract a rectangular template based on the label
map. This template encompasses all pixels marked as belonging to permanent object classes,
even if some of these areas are relatively small. This strategy allows us to keep the integrity
and leverage all the information of the non-permanent objects simultaneously. When there
are multiple clusters of permanent objects in an image, their minimum bounding rectangle
is considered as the template. Figure 2 shows an example of the query template in one
image, where the left part demonstrates the legend of the semantics labels of permanent
and inconspicuous features and the yellow rectangle marks the template with all permanent
features. It is worth noting that despite the inclusion of some non-permanent elements,
such as trees and cars, the template ensures integrity rather than dividing it into several
sub-templates. Although there may be pixels belonging to non-permanent objects in the
template, our image-wise matching method is robust to handle such cases. This is because
permanent objects play a more important role than non-permanent objects in template
matching, which is demonstrated in further discussion from Section 5.1.

3.2. GSV Correspondence Finding with Template Matching

GSV has a vast global coverage and provides abundant street-level semantic data,
which is employed in numerous applications. Current GSV images have an ultra-high
resolution with equirectangular projection, and their field-of-view encompasses a 360◦

horizontal direction and a 180◦ vertical direction, suggesting there is likely to be substantial
overlap with the query image. Our goal is, for a query template T, to find its correspon-
dence P∗, i.e., the GSV patch that covers the same objects with T, in every GSV image in the
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database. This is achieved using a learning-based template matching technology, Quality-
Aware Template Matching (QATM) [19]. By using the VGG19 architecture [55], QATM
achieves a dual-directional template matching with a likelihood function for evaluating
matching quality. In QATM, deep feature maps are extracted for both the template query
image and the GSV reference image, enabling the discovery of templates within the refer-
ence image and vice versa. Compared with the traditional template matching method that
calculates the normalized cross-correlation or sum-of-squared differences of each original
pixel [45–47], the deep features used in QATM are more robust when the transformation
between the query and GSV images is non-rigid, such as stretching or shrinking differently
in different directions. Also, the deep features highlight attention areas that are typically
objects of interest and can avoid the effects of background variations. In addition, QATM
employs a likelihood function which gives a soft ranking for all possible matchings with a
learnable parameter. This soft similarity measurement is more robust to distortion than the
widely used measurements NCC and SSD. Consequently, this technique is versatile enough
to address a range of matching scenarios, encompassing 1-to-1, 1-to-many, many-to-many,
and no-matching situations [19].

In our workflow, the process of QATM is formulated as follows. Based on the descrip-
tion of QATM, feature representations or maps of the template T and the GSV image are
inferred by the pre-trained VGG19 [55]. Here T refers to the feature maps of the template. A
set of patches with the same size as T are extracted in the feature representations of the GSV
image, denoted as P. The patches P are compared with the template T. In the matching
process, tiles of the same size (5 × 5 in our experiments) are obtained from P and T using a
sliding window with a stride of 1 pixel, represented as p for P and t for T, respectively. For
each tile t of T, the QATM algorithm compares it with each p in P. P∗ is the patch that best
matches the template T, and its tiles have the highest overall match quality. The function of
assessing the template matching is shown in Equation (1).

P∗ = QATM(T, P) = arg max
P

{
∑p∈P max{Θ(p, t)|t ∈ T}

}
(1)

The function Θ(p, t) = L(t|p)·L(p|t) defines the matching quality between (p, t). As
shown in Equation (2a,b)

L(t|p) =
exp

{
α·ρ

(
ft, fp

)}
∑t′∈T exp

{
α·ρ

(
ft′ , fp

)} (2a)

L(p|t) =
exp

{
α·ρ

(
fp, ft

)}
∑p′∈P exp

{
α·ρ

(
fp′ , ft

)} (2b)

L(t|p) defines the likelihood function that a tile t is matched, where ft and fp respec-
tively denote the feature representations of tile t and p; t′ and p′ respectively represent all
tiles of template T and GSV patch P. Utilize the identical location and dimensions as t in
the template and p in the GSV image, ft and fp denote feature representations extracted
from the template and GSV image using the pre-trained VGG19 [55], and are flattened to a
1 × 25 feature vector. Suggested as from 12.5 to 33.7 [19], α is an empirical parameter used
for making the matched and unmatched patches balanced, and ρ is the cosine similarity
function: ρ

(
ft, fp

)
=

ft · fp

∥ ft∥∥ fp∥ .

It should be noted that since the query images and GSV images are likely collected
with different sensors under considerably different environmental conditions, significant
scale differences may exist, and a scaling factor should be determined to ensure that the
template can be correctly matched to the GSV images. The determination of this factor
involves testing scaling factors ranging from 1 to 10, and the selected number corresponds
to the one yielding the highest template matching score using the QATM method. In our
experiments with three datasets, this process identifies a scaling factor of 2.
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3.3. Image-Wise and Block-Wise Similarity Computation

After locating the best-matched GSV patch P∗ for each template T, the image-wise
similarity will be calculated. To do so, the pretrained CLIP model is first applied to generate
deep feature vectors from the template T and GSV patch P∗. The CLIP model is designed
to measure the similarity between a pair of texts or images and is pretrained on a large
dataset of image (or text) pairs using OpenAI [20]. Hence, CLIP is an appropriate choice
for our task of measuring the similarity of image pairs. Furthermore, it demonstrates a
strong performance even without the need for fine-tuning, rendering it well-suited for
image matching, where it can be employed as a feature extractor [20]. In this study we
choose to use the CLIP model released on Hugging Face (https://huggingface.co/sentence-
transformers/clip-ViT-B-32, accessed on 22 June 2021). The cosine similarity is then used
to measure the image-wise similarity between the CLIP feature vectors extracted from the
template T and its matched GSV patch P∗. To consider the performance of the template
matching in the previous Section 3.2, the QATM score is considered as the weight. As such,
the image-wise similarity between the query image and the GSV image can be denoted in
Equation (3):

ϕ = QATM(T, P∗)× ρ(CLIP(T), CLIP(P∗ )) (3)

where ρ is the cosine similarity; the function CLIP is the image encoder using pre-trained
CLIP model to represent the image patch into a 1 × 512 feature vector; T is the query
template containing permanent objects; and P∗ represents the best-matched image patch
from the GSV image. To consider the performance of the template matching in the previous
step, the QATM score is imported and considered as the weight, a larger QATM score
means a better template matching. Cosine similarity is employed in this context because
the angles between the feature vectors CLIP(T) and CLIP(P∗) are more relevant than their
magnitudes. Cosine similarity displays a higher resilience on feature vectors with extreme
values since it highlights the concordance of feature orientations by normalizing the feature
vectors [56,57]. On the contrary, Euclidean distance tends to be significantly affected by
such disturbances. Additionally, cosine similarity performs admirably in high-dimensional
spaces, rendering it well-suited for numerous image feature extraction techniques [58].

There might be inaccurate matching outcomes with the highest image-wise similarity
due to the presence of similar objects. Nevertheless, addressing this mismatch can be
enhanced by incorporating neighboring images to generate block-wise similarity, building
upon the image-wise similarity and thereby improving overall robustness. To do so,
the query images and GSV images are grouped into non-overlap blocks where there
are no duplicate images in different blocks. That means, a query block includes several
sequentially captured query images, and these query images are excluded while forming the
following query blocks, the same strategy is applied to the GSV block grouping. Specifically,
this grouping strategy starts with grouping n neighboring query images into a block by
their acquisition time. Similarly, starting from the most northwestern GSV image, every m
spatially closest GSVs are grouped to a GSV block.

For a pair of a query and GSV blocks, the image-wise similarities of n query images
and m GSV images within the block, represented as ϕkl (k ∈ {1, · · · , n}, l ∈ {1, · · · , m}),
form a n by m image-wise similarity matrix Φ as below:

Φ =

ϕ11 · · · ϕ1m
...

. . .
...

ϕn1 · · · ϕnm

 (4)

In the similarity matrix Φ the highest value of the kth row, denoted as
max({ϕk1, . . . , ϕkm}), represents the similarity between the kth query template in the query
block and the best-matched GSV patch within the GSV block. To simultaneously consider
the combined influence of each query image within the query block, the average of the
highest values of every row of the similarity matrix Φ is computed to represent the block-

https://huggingface.co/sentence-transformers/clip-ViT-B-32
https://huggingface.co/sentence-transformers/clip-ViT-B-32
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wise similarity. As such, the block-wise similarity Π between each pair of query block and
GSV block is denoted as Equation (5)

Π =
∑n

k=1 max({ϕk1, . . . , ϕkm})
n

(5)

By calculating the block-wise similarity over all GSV blocks, the best-matched GSV
block for a query block can be found. In practice, for each query block we keep several
top best-matched GSV blocks for the subsequent pose estimation process to enhance
its performance.

3.4. Pose Estimation of the Query Image

To estimate the pose of query images in a query block, we use the GSV images in the
corresponding GSV block as reference. It should be noted that in the matched query and
GSV blocks, the query images are monocular images, while the corresponding GSV images
are panoramas. Such differences make it challenging to achieve accurate pose estimates. To
address this challenge, a rectilinear project function (https://github.com/sunset1995/py3
60convert, accessed on 23 January 2019) is employed to project the best-matched GSV patch
P∗, i.e., a patch of the panorama (spherical), and obtain the corresponding perspective
image, where the details are introduced in [59]. To perform the projection, we need to
estimate the viewing angles and know the fields of view of the GSV patch. Let xc and yc
be the pixel coordinates of the center of the best-matched patch P∗ in the GSV image. The
horizontal and vertical viewing angles are uP = 360◦ · xc

W , vP = 180◦ · yc
H , where W and H

represent the image size of the GSV image. Since the projected GSV patch shares a similar
capture scene as the query image, we presume that both the fields of view and image size
of the projected GSV patch align with those of the query image. Consequently, the focal
length of the projected GSV patch is identical to the focal length of the query image. Taking
the geometric easting direction as x-axis, the rotation angles of the projective patch can
be formulated as: ω = 90◦ − 180◦ · yc

H , φ = 0◦, κ = A + 360◦ · xc
W − 180◦, where ω, φ, κ

respectively represent the rotation angles along X, Y, and Z axis, and A is the northing angle
of the GSV image center. Together with such calculated rotation angles, the 3D location of
the reference GSV image is assigned to the projected GSV patch as its exterior orientation
parameters.

For a query block, we select the top three best-matched GSV blocks for the subsequent
photogrammetric triangulation. As a nominal practice, both the query block size and GSV
block size are chosen as three. The images in the query block and the projected GSV images
in the selected GSV blocks are used as the input for photogrammetric triangulation with
Agisoft Metashape 2.0. This photogrammetric triangulation procedure starts with routine
tie point extraction and matching, followed by a bundle adjustment, in which the known
location and orientation of the GSV images are essentially used as reference and treated
as direct observations with 1 m location uncertainty and 10◦ orientation uncertainty. The
interior orientation of the query images (saved in the EXIF metadata) and the projected
GSV patches are treated as known in the bundle adjustment. The pose of the query image
and the 3D coordinates of the tie points are the results of the bundle adjustment.

4. Experimental Datasets and Evaluation
4.1. Datasets

A total of three datasets were employed in this study to address the variations in
lighting, temporal consistency, and long-term visual changes in order to demonstrate the
effectiveness and robustness of our proposed workflow, with each having mobile images
and GSV panoramic images. Figure 3 shows several examples of the three datasets. It
should be noted that all the GSV images, captured through Ricoh Theta S, were collected
using a commercial application: Street View Download 360 (https://svd360.istreetview.
com/, accessed on 3 July 2023). The first dataset is a subset of the University of Central
Florida (UCF) mobile car-based dataset [60], which originally consisted of 62,058 high-

https://github.com/sunset1995/py360convert
https://github.com/sunset1995/py360convert
https://svd360.istreetview.com/
https://svd360.istreetview.com/


Remote Sens. 2024, 16, 801 10 of 19

resolution GSV images captured from multiple side views and one upward view. We
specifically chose a subset from the UCF dataset located in the central area of Pittsburgh,
PA. This subset comprises 300 query images distributed across a 0.6 km2 area. Each query
image is accompanied by two sequentially captured images, creating a query block with
a size of 3. This region shares similarities with permanent structures in other sprawling
cities. Consequently, the matching results from the UCF dataset serve as an illustrative
example of how our workflow performs in a large city context, emphasizing the importance
of considering the approximate areas. The second dataset, the Málaga Streetview Challenge
dataset (MSV) [61–63], documents urban changes in Málaga City, Spain, over a span of
six years (2014–2020). This dataset was collected using a vehicle equipped with various
sensors, including a stereo camera (Bumblebee2, Teledyne FLIR LLC, Wilsonville, OR, USA)
and five laser scanners. In total, it includes 436 monocular images and 3411 GSV images,
covering an urban area of nearly 0.8 km2. Finally, it should be noted that the query images
in the UCF and MSV datasets only provide latitude and longitude information, lacking
altitude and camera orientation data.
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Figure 3. Query image and GSV panoramic image examples of the used datasets.

While the above two datasets are public ones, the third one is our recent collection.
The Purdue University Vision-Based Navigation dataset (PUVBN) was collected in a
moving vehicle on the Purdue University campus. It consists of geo-referenced smartphone
images that are to be used as query images for visual localization tasks. PUVBN images
were collected using off-the-shelf smartphones (iPhone 13 Pro, Apple Computer Inc.,
Cupertino, CA, USA) mounted in a moving vehicle at a fixed sampling rate of 30 frames
per minute along a pre-planned 30-min driving route. The total route length is about
10 km, covering the same area of 1 km2 with a driving speed range from 20 km/h to
65 km/h. During image collection, the horizontal location (latitude, longitude), altitude,
and orientation of the sensor, as well as their corresponding accuracy, were simultaneously
recorded using a commercial iOS application SensorLog with a 30 Hz sampling rate (https:
//sensorlog.berndthomas.net/, accessed on 14 March 2023). Based on the SensorLog record,
the accuracy of the horizontal location is approximately 3.3 m, the vertical accuracy is about
4.8 m, and the orientation accuracy is about 2.4◦. In total, PUVBN has 714 smartphone
images and 1820 corresponding reference GSV images.

It should be noted that baseline data for the PUVBN dataset were also gathered
for potential alternative, broader applications. These applications encompass tasks like
building model reconstruction, mobile 3D mapping, autonomous driving, and many more.
Other collected baseline data consist of the following components: 85 geo-referenced 3D
building models, a layer of road data from OpenStreetMap, digital elevation models at a
resolution of 0.76 m (representing bare ground), digital surface models at a resolution of
1.52 m, and a high-resolution mosaic orthoimage at 0.3 m resolution.

https://sensorlog.berndthomas.net/
https://sensorlog.berndthomas.net/
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Table 1 summarizes the specifications of the datasets utilized to test and evaluate our
proposed workflow. Notably, the GSVs included in the databases were collected between
2018 and 2019, guaranteeing a meter-level positioning accuracy [7]. It is important to
acknowledge that this timeframe differs from that of the query images, resulting in a
temporal gap. Consequently, changes in lighting conditions and urban settings can occur,
effectively emulating the challenges encountered in practical visual localization scenarios.

Table 1. Summary of the UCF, MSV, and PUVBN datasets.

Datasets Coverage
Query Images GSV Images Ratio

Counts Date Counts Date Query:GSV

UCF 0.8 km2 300 2012–2014 1291 2018–2019 1:4.3
MSV 0.6 km2 436 2014–2020 3411 2018–2019 1:7.8

PUVBN 1.0 km2 714 2022 1820 2018–2019 1:2.5

Figure 4 lists the spatial distribution of the used datasets. The GSVs obtained along
the routes cover areas of approximately 0.6 km2, 0.8 km2, and 1 km2 for the UCF, MSV,
and PUVBN datasets, respectively. This calculation assumes that each GSV can observe a
circle with a radius of 50 m, i.e., a coverage area around 7850 m2. It should be noted that
the count of the reference images in the three datasets ranges from 1291 to 3411, meaning
that the search space of a query image for image matching is 1000 to 3000 times more. The
ratio of query images to the GSV images is also listed to illustrate how large the reference
GSV dataset is to cover the query images for reliable matching results. Additionally, the
average distance between two images is approximately 10 m for the GSV images and
20 m for the query images. The spatial distribution of GSV images is denser than query
images, which can ensure that each query block has a corresponding GSV block nearby.
As for the reference pose for evaluation, the two public datasets (i.e., the UCF and MSV
datasets) only provide horizontal locations (latitude and longitude) recorded by GNSS,
while the PUVBN dataset not only records the latitude, longitude, and altitude, but also
the orientation information of the mobile images. The goal of our effort is to determine
the pose of the query images by using the corresponding GSV images to achieve a quality
equivalent to the GNSS and IMU records.
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4.2. Experimental Results

We evaluated the effectiveness of our approach by employing a range of performance
metrics, including matching rates and positioning accuracy represented by the mean and
standard deviation of the Euclidean distances between the estimated locations and the
GNSS recorded locations of the query images. As noted earlier, when dealing with query
images of the UCF and MSV datasets, the reference location of the query images only
includes latitude and longitude, with no altitude information available. Consequently,
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we could only assess the estimated horizontal positions of the query images. To be more
specific, for each query block, we select the top three GSV blocks with the highest block-wise
similarity. These selections are then utilized in the photogrammetric triangulation process
to estimate the pose of the query images. Before processing in the Metashape 2.0 software,
the GSV patches corresponding to the query templates are projected as perspective images.
The estimated poses of the query images through bundle adjustment are then compared
with the corresponding reference records from GNSS and IMU. Since the query images
in UCF and MSV datasets lack reference records for altitude and orientation information,
our evaluation focused solely on 2D positioning accuracy at this time. But for the newly
proposed PUVBN dataset, both 3D positioning and orientation error are evaluated.

As indicated in Table 2, employing solely image-wise similarity for matching and
estimating the pose of query images, where each query image and its top nine matched
GSV images are input into the photogrammetric triangulation, yields a mean horizontal
positioning accuracy of 2.54 to 4.51 m, accompanied by a standard deviation ranging
between 7.97 to 12.75 m across the testing datasets. In contrast, employing the block-wise
matching strategy, where each query block includes three query images and three best-
matched GSV blocks with each consisting of three GSV images, enhances the horizontal
positioning accuracy, resulting in an improved mean error of 1.09 to 2.12 m with a smaller
standard deviation from 5.77 to 9.01 m. The distribution of the horizontal positioning
accuracy is visualized and compared in Figure 5. It is worth noting that, with image-wise
matching, the maximum horizontal positioning accuracy can vary from 50 to 120 m for
the UCF, MSV, and PUBNM datasets. However, the adoption of the block-wise matching
approach within the photogrammetric triangulation leads to more robust pose estimation
results, yielding a maximum horizontal positioning accuracy in the range of 40 to 90 m.
This is because image-wise matching results may contain a few mismatches that are not the
closest one to the query image, even though high similarity is achieved. This would provide
fewer valid correspondences in the photogrammetric triangulation, leading to a less reliable
positioning quality. In comparison, the block-wise matching results in robust and more
accurate matches, as the GSVs in each block observe the same objects in the query images
multiple times and mitigate the influence of mismatches. The outcomes also demonstrate
that pose estimation using the block-wise matching strategy attains positioning accuracy
comparable to that of GSV. This alignment is notable, given that the positioning accuracy
of GSV images is approximately one meter, as detailed in Section 4.1.

Table 2. Mean and standard deviation of the horizontal positioning for image-wise and block-wise
matching (block size: 3) with reference to the GNSS records for the three testing datasets.

UCF MSV PUVBN

Image-wise 4.51 ± 12.75 m 2.79 ± 9.33 m 2.54 ± 7.97 m
Block-wise 2.12 ± 9.01 m 1.35 ± 7.29 m 1.09 ± 5.77 m
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In contrast to the UCF and MSV datasets, the PUVBN dataset captures orientation
and GNSS altitude information concurrently during the acquisition of the query images.
Subsequent assessments reveal a vertical positioning accuracy of 1.85 m and an orientation
accuracy of 5.01◦ when utilizing image-wise matching results for pose estimation. When
employing block-wise matching results, the vertical positioning accuracy is improved to
1.24 m, while the orientation accuracy remains nearly unchanged at 4.88◦.

Aside from the absolute evaluation metric, which is the horizontal positioning accuracy,
we also assess our matching performance using relative metrics, namely Top-1 Recall @D
and Recall @N. These metrics gauge the matching rates by considering the distance between
a GSV image block and a query image block. If the query image is close to the GSV image,
the same permanent objects should be captured, and the query image should match the
GSV image with high similarity. The Top-1 Recall @D evaluates the level of correspondence
by assessing the distance between the location of the highest-ranked GSV image and
the query image. In the context of block-wise matching, we determine the distance by
calculating the centroid of the coordinates for both the query images within the query block
and the GSV images within the involved GSV block. Matches are deemed satisfactory if
the distances between block centroids fall below a specified threshold. As illustrated in
Figure 6, we calculate the percentage of good matches as we increase the threshold from 5 to
150 m. In contrast, Recall @N is a metric used to determine the percentage of well-matched
queries, those with less than a 50-m distance error, concerning N returned candidates. By
calculating Recall @N, we aim to demonstrate that the block-wise approach can yield more
robust matches, leading to more precise pose estimation, thanks to the continuous spatial
information provided by GSV images. The results of the Recall @N metric illustrate that
our method can substantially decrease the search space size, reducing it from a range of
10 km to less than 100 m in relation to the reference location of the query image.
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To demonstrate the superiority of our workflow, Figure 6 illustrates the results of
both image-wise and block-wise similarity comparisons, along with the evaluation metrics
(Top 1 Recall @D and Recall @N). Concerning image-wise matching, the UCF, MSV, and
PUVBN datasets attain respectively Top 1 Recall @150 percentages of 59.33%, 75.29%, and
57.56%. These numbers represent the proportion of successful matches between query
and GSV images or blocks within 150 m. However, when employing the block-wise
matching strategy, the successful matching percentages increase to 68%, 80%, and 68.91%,
respectively, showing significant improvements of 8.67%, 4.77%, and 11.4%, respectively.
These enhancements in successful matching rates underscore the notable effectiveness of
the block-wise matching approach.

The presented plots in Figure 6 demonstrate that utilizing a block-wise matching
methodology yields GSV images in closer proximity to the query images, which indicates
superior matching outcomes. By examining the recall values displayed in the plots, it
becomes apparent that increasing the value of N leads to higher recall rates across all
datasets. While block-wise matching achieves the highest Recall @N more quickly, the
image-wise approach ultimately reaches a comparable Recall @N. This implies that the
image-wise approach struggles to differentiate between true and false matches when their
similarities are very close. However, this challenge can be resolved by introducing the
block-wise similarity into the matching process.

From the significant improvement of the matching rate, it can be concluded that
the incorrect image-wise matching result could be corrected by leveraging block-wise
similarity. Figure 7 illustrates a series of visual examples from the PUVBN dataset where
the image-wise method fails, but correct matches are retrieved using block-wise matching.
For a specific query image (PUVBN_3) in Figure 7a, it is noticeable that GSV_266 receives
the highest matching score (ϕ = 0.69) in the image-wise matching (indicated by the red
dashed rectangle), although it is not the correct match. However, the block-wise matching
(represented by the green solid rectangle) produces a correct match with the highest block-
wise similarity (Π = 0.73) by including the query image within a block and averaging the
matching scores. It can be found that although the best-matched GSV image within the
block of PUVBN_3 is GSV_3 with a 0.59 image-wise similarity, its neighboring matches:
PUVBN_4 and GSV_4, and PUVBN_5 and GSV_5 result in the Top1 block-wise similarity
(0.73). This example demonstrates that the proposed workflow enhances the matching
results by considering the continuity of neighboring images. Another example on MSV
dataset is shown in Figure 7b. Similarly, image-wise matching conducted on MSV_1578
gives a wrong match GSV_3086 with the highest score (ϕ = 0.68). However, correct
matching GSV_921 is found with a block-wise similarity of (Π = 0.78) through the block-
wise matching strategy.
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5. Discussion
5.1. Significance of Permanent Objects

Section 3.1 illustrates the identification of different types of objects based on their
temporal characteristics. Time-invariant objects like buildings, traffic signs, and light poles
are recognized as permanent objects, whereas objects like vegetation, cars, pedestrians, and
clouds that change over time and with weather conditions are categorized as inconspicuous
objects. Since permanent objects (label ID from 0 to 7) play a significant role in the matching
process, it becomes necessary to use a metric to describe the significances (or contributions)
of different kinds of permanent objects. In this paper, we employ the Pearson correlation
coefficients (represented as r) as a quantitative measure for each enduring object. This
measure is based on the correlation between the object’s percentage in the query image and
the reciprocal distance of the query image to the centroid of the best-matched GSV block.

The permanent object percentage is the ratio of the number of permanent object pixels
to the total number of pixels in the image. A positive r occurs when the query images with
more permanent objects are matched to the GSV blocks closed to the query images, i.e.,
larger inversed distance. Conversely, a negative r means that query images with more
permanent objects are matched to the distant GSV blocks. When the absolute value of r
is close to zero, it implies that the object has little impact on the matching process. On
the other hand, if the absolute value of r is significantly different from zero, it indicates
that the object has a significant influence on the matching process, i.e., more significance.
The Pearson correlation coefficients are calculated for each permanent object in all three
datasets, and the results can be found in Table 3.

Table 3. Pearson correlation coefficients (r) between object percentage with the reciprocal distance of
the query image to the centroid of the best-matched GSV block. Numerically insignificant values are
indicated in gray, while the most significant category, such as ‘buildings’, is labeled in bold.

Datasets
r (Pearson Correlation Coefficients)

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Total
UCF −0.063 −0.0186 0.184 −0.058 −0.103 0.026 −0.021 0.015 0.153
MSV 0.122 −0.002 0.154 0.172 0.116 −0.187 −0.016 −0.052 0.217

PUVBN 0.142 0.072 0.234 0.064 0.009 0.132 0.014 0.080 0.281

It should be noted that in Table 3, any significance lacking statistical significance at a
95% confidence level is shown in gray. Considering the overall significance of permanent
objects, it can be inferred that a greater number of permanent objects result in a more accu-
rate matching. Among all the permanent objects, buildings hold the highest significance
(0.15~0.23) and labeled bold in Table 3, as evidenced by their high values of r. In other
words, accurately locating the query images is more likely when there are more buildings
present. That may be because that buildings are often larger than other permanent objects
and easily distinguishable due to their rich textures. As a comparison, other permanent
objects such as wall, fence, pole, traffic light and sign show less significance since they are
usually too similar and small to make a difference.

5.2. Size of the GSV Block

While the block-wise matching is superior to image-wise matching, its performance
may be dependent on the block size. To investigate the effect of GSV block size, we conduct
additional tests with the PUVBN dataset. In our previous block-wise matching experiment,
we set the block size to 3, which means that each query block and GSV block comprise three
consecutive images. Given that the average distances among query images and among
GSV images are approximately 20 and 10 m, respectively, each query and GSV block covers
a route of 60 and 30 m respectively. To further investigate the impact of the block size,
we maintained the size of the query block while increasing the GSV block size to 6 and 9.
It should be noted that we still choose three best-matched GSV blocks, i.e., 18 or 27 GSV
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images, for pose estimation using the photogrammetric triangulation process described
in Section 3.4. The corresponding results, including horizontal positioning, vertical posi-
tioning, and orientation, are presented in Table 4. It is evident that despite doubling or
even tripling the block size, there is no significant improvement (from 1.09 m to 1.21 m) in
the overall pose estimation accuracy. However, it is worth noting that the pose estimation
exhibits better stability with reduced standard deviations in the horizontal direction (from
5.77 m to 2.60 m) and the vertical direction (from 3.22 m to 1.22 m). Regarding orientation
accuracy, the angle error improved from 4.88◦ to 3.98◦ with smaller deviations (from 3.21◦

to 2.67◦). These results indicate that increasing the GSV block size does not lead to a sub-
stantial enhancement in pose estimation accuracy, but it does result in improved robustness
and stability by significantly reducing the number of large mis-matching outcomes. The
more GSVs in the block, the more probability of finding the GSV that best matches the query
image. Nevertheless, the enhanced robustness is accompanied by a greater demand for
computational resources and time, averagely ranging from 0.18 s to 0.54 s when changing
the block size from 3 to 9.

Table 4. Horizontal, vertical, and orientation accuracy of block-wise matching with different block
sizes on the PUVBN dataset in terms of mean and standard deviation.

GSV Block Size Horizontal Vertical Orientation

3 1.09 ± 5.77 m 1.24 ± 3.22 m 4.88 ± 3.21◦

6 1.18 ± 3.91 m 1.33 ± 1.55 m 5.02 ± 3.19◦

9 1.21 ± 2.60 m 1.17 ± 1.20 m 4.18 ± 2.67◦

6. Conclusions

We proposed a novel approach for visual localization in urban areas. The solution
is based on state-of-the-art machine learning techniques. The use of SegFormer assures
the generation of a high-quality query template consisting of permanent objects from the
query image, while the adoption of QATM allows us to reliably obtain the corresponding
GSV patches from the GSV images. The pre-trained CLIP model was employed to extract
deep feature representation for the query template and corresponding GSV patches for the
image-wise similarity calculation. In addition, we took advantage of the spatial or temporal
continuity of sequential images to provide a reliable image query workflow. Our method
utilizes a block-wise matching strategy that involves grouping the query and reference
GSV images into blocks, and block-wise similarity computation.

In comparison to image-wise matching, our approach demonstrates an average im-
provement of 10% in the successful matching rate. Specifically, we could achieve a matching
rate of 68%, 80%, and 68.91% for the UCF, MSV, and PUVBN datasets, respectively. A
notable aspect of our approach is its proficiency in accurately identifying the correct match
from a set of similar matches, achieved by incorporating considerations of spatial continuity.

With our overarching objective in sight, we leverage the three best-matched GSV
image blocks to determine the poses of images in a query block through photogrammetric
triangulation. Considering the pose estimation results with the PUVBN dataset, when
contrasted with the GNSS records of smartphone images, our approach yields a horizontal
and vertical positioning accuracy of 1.09 and 1.24 m, accompanied by a standard deviation
from 5.77 and 3.22 m. In addition, the orientation accuracy can be achieved around 4.88◦

with a 3.21◦ standard deviation. Given the large search space of possibly matched GSV
images, i.e., 1820 images spreading over an area of up to 1 km2 and taking into account the
quality of the geo-referenced information associated with GSV images, the achieved meter-
level accuracy underscores the effectiveness and dependability of our proposed block-wise
matching strategy in comparison to the original meter-level positioning accuracy of GSV.

As for computational cost, our workflow was evaluated on a computer featuring
an Intel(R) Xeon(R) E-2186G CPU and an NVIDIA GeForce GTX 1080 GPU. The typical
computational time required for a complete search of one single image within a reference
dataset comprising 1820 images is approximately one minute and can be improved to a
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stable time around a few seconds after optimizing the workflow with parallel computation
or using the first few matching results to narrow down the search space for the following
matching procedures. An acceptable level of precision falls within a few meters, aligning
well with the standard of GNSS measurements in dynamic scenarios or instances where no
GNSS data are available. This is particularly relevant in applications relying on pre-stored
street view image databases and real-time captured images, such as vehicle location-based
services, tracking, and smart city applications.

For future research, we recommend performing experiments wherein a single GSV
block is chosen with an increased block size. This block should encompass more neigh-
boring GSVs and offer broader spatial coverage, aiming to enhance the robustness of
block-wise matching and improve pose estimation. Additionally, we propose the inte-
gration of image patches depicting consistent objects observed in query images from the
designated query block. This fusion is intended to harness the complete potential of image
continuity, thereby achieving heightened accuracy in matching.
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