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Abstract: Remote sensing techniques, namely Unmanned Aerial Vehicle (UAV) photogrammetry and
t-LiDAR (terrestrial Light Detection and Ranging), two well-established techniques, were applied
for seven years in a mountainous Mediterranean catchment in Greece (Ilioupoli test site, Athens),
following a wildfire event in 2015. The goal was to monitor and quantify soil erosion and sedimenta-
tion rates with cm accuracy. As the frequency of wildfires in the Mediterranean has increased, this
study aims to present a methodological approach for monitoring and quantifying soil erosion and
sedimentation rates in post-fire conditions, through high spatial resolution field measurements ac-
quired using a UAV survey and a t-LiDAR (or TLS—Terrestrial Laser Scanning), in combination with
georadar profiles (Ground Penetration Radar—GPR) and GNSS. This test site revealed that 40 m3 of
sediment was deposited following the first intense autumn rainfall events, a value that was decreased
by 50% over the next six months (20 m3). The UAV–SfM technique revealed only 2 m3 of sediment
deposition during the 2018–2019 analysis, highlighting the decrease in soil erosion rates three years
after the wildfire event. In the following years (2017–2021), erosion and sedimentation decreased
further, confirming the theoretical pattern, whereas sedimentation over the first year after the fire
was very high and then sharply lessened as vegetation regenerated. The methodology proposed in
this research can serve as a valuable guide for achieving high-precision sediment yield deposition
measurements based on a detailed analysis of 3D modeling and a point cloud comparison, specifically
leveraging the dense data collection facilitated by UAV–SfM and TLS technology. The resulting
point clouds effectively replicate the fine details of the topsoil microtopography within the upland
dam basin, as highlighted by the profile analysis. Overall, this research clearly demonstrates that
after monitoring the upland area in post-fire conditions, the UAV–SfM method and LiDAR cm-scale
data offer a realistic assessment of the retention dam’s life expectancy and management planning.
These observations are especially crucial for assessing the impacts in the wildfire-affected areas, the
implementation of mitigation strategies, and the construction and maintenance of retention dams.

Keywords: soil erosion; geoenvironment; point cloud; remote sensing; structure from motion;
TLS; GNSS

1. Introduction

Soil erosion, a natural process that degrades soil, primarily results from the physical forces
of water and wind impacting exposed soil surfaces, making it a significant contributor to soil
degradation [1]. Mediterranean mountainous regions exhibit substantial spatial and temporal
fluctuations in vegetation cover [2], often correlated with significant alterations in land usage
and topography. These changes have a direct impact both on water resources and the
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susceptibility to either soil erosion or conservation. Experimental plots and watersheds have
led to both soil erosion parameter clarification and dynamic process analysis in correlation
with the sediment fluxes [3–5].

Human interventions geomorphologically alter the environment, surpassing the geologi-
cal sediment yielding [6,7]. As [8] argued, since the early 1960s, the frequency of wildfires in
the Mediterranean due to land-use change and rural development, correlated to the weather
conditions, has increased. While infrequent, mega-fires that have occurred frequently over
recent decades, in exceptionally dry and windy conditions, can have devastating conse-
quences on infrastructure, the environment, and human lives, leading to extensive costs for
suppression and rehabilitation. Beyond the immediate aftermath, these fires also trigger
lasting impacts on geomorphological and hydrological processes, which, in turn, influence
environmental conditions and may contribute to the occurrence of natural hazards like floods
and mass movements [9]. Following a wildfire event, the number of plant species tremen-
dously decreases. Apart from vegetation removal, wildfires cause a severe topsoil SOM (soil
organic matter) depletion, affecting soil texture, soil permeability, nutrients, and leading to
soil chemical alteration. The spatial–temporal differentiation of these parameters is correlated
to wildfire severity, topography, ecosystem recovery, and weather conditions [10,11].

Post-fire erosion is a critical field of study that focuses on understanding and mitigating
the heightened erosion risks in areas affected by wildfires. Indeed, it is evident that alterations
in vegetation structure and community composition, especially in the aftermath of recurrent
fires, can have profound effects on erosional processes and the overall recovery of ecosys-
tems [12]. Significant results in [13] highlighted the forest recovery period to be 5–10 years.
Early research showed that the greatest erosion and runoff rates are recorded within the first
1–2 years following the fire event, while the soil erosion values depend on the fire intensity,
fire characteristics [14], and climatic characteristics [15,16]. Additional research [17,18] showed
that for the hillslope sediment yield balance, three to five years are required.

Soil erosion rate and sediment yield estimation contribute to proper soil management
practices, indicating areas prone to high, moderate, and low soil degradation risk. Under-
standing soil erosion processes is important for geomorphological analysis and erosion rate
prediction [9,19,20]. The difference between on-site and off-site erosion impact should be
denoted. On-site erosion is attributed to soil loss and fertility loss due to a soil organic matter
decrease, resulting in a reduced vegetation cover [21]. Off-site erosion corresponds to floods
and a reservoir lifetime decline [22]. Reservoirs act like sediment traps for the wider water-
shed, where the sediment processes control the yield, resulting in continuous sedimentary
sequences susceptible to land-use change and human activity [23]. Check dams represent
a widely employed technique for mitigating erosion hazards, as supported by several stud-
ies [24–27]. These structures effectively capture sediments from upland areas and reduce the
flow velocity of water, thereby leading to a reduction in the amount of sediment entering
downstream channels [28].

Soil erosion analysis, in terms of the multi-temporal t-LiDAR survey approach, has been
conducted over the last 12 years [29–31], investigating different soil erosion processes such as
rill erosion analysis [32–35] or gully erosion [35–41]. The t-LiDAR approach led us to develop
new methods such as point cloud (PC) analysis and multiscale 3D model production [42–46],
resulting in high-resolution geometric models and 3D surface reconstruction.

There has been a surge of interest in the Unmanned Aerial Vehicle (UAV) Structure
from Motion (SfM) data collection technique, primarily driven by the cost-effectiveness
of the equipment and the enhanced speed of data acquisition. This method, combined
with recent advancements in computer technology, has positioned photogrammetry as a
robust tool for geomorphological research [47]. Applications across various domains, such
as monitoring riverbed topography [48–51], riverbank analysis [52,53], erosion [38,54–57],
landslides [58], erosion rate assessment [59–64], coastal analysis [65], and rockfall/rock slope
stability analysis [66], have significantly expanded the realm of geomorphological analysis.
In the past five years, there has been a notable interest in point cloud analysis based on the
3D surface reconstruction of infrastructure or natural surfaces [67–72]. Recent research [73]



Remote Sens. 2024, 16, 802 3 of 29

has contributed by quantifying the changes in surface topography through the generation
of a time series of point clouds. This is achieved by creating multiple terrain models and
orthomosaics using SfM photogrammetric techniques. The digital comparison of these co-
registered photogrammetric products has unveiled noteworthy topsoil variations.

The GNSS (Global Navigation Satellite System) defines the coordinates of reference
ground control points (GCPs) within a worldwide reference system. Various GNSS positioning
methods can be utilized depending on factors such as the desired accuracy, the availability of
receivers, real-time coordinate requirements, and the frequency of survey repetitions [74,75].
Access to the area of interest is essential and the proper marking of target points is necessary for
monitoring or fine registration. The GNSS has been effectively utilized in various applications
offering cm or mm accuracy [76–78], while the system can provide great accuracy when it is
combined with UAV and t-LiDAR data [46,64].

High-accuracy, dense 3D point clouds can be derived using both UAV–SfM and t-
LiDAR methods. The M3C2 (Multiscale Model to Model Cloud Comparison) algorithm [79]
is commonly used for point cloud analysis [80]. One key advantage of this algorithm lies in
its ability to directly analyze point clouds with no use of mesh or grid, while also estimating a
confidence interval based on the characteristics of the point clouds and registration error. The
M3C2 process comprises, firstly, an estimation of surface normals and their orientation in 3D
space, at a scale consistent with local surface roughness. Additionally, the process calculates
the mean surface change along the normal direction, while explicitly calculating the local
confidence interval. Advanced research focuses on surface change detection by using point
cloud analysis instead of a DEM comparison [81–83].

The DEM of Difference (DoD) [84,85], on the other hand, is a commonly used technique
applied in a plethora of scientific research topics [86–89], where multi-temporal DEM can
be compared pixel-to-pixel, resulting in surface change detection and volume calculations.
Researchers [35] denoted caution in the interpretation of the DoD and recommended using
higher-resolution elevation data for accurately quantifying erosion deposition processes.
The vegetation canopy is considered a significant limitation for the DoD multitemporal
analysis [90], while other researchers [91] denoted that the 3D dynamic processes leading
to objects subjected to vertical shifts need to be analyzed in a 3D spatial approach. This
article focuses on soil erosion and sedimentation rates on a wildfire-affected mountainous
catchment. The methodological approach involved different techniques, each one with its
own strong points, weaknesses, and constraints, signifying that a single fit-for-all technique is
not often applicable in field studies. In particular, our approach involved three TLS surveys,
three UAV campaigns, one GPR, and one GNSS survey, performed during a six-year period.
Their utilization, deciphered into soil surface change and sediment yield, provided a highly
accurate post-fire measurement of contemporary deposition rates. Overall, this study denotes
the capabilities of the UAV–SfM and TLS-derived point clouds in the measurement of high-
resolution erosion and sedimentation rates in post-fire conditions. To our knowledge, this
subject has yet to be explored and expanded within the scientific community.

2. Study Area and Methodology
2.1. Study Area

The Attica basin is bounded by the mountains of Hymettus, Parnitha, Penteli, and Egaleo.
The study area is a 30 ha basin with relatively steep slopes (a 40% average slope dip), located
at the SW slopes of the Hymettus mountains, at approximately 500 m elevation, near the
Athens Metropolitan area, Greece. The Hymettus mountains suffered a significant wildfire
in July 2015. The Difference Normalized Burn Ratio (Figure 1, dNBR) [92–95] index was
used to delineate the burnt area by using Landsat 8 pre-fire and post-fire images (Bands 5
and 7). The dNBR vegetation index analysis showed that the area affected by the wildfire
spanned 760 ha. This small basin is constrained by a small concrete retention dam that had
been constructed approximately 20 years before the recent wildfire in order to reduce the
flood events to the city of Athens following an older forest fire. The dam acts as sediment
trap, allowing us to measure the sediments that are deposited year by year. This concrete
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dam and the surrounding rocks are mostly impermeable. As a result, it always gathers water
behind the dam, so it is mostly sedimentation, and this is also verified by the fact that the
deposition area is almost flat. The study area used to be covered by shrubs and a small
portion of forest trees before the fire of 2015, according to the CORINE 2012 dataset (CORINE
Land use code 310, 324, CLC 2012). After the fire of 2015, the whole basin was covered
by shrubs and low vegetation. The basin is drained by a relatively sparse hydrographic
network with no continuous flow due to the marbles that are the dominant geologic formation
and are permeable to water. Therefore, the drainage network is predominantly expressed
within the schist formation and is also supported by the relatively steep slopes. Due to the
erosive schist formation and the geomorphological characteristics of the basin, the lower
part of the watershed is prone to soil erosion. The study area geologically comprises the
metamorphic unit that belongs to the alpine basement [96], covered by post-alpine sediments
with a relatively steep slope, which, when correlated with lithology, is susceptible to erosion
processes. The wider area is part of the Autochthonous Attic–Cycladic Complex unit. The
detailed geological structure was derived after extensive field mapping on a 1:10,000 scale,
based on the Koropi–Plaka geological map [97] of the Hellenic Survey of Geology and Mineral
Exploration (HSGME). The basin geology comprises thick-bedded Jurassic grey marbles
overlaid by Jurassic Kaessariani schists with marble intercalations. The schist is extensively
deformed, while the marble is found brecciated and karstified. Well-cemented conglomerates
with claystone intercalations (originating from the marbles) and alluvial fans are traced along
the stream network. Localized talus cones can also be found within the schist, where the
surface slope and the schist inclination are dipping towards the same direction. Additionally,
Terra Rossa (Calcic Haploxeralfs or Calcic Luvisols) is a red-type formation constituting a
typical soil in the Mediterranean region, generated on carbonate rocks. It is noted that the
schist is covered by a weathered mantle of significant thickness. Where there is no sufficient
soil depth, the soils can be categorized as Leptosols (in some regions nudilithic Leptosol can
also be found), consisting of shallow calcareous soils, originating from marbles, usually found
on slopes. Soil coming from the local schist is more yellow–grey Cambisol with low organic
content. Finally, anthropogenic deposits were delineated and excluded from the soil erosion
assessment (Figure 1).
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Figure 1. dNBR index (processed with Google Earth Engine) following the wildfire event of 2015 and
geological map of the study area (scale 1:10,000 based on HSGME 1:50,000 Koropi–Plaka geological
map [97]).

2.2. Data and Measurements
2.2.1. Data Collection Timeframe

Soil erosion and sedimentation monitoring in the Ilioupoli test site was performed from
2015 to 2021 and was focused near the dam area. The methodological framework included
UAV, t-LIDAR, and GNSS point cloud analysis (2015–2021) combined with the GPR results
(2016). The proposed methodology includes a combination of different emerging tools when
limitations exist (e.g., vegetation growth following a wildfire event). The final products
(point clouds) were then correlated to each other leading to sedimentation measurements.
The simplified study workflow is summarized below in Figure 2.
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Since 2015, different sediment yield monitoring systems have been deployed due to
technological advances and limitations (Table 1, Figure 3). The study framework comprises
the four main methods of remote sensing and geophysical analysis. First, the t-LiDAR
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method focusing on 3D surface reconstruction was performed in different timescales, in
2015–2016–2017. Second, the geophysical GPR method focusing on high-accuracy subsurface
structure definition took place in 2016. The third technique concerns the UAV–SfM, which
denotes the geomorphological change detection in the temporal period based on a high-
accuracy photogrammetric technique, and, finally, the geodetic topographic method GNSS
(in 2021) focusing on precise ground point measurements. Three t-LiDAR field campaigns
were carried out in 2015, 2016, and 2017. The first one was held in October 2015 (Figure 4) and
the second in April 2016. Subsequently, the last t-LiDAR field campaign was conducted in
January 2017, for the generation of a new point cloud following the excavation and removal of
sediments below the dam. Local authorities removed the existing sediments and widened the
upland dam area used to prevent potential flood events into the city. Therefore, the previously
collected data in 2015–2016 were only used for the 2015 and 2016 sediment estimations.
During the field work in April 2016, the GPR method was also applied (Figure 5). Two
UAV–SfM field campaigns were held in August 2018 (31 August 2018) and in March 2019
(18 March 2019), followed by a GNSS survey (also in 2019) for the GCP georeference, while
the third campaign in 2020 did not prove fruitful for achieving the required cm accuracy,
due to excessive vegetation growth and, as such, it was disregarded. The type and technical
specifications of all sensors are summarized in Table 2. The TLS and photogrammetry methods
used have also been thoroughly described in [46].

Table 1. The data collection timeframe.

Date Acquisition Type

July 2015 Wildfire event
October 2015 LiDAR

April 2016 LiDAR
April 2016 GPR

January 2017 LiDAR
August 2018 UAV–SfM
March 2019 UAV–SfM
August 2020 UAV–SfM
April 2021 GNSS RTK System
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Table 2. The technical specification of all sensors used in this study.

t-LiDAR Sensor UAV Sensor GPR GNSS RTK Receiver

Sensor FARO FOCUS 3D DJI Phantom 4 GSSI and SIR 3000 Spectra SP60

Basic
specifications

0.6–330 m distance range
1/23 12.4 MP, FOV 94◦

lens @20 mm camera
sensor

400 MHz antenna RTK position

Ranging error: +/−2 mm 4000 × 3000 image
analysis 0–4 m depth range 0.017 m vertical accuracy

0.008 m horizontal
accuracy

2.2.2. The t-LiDAR Surveys

This technique is focused on the point cloud creation, derived by the LiDAR method
to describe surface geometry. In our case, the small-scale soil topography has changed
since the wildfire event, due to the surface water overflow and the topsoil (surface mantle)
properties. For this purpose, the FARO FOCUS 3D LiDAR sensor was used (Figure 4).
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Four scans were aligned for the final 2015 scan and two scans were aligned for the year
2016. Both clouds were subsampled, resulting in over 4,000,000 points for each final point
cloud. The 2015 point cloud has a surface density of 790 points/m2, while the 2016 point
cloud has about 1000 points/m2. The 2017 t-LiDAR scan comprised two separate scans,
resulting in a point cloud of over 8,000,000 points with a surface density of 1000 points/m2.

Each scan of the total watershed was initially processed through the FARO SCENE
software, provided with the FARO FOCUS 3D sensor. The software performs a basic
automatic registration based on the common features between the scans. The object
detection and the registration of the scans was supervised and assessed by the TLS operator.
The 2015 and 2016 total scans were used for qualitative purposes and no ground point
classification was performed. Points attributed to vegetation cover were manually removed,
point by point.

The 2015, 2016, and 2017 scans used for the sediment measurements within the dam
area were derived from one scan location within the dam area (see also Section 3: Results,
red arrows in Figures 10 and 16). The final point cloud analysis was performed in the
CloudCompare environment. The georeference of all scans within the dam area was based
on GNSS measurements and the GCP location surveyed by the Spectra Geospatial SP60
GNSS RTK sensor (Figure 6a) in the Greek Grid (EPSG: 2100) coordinate system.

2.2.3. GPR Data Collection

For the sediment deposition’s validation analysis, GPR data were collected by the
Institute of Neotectonics and Natural Hazards, RWTH Aachen in 2016. The goal was to
define the depth of the contact between the bedrock and the sediments based on their
different density properties. Through the bedrock depth estimation, the sediment infill
can be calculated.

The GSSI GPR system and the Geophysical Survey System (SIR) model 3000 was
used [98]. The monostatic 400 MHz antenna that was selected (Figure 5a) can achieve about
4 m penetration depth [99]. When the single antenna mode is preferred, the transmission
mode changes simultaneously to the reception mode [100]. The survey wheel is a receiver
and a pulse generating sensor that also sends the signal for the antenna mode transition.
Data processing was performed using the ReflexW® software (v. 7.5) from Sandmeier
Scientific Software, Karlsruhe, Germany. The processing sequence involved several steps,
including removing header gain, adjusting start time, addressing energy decay, applying
a 1D bandpass frequency filter, and removing background noise. The upland dam basin
was excavated in August 2015 following the wildfire event of July. The survey took place
in April 2016. During the field survey, six survey dam-parallel (W-E) profiles along the
dry-to-moist sandy basin dam were retrieved. The first profile was defined at a 2 m distance
from the dam, while the successive profiles had an interspacing distance of 1 m from each
other. The boulders that were visible in the middle of the dam during the first fieldwork in
2015 have now been buried by the sediments visible in April 2016 (Figure 5b), highlighting
the sedimentation processes [98].

2.2.4. UAV Image Acquisition and Processing

The operator selected to set the flight plan during the study area visit and used the
nadir camera orientation mode due to the dam basin’s flat surface in a constant flight above
ground level (AGL). The AGL was maintained at the same level in every flight plan, so as
to achieve a high Ground Sampling Distance (GSD). Finally, the flight height was set to
15 m AGL (5.76/pixel GSD) and remained constant in every later accomplished flight plan.

The first flight survey was conducted on 28 September 2018 and an additional flight
took place six months later in March 2019. The 2018 flight survey resulted in 93 photos;
127 photos were captured on 18 March 2019. During the UAV surveys, 10 GCPs were used as
stable Ground Control Points. Since only nadir photos were captured, we selected to apply
more GCPs to decrease the dome effect and achieve a higher accuracy [101,102]. The GCPs
were placed in stable ground points such as the dam’s crest and bare exposed bedrock. The
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GCPs were spread as evenly as possible across the upland study area (Figure 6a). Following
the definition of the GCPs, the SP60 Real-time Kinematic Positioning Global Navigation
Satellite System (RTK GNSS) was used to retrieve their coordinates for georeferencing and
accuracy assessment reasons. The GNSS sensor accuracy reaches <1 cm in the horizontal
plane and 1.7 cm in the vertical axis. Flight planning and operation were performed on
DJI GS PRO. This data collection technique is considered adequate for this type of surface
reconstruction following a detailed error assessment procedure. The acquired images were
photogrammetrically processed using Agisoft PhotoScan Metashape Professional from
Agisoft LLC, Petersburg, Russia (v. 1.5.5). The defined flight height and the GSD resulted
in high-accuracy-derived products (dense cloud, DEM, and orthomosaic, Table 3, Figure 6).
This test site is characterized by great 3D modeling due to the low altitude flight of the
UAV and the restricted upland dam area.
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Table 3. Agisoft product resolutions (mm/pixel).

Resolution mm/pix

Product 31 August 2018 18 March 2019

Tiled model 4 1
DEM 20 12

Orthomosaic 5 5.8

2.2.5. The GNSS Survey

The ground truth authentication and observation methods were selected using the
GNSS technique. The GNSS survey was performed on 23 April 2021 and was analyzed
in a GIS environment and CloudCompare software. The points were surveyed by the
GNSS receiver, projected in the EGSA ‘87 Greek Grid, EPSG 2100 coordinate system. It
was considered the most adequate solution for the high-accuracy microtopography recon-
struction due to the 2021 extended vegetation cover obscureness. This was facilitated by
the well-constrained, relatively short area of about 280 m2, where sediments are deposited
behind the dam. Our intensive field study led to 5600 points being measured within the
dam upland area in an interspace distance range of 0.10–0.40 m, depending on vegetation
obstacles. The data collection was performed with the Spectra SP60 RTK GNSS deployed
in Real-Time Kinematic (RTK) mode. The RTK method was selected, where the continuous
automated step of measuring points was defined in 5 s intervals, via the Survey Mobile
software. The mean distance between the measurements was about 20 cm (resulting in
5600 points), so the vertical position of the pole was achieved through the mounted level
arm. The ground truth was achieved through the stable reference network JGC-net. The
spatial resolution reached 0.008 m horizontally and 0.017 m vertically. The DEM was
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derived after the manual removal of outlier points in the ArcGIS environment (v.10.8) and
the point cloud was processed in CloudCompare. By using the real point data obtained
with the manual measurements and by applying the kriging interpolation method, a DEM
was derived with a spatial resolution of 0.01 m (Figure 7). Other studies also use Geodetic
data for measurements or references [103–105].

Remote Sens. 2024, 16, 802 11 of 32 
 

 

 
Figure 7. A total of 5600 GNSS points were retrieved during field measurements in 2021, resulting 
in a GNSS-derived DEM of 1 cm pixel size. 

2.2.6. Point Cloud Processing 
The distance calculation method M3C2 was utilized [79] through the CloudCompare 

software. This algorithm integrates the local distance between two point clouds in con-
junction with the detection of normal surfaces, which effectively tracks 3D variations in 
surface orientation. Employing the M3C2 algorithm and computing the vertical normals, 
we conducted comparisons between point clouds of all techniques (Figure 2). After the 
experimental use of different values and the “guess params” option (provided by the soft-
ware), we concluded a 0.20 m normal scale diameter and a 0.10 m projection scale diame-
ter. 

DoD on the other hand, is also considered a widely used method resulting in accurate 
estimations. The 2021 GNSS-derived points were compared to the 2017 t-LiDAR-derived 
DEMs for the 2021–2017 sediment yield DoD estimation. By applying the kriging interpo-
lation method, all DEMs were derived with a spatial resolution of 0.01 m in order for the 
results to be comparable. Recent research has also explored how the impact of DEM reso-
lution, or point spacing (in grid format), influences the estimation of erosion and deposi-
tion volumes by using high-accuracy t-LiDAR data. Lu et al. [106] examined the impact of 
grid size on hillslope erosion and deposition based on t-LiDAR-derived DEM, highlight-
ing that the changes in erosion seem to be less sensitive compared to the changes in dep-
osition, while other similar results in a gully erosion study denote that very-high-resolu-
tion DEMs enhance local errors, overpredicting the gully erosion extent [107]. As [108] 
denoted, a 3D point cloud analysis is considered more accurate in surface change 
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a GNSS-derived DEM of 1 cm pixel size.

2.2.6. Point Cloud Processing

The distance calculation method M3C2 was utilized [79] through the CloudCompare
software. This algorithm integrates the local distance between two point clouds in conjunc-
tion with the detection of normal surfaces, which effectively tracks 3D variations in surface
orientation. Employing the M3C2 algorithm and computing the vertical normals, we
conducted comparisons between point clouds of all techniques (Figure 2). After the experi-
mental use of different values and the “guess params” option (provided by the software),
we concluded a 0.20 m normal scale diameter and a 0.10 m projection scale diameter.

DoD on the other hand, is also considered a widely used method resulting in accurate
estimations. The 2021 GNSS-derived points were compared to the 2017 t-LiDAR-derived
DEMs for the 2021–2017 sediment yield DoD estimation. By applying the kriging interpo-
lation method, all DEMs were derived with a spatial resolution of 0.01 m in order for the
results to be comparable. Recent research has also explored how the impact of DEM resolu-
tion, or point spacing (in grid format), influences the estimation of erosion and deposition
volumes by using high-accuracy t-LiDAR data. Lu et al. [106] examined the impact of grid
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size on hillslope erosion and deposition based on t-LiDAR-derived DEM, highlighting that
the changes in erosion seem to be less sensitive compared to the changes in deposition,
while other similar results in a gully erosion study denote that very-high-resolution DEMs
enhance local errors, overpredicting the gully erosion extent [107]. As [108] denoted, a 3D
point cloud analysis is considered more accurate in surface change detection due to the
individual point processing, compared to the 2.5D grid elevation data (DEM) analysis.

As a result, our study focuses on point cloud analysis and high-accuracy point mea-
surements, while the DoD is used only for comparison purposes (2021 and 2017 data) and
the cross-section analysis of 2017, 2018, 2019, and 2021 data (Figures 11, 12, 18, and 19).

3. Results
3.1. Point Cloud Analysis

Two point cloud dataset analyses were deployed. The first survey was accomplished
within the period 2015–2016 and the second covered the period 2017–2021.

3.1.1. The 2015–2016 t-LiDAR analysis

The 2015 and 2016 analysis included the first qualitative comparison of the full t-
LiDAR scans (Figure 8a,b). Due to the lack of GCPs covering the total basin, the full
3D point clouds were only used for the qualitative surface change detection. The results
showed a good correlation to the field observations. The eastern slopes over the road
(western aspect), where schist forms a significantly weathered mantle (Figure 9, inside
the red circle), appear to be the most erosion-prone formation, in accordance with our
expectations.
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Figure 9. The M3C2 vertical difference (m) for the years 2015 and 2016 for qualitative analysis,
depicting erosion−prone sites in green (in the red circle), and deposition sites in orange/red.

The M3C2 algorithm of vertical difference detection (processed in CloudCompare) be-
tween 10/2015 and 4/2016 point clouds (Figure 10a,b) revealed a mean sediment surface
deposition of 0.48 m (Figure 11), which corresponds to 23 m3 of the total sediment deposition
within an area of 48 m2. The above-mentioned conclusion is in accordance with the rasterized
volume calculation (without interpolating empty cells) of 20 m3 (Figure 12). The sediment
deposition is depicted in the profile view in Figures 13–15.
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3.1.2. The 2017–2021 Point Clouds Analyses

The 2017–2021 dataset analysis includes a 2017 LiDAR-derived point cloud, two UAV–
SfM-derived point clouds of 2018 and 2019, and the 2021 GNSS points (Figures 16 and 17).
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Figure 17. The UAV–SfM-derived point cloud in August 2018 (a) and in March 2019 (b).

The DoD method revealed a maximum surface deposition of 0.79 m (Figure 18a),
corresponding to the areas of soil mass movement at the eastern boundary of the dam.
The predominant soil loss pattern encompasses regions where large rocks are present,
acting as barriers to water flow in a north-to-south direction. As a result, the water velocity
increases on both sides of these rocks. The mean 2017–2021 vertical difference of the
points (Figure 18b) reaches 0.06 m according to the Gauss distribution, covering an area of
150 m2 or a mean volume of 9 m3. The net deposition also follows the Gauss distribution,
characterized by a mean value of +0.1 m or 15 m3.
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Figure 18. The DoD (a) and the M3C2 vertical difference (in m) (b) for the 2021 and 2017 comparison.

Six profiles were constructed based on the 2017, 2018, 2019, and 2021 derived DEMs to
compare the annual microtopography change. Profile 1 was constructed 18 m north of the
dam, being the most distant from the dam, while the next five profiles were almost parallel
to Profile 1 (all in a W–E trending direction) within a distance of 2–6 m from each other
(Figure 19) that was constrained by the vegetation coverage. All six profiles are placed
in the W–E direction and are represented by red lines traced on the 2021 DEM. Profile
numbering (1–6) starts from one that is the most distal profile from the dam, and then
profile numbers increase progressively as approaching the dam. The figure below includes
2021, 2019, 2018, and 2017 profiles delineated for the same red cross-section. The 2021 DEM
is represented by the red line and the 2017 LiDAR DEM is represented by the green line
in the cross-section diagram (Figure 19). The 2018 and 2019 UAV–SfM-derived DEM are
represented by yellow and blue cross lines, respectively.
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Figure 19. View of the 2021 DEM, showing the traces of the cross-sections and detailed cross-sections 
1–6 within the upland dam area, representing the surface change for the years 2017, 2018, 2019, and 
2021. 
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Figure 19. View of the 2021 DEM, showing the traces of the cross-sections and detailed cross-sections
1–6 within the upland dam area, representing the surface change for the years 2017, 2018, 2019, and 2021.

The green line is basically the reference surface of 2017. At Profile 1, the most distant
from the dam, we can note that the red line of the 2021 surface is mostly placed below the
2017 reference point, highlighting the local erosion processes in this area. This is modified in
the following profiles as approaching the dam, where the red line is mostly above the green
line. In particular, Profile 6 shows that approximately 20 cm of sediments were deposited
in the central and eastern part of the dam from 2017 up to 2021. The latter signifies that the
sediments were transported from the area of Profile 1 and were redistributed closer to the
dam in the upcoming years. Overall, Figure 19 depicts the spatiotemporal evolution of the
sediment supply, transportation, and redistribution, also offering important insights into
sedimentation processes. Profile 6 denoted the position of the main sediment deposition in
front of the dam.

3.1.3. Error Assessment

The registration error refers to the point cloud registration to a reference cloud. The
GPS points were often used as the reference points to where each LiDAR-derived point was
assigned to. In the case of the 2016 point cloud, 2015 was the reference to achieve the best
cloud alignment and accuracy (Table 4). The XYZ error analysis procedure is thoroughly
described in Alexiou et al. [46].

Table 4. Summarized error analysis for each point cloud dataset.

Point Cloud Reference Points Registration Error (cm) XYZ Error
(cm) Total Error (cm)

2015 GNSS 2019 5 5 5
2016 2015 LiDAR 3 5 5
2017 GNSS 2021 1 2 2
2018 GNSS 2019 3 2 3
2019 GNSS 2019 3 1 3

3.2. The GPR Results

The radar profiles in Figure 5b (such as No. 004 in Figure 20) are composed of three
or even four significantly distinct layers [98]. We focus on the upper 2 m because the
expected structures are expected in the upper subsurface (<2 m). The lower 2 m are free of
reflections due to the possible air wave reflections from the dam. Facie 2 is a horizontal,
parallel-to-surface reflection at a 1 m depth. There is also a distinct reflection near the
surface (Facie 3) which seems to be parallel to Facie 2. Both are considered continuous
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structures (Figure 20). The deepest point has been found at a 7 m distance at a 1.4 m depth.
Facie 3 occurs at a depth from 0 m up to 0.6 m. There is also a Facie 4, where no reflections
occur at a depth of 1.8 m (at a 3–4 m distance, [98]).
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Facie 1 in radar profile 004 is horizontal, continuous, and parallel, attributed to the
plane basin deposition (Figure 20). Facie 2 is a continuous structure denoted along the whole
radar profile. Its depth ranges from 0.7 m up to 1.3 m. The dipping structures at the bound-
aries of the profile could be attributed to the basin sidewalls. Facie 3 could be highlighting
an erosion event and Facie 4 occurs in 1.8 m depth, that could be assigned to bedrock.

The basin dam was excavated in 2015, following the wildfire event of July 2015
(possibly in August 2015). As a result, Facie 2 represents the bedrock, and all the material
above this reflection is considered to be the remaining sediment yield that was deposited
until April 2016 when GPR profiles were deployed. The corresponding dam basin area is
56 m2, which, when multiplied by 1 m mean depth (Facie 2), results in a total volume of
56 m3 (range 39.2–72.8 m3 for a 0.7–1.3 m depth range). For a defined electromagnetic wave
velocity, v = 0.09 m ns-1, the material could be a mixture of unsaturated sand and gravel,
unsaturated silt, and unsaturated clay, which is also validated from the soil sampling
analysis (Table 5). It should be noted from weather reports that a 36 mm rainfall event
occurred in the middle of March 2016, before the GPR method was applied [98].

Table 5. Laboratory results of the Ilioupoli test site’s soil samples (dam area).

Ilioupoli
Test Site DATE SAND (%) SILT (%) CLAY (%) Soil Texture

Class OM (%) pH
Electrical
Conductivity
(µS/cm)

Sample
Code

13_dam (4) 2022 46.02 32.42 21.56 L 5.60 8.10 242
14_dam (3) 2022 49.66 19.94 30.40 SCL 4.80 8.10 256
15_dam (2) 2022 70.02 13.70 16.28 SL 1.10 8.20 126
16_dam (1) 2022 46.40 31.14 22.46 L 6.70 8.00 279

To conclude, according to the GPR method, Facie 3 could be assigned to the first
sediment deposition event following the wildfire, resulting in a deposition of almost 20 m3

(17 m3), while the total sediment measured by the GPR since the dredged basin period till
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the day of the measurement reached almost 60 m3 (56 m3). The t-LiDAR method revealed a
20 ± 3 m3 deposition for the period 10/2015 up to 4/2016, showing a good correlation to
the GPR results. The t-LiDAR/GNSS comparison analysis for the 2017 (t-LiDAR)—2021
(GNSS) timeframe resulted in a mean deposition of 0.06 m or 9 m3 in total (for the measured
surface of 150 m2), leading to 2.25 m3/year (four years in total). This annual value of almost
2 m3 is also validated by the UAV method for the year 2018–2019 (Table 6).

Table 6. Total analysis of sediment deposition.

Date Range Method Sediment (m3)

From To

Dredged (~8/2015) 4/2016 GPR 56
10/2015 4/2016 t-LiDAR 20

2017 2021 t-LiDAR-GNSS 9
2018 2019 UAV–SfM 2

Total 2015–2021 65

4. Discussion

Water-induced soil erosion is a prevalent environmental occurrence that has a consid-
erable influence on the viability of agricultural lands, the vegetation regeneration potential
of burned areas in natural ecosystems, and the overall stability of landscapes. This article
emphasizes the importance of emerging technology in soil erosion and sedimentation
monitoring in post-fire settings. By comprehending analysis of the soil-erosion-prone areas,
we can formulate effective strategies to mitigate the erosion and to foster soil conservation.

A recently burnt Mediterranean catchment, the Ilioupoli test site, was selected follow-
ing the wildfire event of 2015. The test site is characterized by a rapid vegetation recovery
over the following years that added several constraints to our sediments quantification
assessment and, as a result, different techniques have been incorporated.

Advanced methods for soil properties, soil surface conditions, and soil erosion assess-
ment constantly improve both spatial and temporal soil erosion analysis [109,110]. In our
study site, several different field work techniques were applied, the UAV photogrammetry
and t-LiDAR methods combined with GPR and GNSS data. These techniques result in
point clouds that are considered the baseline for the production of 3D models to reconstruct
surfaces under a defined coordinate system (local or global), leading to real-time field
monitoring. The combination of these techniques has provided the best results, since
several constraints appeared along the way. The use of different methodologies, where
applicable, is often the only solution to monitor the multi-temporal geomorphological
changes, resulting in an accuracy of a few centimeters. Optimal study sites are areas of
limited or no vegetation. These sites relate to post-fire settings, settings controlled by over-
grazing [111–118], or areas of high sedimentation, where eroded, transported sediments
constantly cover the recently formed vegetation (as at the Platana test site [47]). To our
knowledge, no detailed soil erosion investigation has yet been conducted regarding the
combination of UAV- and t-LiDAR-derived point cloud algorithms in fire-affected areas.

Both techniques have advantages and limitations, which should always be taken into
consideration when a survey is conducted for the best method to be selected. However,
both techniques provide high quality point clouds that simulate the microtopography
and texture to a high accuracy. The point cloud analysis comprises a defined XYZ value
for every point, followed by an intensity value (due to the active source of the t-LiDAR
method) or an RGB value (due to the passive source of the UAV method). This type of
multi-vector analysis (sphere-by-sphere and point-by-point analysis) is currently a cutting-
edge technology with significant potential in several geoscientific applications [119–122],
while a combination of multi-source point clouds is feasible [123].

Current research denotes the utilization of combined multitemporal UAV images
and Structure from Motion (SfM) technologies to systematically monitor both the topsoil
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surface and volume change within small-scale watersheds [56,124]. In particular, recent
studies [125–127] focus on point cloud analysis. As [108] indicated, the DEM cannot accu-
rately represent the complex surface due to the 2D data used, while other researchers [128]
highlight the efficiency of point cloud analysis in volumetric calculations. Point cloud
analysis is a state-of-the art technique, demonstrating an enhanced precision and a reduced
occlusion within complex scenes featuring high roughness and topographic diversity
across all dimensions [129]. Li et al. [130] denoted that the DoD technique results in a
rapid and efficient computation, yet it may not be appropriate for analyzing significant
surface changes in engineering buildings. The predominant method for change detection,
the M3C2 algorithm, evaluates alterations along the local surface normal, which varies
between points and overcomes the uncertainties associated with mesh or DEM generation.
Three-dimensional point cloud analysis works directly with individual point cloud data,
while DoD analysis includes gridded elevation data. Both methods have their strengths
and limitations, and the selection between them depends on factors such as the nature of
the data, the scale of the study area, and the specific objectives of the analysis. Integrating
multiple data sources and employing complementary analysis techniques can help mitigate
some of these limitations and improve the accuracy of surface change detection. Overall,
this is the reason why the 3D point cloud analysis was selected. Yang et al. [131] provide
spatial high-resolution monitoring of rill and inter-rill erosion development using t-LiDAR
and SfM, achieving a fine resolution of 1 mm, as in our case, while Laburda et al. [132]
employed SfM to capture splash erosion, reaching a resolution of 0.1 mm. A total GCP
XYZ error less than 4 cm was reported by [56], as in our study area (total UAV–SfM error of
3 cm, Table 7).

Table 7. Resolution and total error estimation through the UAV–SfM analysis.

Tiled Model
(mm/pixel)

UAV Flight
Height (m)

Total XYZ Error
(cm)

Ilioupoli test site 8/2018 4 15
33/2019 1 15

The 3D modeling results presented in Table 7 highlight that the methodology pro-
posed leads to a mm accuracy surface texture reconstruction and topsoil change detection.
This value is clearly one order below the existing calculated error of 3 cm, which is already
a sufficient error value for such applications. The combination of the technological tools
leads to a detailed microtopography, reaching a resolution of 1 mm/px, a value significantly
lower than the mechanical error of a t-LiDAR [46] or a GNSS receiver. There are applications
where high-quality texture reconstruction is indeed needed, as in tracing paleoevents along
fault planes through roughness studies for assessing fault slip rates or signal absorption-
based surveys [133–135]. However, we have reached a milestone where no further detail
is required, and technology is not a constraint on the soil erosion and sediment analyses.
Similar t-LiDAR errors (a couple of cm) were also reported in [40,46].

GNSS technology was employed to monitor topsoil surface changes. Due to the chal-
lenging station surroundings, which involved obstructions, limited satellite coverage, and
unfavorable geometric conditions, occasional disruptions in the GNSS signals, specialized
data processing techniques for GNSS, were crucial in the dynamic deformation/change
detection monitoring process. Many researchers have selected this methodology for its
advances [65,136–140]. Zhang et al. [124] provided a comprehensive analysis of the suit-
ability of commonly used centimeter-level UAV images and sub-meter-level Google Earth
images for interpreting multi-dimensional morphological parameters of different gully
morphologies based on GNSS RTK field measurements. In our test site, the ultimate goal
was to provide high-accuracy data for comparison with the previous t-LiDAR- and UAV-
collected data. This methodology was applied at the Ilioupoli test site and filled missing
datasets due to vegetation growth. The GNSS error was 1 cm for the horizontal and 1.7 cm
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for the vertical component. The combination of different technologies was proven accurate
(offering cm accuracy) and necessary to complete the datasets (Table 6).

Extended research has been conducted in post-fire settings, due to the severe alteration
on soil and vegetation/land-use. Runoff and the derived sediment yield volumes are signif-
icantly affected by the volume and intensity of precipitation, with the negative correlation
with the vegetation cover decreasing in post-fire settings [141,142]. It is well established that
high-severity wildfires reduce soil aggregate stability and enhance soil erodibility [143,144].
As a result, it should be highlighted that major flood events (as at the Ilioupoli test site) may
also create an additional and severe topsoil disturbance. Recent research [145] demonstrated
the increase in the mean annual erosion rates in 18 check dams (built in 2011), estimat-
ing 0.042 t/ha/year before the fire, 0.998 t/ha/year in the first 3 years after the fire, and
0.08 t/ha/year for the 20 years following the fire, by applying the WATEM/SEDEM erosion
model and validated it through the retained sediment volumes of the dams.

Greek vegetation coverage is mostly constituted of flammable vegetation (such as pine
trees and shrubs), leading to an environment highly susceptible to wildfire [146]. According
to [13], the runoff rate increased three times and the soil loss was doubled after the forest
fire in Spain. Previous research [17,18] showed that for the hillslope sediment yield balance,
three to five years are usually required, while others [147] denoted the increase in sediment
yield before and after the wildfire of 2009 in the Penteli region (Lykorrema watershed),
where a mean pre-fire value of 0.02 t/ha/yr was replaced by a mean post-fire value of
0.13 t/ha/yr (for 2009–2014 estimation). The results displayed in this article are in agreement
with previous researchers, showing that, in the Mediterranean conditions, the maximum soil
erosion susceptibility is recorded within 4–6 months after the fire [148,149], as depicted in the
Ilioupoli test site. Figures 11–15 highlight the importance of the sediment retention dams,
since it was observed that, during the first intense rainfall events (65.6 mm of precipitation in
September 2015), two months after the wildfire, 40 m3 of sediments are retained by the dam,
while this volume decreased by 50% (20 m3) during the next 6-month assessment (October
2015 to April 2016), followed by an extra decrease of almost 90% (9 m3 in total of 2017–2020
assessment) during the next four years (if a mean value of 2.25 m3/yr is defined).

Overall, the final sediment measurements are demonstrated in Table 6 and in Figure 21
showing that these are in agreement with the theoretical background (with [150], Figure 21a).
It is important to note that four independent methods were applied and all three of them
provide results that are in close agreement to each other, adding confidence to the results.
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5. Conclusions

This study introduces a methodological framework for monitoring and quantifying
real-time soil erosion and sedimentation rates in post-fire settings. The methodology pro-
posed includes UAV–SfM and t-LiDAR techniques that can be used as guidance for offering
high-accuracy sediment yield deposition measurements based on the detailed analysis of
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3D modeling and point cloud comparison. Concurrently, real-time monitoring data are
feasibly leading to a multi-source point cloud comparison analysis at the multitemporal
perspective, especially under the fast changing circumstances in relation to erosion, deposi-
tion, and vegetation growth in a Mediterranean wildfire-affected environment. Change
detection quantification demands detailed measurements and process analysis. For this
purpose, the point-to-point direct comparison and M3C2 distance algorithm performed
well as an appropriate methodology to estimate soil erosion and calculate sedimentation
volume. The UAV–SfM technique appears to accurately measure topsoil change detection
and erosion/deposition patterns, and the derived point clouds adequately simulated the
upland dam basin topsoil microtopography. Additionally, the point cloud analysis, when
compiled with GNSS RTK surveys, can attain a centimeter resolution, obtaining reliable
and accurate elevation data, when constraints appear. The GNSS analysis correlated to
the t-LiDAR data, proving to be of great significance when long-term erosion rates and
sedimentation volume calculations are required.

The combination of these technologies in soil erosion and sedimentation measurement
was tested at the Ilioupoli test site (Athens, Greece) in order to measure the post-fire
sedimentation rates following the severe wildfire event in 2015. This test site revealed that
40 m3 of sediment were deposited, following the first intense rainfall event, a value that was
decreased by 50% during the next 6-month assessment, and continued to decrease further
during the period of 2017–2021, validating the decrease in sediment yield deposition over
the first years following a wildfire.

This research outlines that the UAV–SfM and t-LiDAR techniques offer high spatial
resolution of a couple of millimeters per pixel and an accuracy of a couple of centimeters
that clearly exceed our needs in the watershed scale. Considering also that they are
cost-effective, non-invasive, and relatively fast methods, they should be regarded from
now on as standard techniques for studying such processes. They address our need for
flexibility in studying erosion dynamics even under the occurrence of individual significant
rainfall events.

Overall, this study can serve as a reference guide and benchmark on high-accuracy
sediment yield measurements, especially in mountainous catchments, providing an indirect
estimate of erosion rates and offering a realistic assessment of a sediment retention dam’s
life expectancy. This is crucial for the prevention of flooding events and debris flows to
nearby urban areas.
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