
Citation: Xing, K.; Li, S.; Qu, Z.;

Zhang, X. Time-Domain

Electromagnetic Noise Suppression

Using Multivariate Variational Mode

Decomposition. Remote Sens. 2024, 16,

806. https://doi.org/10.3390/

rs16050806

Academic Editor: Roberto Orosei

Received: 19 January 2024

Revised: 23 February 2024

Accepted: 23 February 2024

Published: 25 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Time-Domain Electromagnetic Noise Suppression Using
Multivariate Variational Mode Decomposition
Kang Xing 1,2,3 , Shiyan Li 4,5, Zhijie Qu 1,2,3 and Xiaojuan Zhang 1,2,*

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
xingkang19@mails.ucas.ac.cn (K.X.); quzhijie20@mails.ucas.ac.cn (Z.Q.)

2 Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences,
Beijing 100190, China

3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

4 Tianjin Navigation Instruments Research Institute, Tianjin 300131, China; lishiyan18@mails.ucas.ac.cn
5 Tianjin Key Laboratory of Special Severe Enviroment Computer, Tianjin 300131, China
* Correspondence: xjzhang@aircas.ac.cn; Tel.: +86-10-5888-7276

Abstract: Noise suppression is essential in time-domain electromagnetic (TDEM) data processing
and interpretation. TDEM data are typically in broadband signal, which makes it difficult to separate
the signal in the whole frequency band. The conventional methods tend to process data trace by
trace, ignoring the lateral continuity between channels. This paper proposes a workflow based
on multivariate variational mode decomposition (MVMD) and multivariate detrended fluctuation
analysis (MDFA) to deal with the noise in 2-D TDEM data. The proposed method initially employs
MVMD to decompose TDEM signals into a series of intrinsic mode functions (IMFs). Subsequently,
MDFA is used to calculate the scaling exponent of each IMF, facilitating the selection of signal-
dominant IMFs. Finally, the signal IMFs are summed up to reconstruct the TDEM signal. Both
simulation and field results demonstrate that, by considering the lateral continuity of data across
channels, the proposed method is more effective at noise removal than other single-channel data
processing techniques.

Keywords: time-domain electromagnetic; subsurface target detection; multivariate variational mode
decomposition (MVMD); denoising

1. Introduction

In recent years, the time-domain electromagnetic (TDEM) method has seen a surge
in popularity across various fields, including geological research [1–3], environmental
investigation [4–6], and unexploded ordnance detection [7–9], due to its non-destructive
nature, cost-effectiveness, and ease of use. However, the noise in TDEM data significantly
reduces the signal-to-noise ratio (SNR), impacting data quality and complicating process-
ing and interpretation. TDEM signals exhibit a broad frequency band and non-linearity
and non-stationarity characteristics, particularly becoming weak and susceptible to noise
interference in the late stage.

Currently, two predominant methods exist for noise reduction in TDEM data, with
the first being machine learning-based noise reduction. Methods for reducing noise in
machine learning include utilizing sparse dictionary distributions [10,11] and various deep
learning techniques [12–14]. Deep learning methods are particularly advantageous since
they can automatically learn features from data, avoiding reliance on subjective human-
selected data. They have gradually emerged as the mainstay of modern machine learning
methods. Asif et al. developed an expert system based on a deep convolutional auto-
encoder to eliminate interference from power lines, fences, and other structures in data [15].
Pan et al. proposed an encoder architecture that combines one-dimensional convolution
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and vision transformers, retaining both the local perceptual features of convolutional
networks and the global perceptual features of transformers. This architecture integrates
a multi-task loss function and a densely connected residual structure to optimize noise
reduction performance [16]. Chen et al. [17] proposed a deep convolutional neural network
CNN-based denoiser to model the noise estimation image for different signal features.
Wang et al. [18] suggested employing generative adversarial networks to construct a
dataset and train a deep neural network-based denoiser to learn the mapping from noisy
TDEM signals to the corresponding noise-free signals. Yu et al. [19] proposed the CG-DAE,
a CNN-GRU Dual Auto-Encoder designed for 2-D TDEM data processing. This model
processes 2-D TDEM response data as an image input network, improving data processing
efficiency. Nevertheless, challenges arise from incorporating deep learning into TDEM data
processing. These include high computational costs, the need for parameter adjustments,
and performance variations depending on architecture and training data size.

The second method is based on signal decomposition, which offers more convenience
and less computational intensity than machine learning-based approaches. Ji et al. initially
employed a wavelet threshold to remove background noise from TDEM data, then iden-
tified and processed the details after the stationary wavelet transform (WT), and finally
reconstructed the denoised TDEM data using an inverse stationary wavelet transform [20].
Wang et al. used empirical mode decomposition (EMD) to decompose TDEM signals under
strong noise into multiple intrinsic mode functions (IMFs). They successfully extracted
weak signals by employing power detection to extract and reduce the principal components
of the noise, thereby enhancing the depth and accuracy of TDEM detection [21]. Liu et al.
used ensemble empirical mode decomposition (EEMD) to suppress the motion noise of
aviation transient electromagnetic [22]. Feng et al. first utilized the whale optimization al-
gorithm (WOA) to obtain the optimal combination of modal decomposition number K and
penalty factor α. Subsequently, they applied variational mode decomposition (VMD) for
signal decomposition and finally used the Bhattacharyya distance algorithm to distinguish
between effective and noise modes, accurately reconstructing the signal [23].

However, these methods have certain limitations. The WT method needs to select
the appropriate wavelet basis function according to the characteristics of signal, which
lacks self-adaptability and loses signal information in the decomposition process [24–26].
Although the EMD method and its variations do not require a priori information, they
tend to cause modal aliasing and the decomposed IMFs are easily contaminated by noise.
VMD can estimate multiple modes simultaneously in a non-recursive way, which ensures
the completeness of the characteristics and improves the computational efficiency [27].
Using VMD and its improved method to decompose TDEM data can filter out noise and
reconstruct signal accurately [28]. Nevertheless, a TDEM signal usually is a multi-channel
signal, and the existing methods process TDEM data trace by trace, ignoring the continuity
of data between channels.

Multivariate variational mode decomposition (MVMD) is a method for decomposing
multichannel data [29]. MVMD processes TDEM data across multiple channels in unison,
extracting IMFs that share identical center frequencies and bandwidths across various
channels [30]. This concurrent processing of multichannel TDEM data enhances IMF
continuity and aids in extracting spatial data features, effectively reducing noise [31].
This paper proposes a multichannel workflow for denoising TDEM data using MVMD
and multivariate detrended fluctuation analysis (MDFA). Initially, we utilized MVMD to
decompose 2-D TDEM signals into a series of IMFs. We then applied MDFA to calculate the
scaling exponent of each group of IMFs, using these indices to select signal-dominant IMFs.
The final step involved summing the selected signal IMFs to reconstruct the signal. We
generated 2-D TDEM data and introduced varying levels of noise. The processing results
indicate that the proposed method effectively removes noise, achieving a higher SNR by
considering the lateral continuity between channels. The proposed method more accurately
restores anomalous shapes compared to methods that process data channel by channel.
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The processing of field data further confirms that the method effectively eliminates noise in
early- and late-stage TDEM data.

2. Methods

In this section, we first briefly introduce the related mathematical theories and ex-
pressions. Then, we propose an MVMD-based MDFA workflow to separate and attenuate
the random noise contained in the raw TDEM data. Next, we introduce the method for
selecting parameters of MVMD. Finally, we provide further elucidation of the workflow, as
shown in Algorithm 1.

Algorithm 1 TDEM signal denoising with MVMD-MDFA

Require: 2-D TDEM signal x(t)
Ensure: Denoised 2-D TDEM signal xdenoise(t)

1: set Kmin, Kmax, α = 2000, n = 0, ϵ = 10−7

2: for k = Kmin; k < Kmax, k = k + 1 do
3: applying MVMD and calculating the correlation coefficients µk
4: if µk ≥ threshold then
5: Kbest = k − 1
6: end if
7: end for
8: while ∑k ∑c

∥un+1
k,c −un

k,c∥
2
2

∥un
k,c∥

2
2

< ϵ do

9: n = n + 1
10: for k = 1; k < Kbest, k = k + 1 do
11: for c = 1; c < C, c = c + 1 do
12: un+1

k,c = arg min
uk,c

L
(
{un+1

i<k,c}, {un
i≥k,c}, {ωn

i }, λn
c

)
13: end for
14: end for
15: for k = 1; k < Kbest, k = k + 1 do
16: ωn+1

k = arg min
ωk

L
(
{un+1

i,c }, {ωn+1
i<k }{ωn

i≥k}, λn
c

)
17: end for
18: for c = 1; c < C, c = c + 1 do
19: λn+1

c = λn
c + τ

(
xc − ∑k un+1

k,c

)
20: end for
21: end while
22: for k = 1; k < Kbest, k = k + 1 do
23: calculating the scaling exponent βk of IMFk
24: end for
25: calculating the slope of β, summing the IMFs preceding the point of maximum slope.

2.1. Multichannel Variational Mode Decomposition

The multivariate variational mode decomposition is an extension of the VMD method
designed for multichannel data processing [32]. By simultaneously processing multichannel
TDEM data, the MVMD algorithm enables the effective extraction of spatial features while
enhancing the lateral continuity of data across channels. The principle of MVMD is
as follows.

MVMD decomposes the 2-D TME signal d(t) = [d1(t), d2(t), . . . , dC(t)] into K
IMFs uk(t).

d(t) =
K

∑
k=1

uk(t), (1)

where d(t) contains C channels, each containing N sampling points.
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And the k-th uk(t) can be represented as

uk(t) =


uk,1(t)
uk,2(t)

...
uk,C(t)

 =


fk,1(t)ejϕk,1(t)

fk,2(t)ejϕk,2(t)

...
fk,C(t)ejϕk,C(t)

, (2)

where fk,C(t) and ϕk,C(t) denote amplitude function and phase function corresponding to
the C-th channel of uk(t).

The aim of MVMD is to extract a collection of multivariate modulated modes uk(t)|Kk=1
with two key criteria: (i) minimizing total bandwidths of modes extracted from input data,
and (ii) ensuring that the sum of derived oscillations accurately reconstructs the original
signal uk(t).

The constrained optimization strategy can be expressed as

min
uk,c ,ωk

{
K

∑
k=1

C

∑
c=1

∥∥∥∂t[uk,c(t) +Huk,c(t)]e−jωkt
∥∥∥2

2

}
,

s.t.
K

∑
k=1

uk,c(t) = dc(t), c = 1, 2, . . . , C

(3)

where uk,c(t) and Huk,c(t) denote the k-th IMF of the c-th channel signal dc(t) and its Hilbert
transform; ∂t represents the partial derivative of time; ωk denotes the central frequency
of uk,c(t).

Then, an augmented Lagrangian is formulated to solve the optimization problem
expressed as (3). This is achieved by adding two penalty terms to the Lagrangian: a
quadratic term that enforces accuracy in reconstruction, and a Lagrangian multiplier λ
term that ensures strict compliance with constraints.

L
(
{uk,c},

{
ωk}, {λc}

)
= α

K
∑

k=1

C
∑

c=1

∥∥∂t[uk,c(t) +Huk,c(t)]e−jωkt
∥∥2

2

+
C
∑

c=1

∥∥dc(t)−
K
∑

k=1
uk,c(t)

∥∥2
2 +

C
∑

c=1

〈
λc(t), dc(t)−

K
∑

k=1
uk,c(t)

〉
,

(4)

where ⟨a, b⟩ represents the inner product of a and b, λc represents the c-th channel of λ.
The optimization problem is solved using the alternating direction method of multipliers
(ADMMs), and the formula for updating uk,c, ωk,c and λc is given by:

ûn+1
k,c (ω) =

d̂c(ω)− ∑i ̸=k ûi,c(ω) + λ̂c(ω)
2

1 + 2α(ω − ωk)2 , (5)

ωn+1
k =

C
∑

c=1

∫ ∞
0 ω|ûk,c(ω)|2dω

C
∑

c=1

∫ ∞
0 |ûk,c(ω)|2dω

, (6)

λ̂n+1
c (ω) = λ̂n

c (ω) + τ
(

d̂c(ω)−
K

∑
k=1

ûn+1
k,c (ω)

)
, (7)

where ûk,c, d̂c and λ̂c are the Fourier transform of uk,c, dc and λc. τ represents the parameter
of noise tolerance. Update the above equation until it satisfies the following iteration
termination condition:
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K

∑
k=1

C

∑
c=1

∥ûn+1
k,c − ûn

k,c∥
2
2

∥ûn
k,c∥

2
2

< ϵ, (8)

where ϵ is the tolerance parameter of the convergence criterion.

2.2. Multichannel Detrended Fluctuation Analysis

TDEM signals, when decomposed via MVMD, produce a series of IMFs, requiring the
introduction of auxiliary discriminant methods to select signal IMFs. Detrended fluctuation
analysis (DFA) is extensively employed to identify scaling properties and detect long-range
correlations in non-stationary time series, owing to its proficiency in detrending time
series data [33]. MDFA simultaneously processes multichannel signals, enhancing the
lateral continuity of data across channels [34]. Specifically, MDFA processes multichannel
IMFs, effectively removing noise and trend components of various orders attributed to
external factors.

For a given C-channel, time series xi = [xi1 , xi2 , . . . , xiC ]
T observation at time i, yi is

computed by

yi =
1
N

N

∑
i=1

(xi − x), (9)

where i = 1, 2, . . . , N donates the length of observation time, x = 1
N ∑N

i=1.
Next, yi = yic |Cc=1 for all observation time is divided in 2Ns disjoint intervals by cutting

yi into Ns = N/s segments sequentially and inversely. Then, the local trend ỹi = yic |Cc=1 is
estimated based on the fitting polynomial of each channel

ỹic = ac · i2 + bc · i + cc, i = 1, · · · , s (10)

where ac, bc, cc are the coefficients of the quadratic term.
Then multivariate fluctuation FΣ

m(s) is formulated using Mahalanobis norm ∥yi − ỹi∥Σ

FΣ
m(s) =

√√√√ 1
2sNs

2Ns

∑
v=1

(v+1)s

∑
i=vs+1

(yi − ỹi)
TΣ−1(yi − ỹi), (11)

where covariance matrix Σ delineates the interchannel dependencies within the detrend
yi − ỹi.

If the time series is long-range-correlated, it would be reflected in the function FΣ
m(s)

FΣ
m(s) = sβ, (12)

Finally, scaling exponent β is calculated by the slope of ln FΣ
m(s) and ln s. The signal

IMFs and noise IMFs can be screened out by the slope of β, then summing the signal IMFs
to reconstruct the signal.

2.3. Parameter Selection

This section elaborates on the selection of pivotal parameters for MVMD. The number
of modes to be decomposed, denoted as K, is crucial for MVMD’s efficacy. To circumvent
issues of over or under-decomposition, K is determined based on a dual criterion: a low
correlation coefficient and minimal energy loss. Specifically, the correlation coefficient
threshold is set at 0.4, and the number of modes for decomposition is chosen within the
range from Kmin to Kmax. MVMD is applied iteratively within this defined range. If the
correlation coefficient between the decomposed IMFs exceeds this threshold, it indicates
over-decomposition. The optimal decomposition mode, Kbest, is then considered one less
than the current K. Furthermore, the bandwidth of the extracted modes is governed by
the parameter α; a smaller α results in a broader bandwidth. We set α to 2000 to improve
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the fidelity of the constructed IMFs. Lastly, ϵ signifies the tolerance error between the raw
TDEM data and the decomposed IMFs, and we set ϵ at 10−7.

3. Synthetic Results

Synthetic TDEM data were generated to evaluate the effectiveness of the proposed
workflow, as depicted in Figure 1a. The survey area is 5 m wide from east to west and 10 m
long from north to south. The east–west profile comprises 20 channels, each encompassing
200 measurement points along the north–south direction. To simulate pipes of different
diameters and different burial depths, responses from large, medium, and small-sized
pipelines were created at distances of 8, 5, and 2 m to the north, respectively. Then, 0 dB
Gaussian white noise was added to the synthetic TDEM data. Notably, the responses at
8 m and 2 m can be observed, but the anomaly shapes are not clear, and the response at
5 m is minimally visible, as shown in Figure 1b.

(a) (b)

Figure 1. Synthetic 2-D TDEM data. (a) Noise-free data. (b) Data with 0 dB random noise.

Next, we applied MVMD to the noisy data and extracted a series of IMFs, as illustrated
in Figure 2. These IMFs are sequentially organized from low to high frequency. Analysis
of the graph reveals that the low-frequency IMFs encompass more energy, signifying the
underlying trend of change, while the high-frequency IMFs, although noisier, provide finer
details. As evidenced in Figure 2a, at the exact locations of the simulated pipeline responses
in the original data, corresponding anomalies are discernible in IMF1, ensuring continuity
across adjacent channels. In IMF1, the 160th point across all channels exhibits the maximum
response, corresponding to the response of the pipeline that traverses all channels at 8 m
in the original data; the responses at points 40 and 100 have similar characteristics. This
observation is consistent in IMF2. However, due to increased frequency in IMFs 3 to 9, the
anomalous responses indicative of the pipelines become indistinct.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. IMFs decomposed from synthetic TDEM data by MVMD. (a–i) IMF1–IMF9.

Subsequently, MDFA is conducted on all IMFs to calculate the scaling exponent, β,
which serves as a criterion to differentiate between signal-dominated and noise-dominated
IMFs. The slope of β signifies the reduction in long-range correlation, with a higher slope
indicating a substantial increase in noise content. Consequently, IMFs preceding the point
of maximum slope are deemed to predominantly contain relevant signals. In Figure 3, the
red line marks the maximum slope point, identifying IMF1 to IMF4 as signal-dominated.
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Figure 3. Scaling exponent of various IMFs decomposed from synthetic TDEM data.

Finally, the signal-dominated IMFs are summed to obtain the TDEM signal after
removing the noise. We showcase the signal processing details before and after for channels
2 and 14 and compare these with the results from other methods. As observed in Figure 4,
although the responses from the large and medium pipelines are significant, they are still
severely interfered with by noise, and the response of the small pipeline is submerged in
noise. The proposed method effectively removes the noise, restoring the responses of the
large and medium pipelines and accurately extracting the response of the small pipeline.

(a) (b)

Figure 4. Synthetic TDEM denoised results of different methods for channel 2 (a) and channel 14 (b).

Subsequently, we visualized the denoised data and compared it with the results obtained
from other methods. As shown in Figure 5, anomalies can be identified in all four images,
each exhibiting distinct morphologies. The proposed method eliminates noise, resulting in a
noticeably cleaner image. More importantly, it accurately extracts weak responses previously
obscured by noise while maintaining the continuity of anomalous shapes across channels.
In contrast, the results processed by other methods exhibit discontinuities in the anomalous
forms, failing to reconstruct the characteristics of the pipelines accurately.
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(a) (b)

(c) (d)

Figure 5. Synthetic TDEM denoised results of different methods for all channels. (a) MVMD-MDFA;
(b) VMD-DFA; (c) EWT; (d) ICEEMDAN.
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We also processed the data containing 5 dB and 10 dB noise levels using various
methods, with the results displayed in Table 1. The outcomes obtained with the proposed
method surpassed those of other methods across different noise levels, thereby validating
its effectiveness. The time costs by different methods are shown in Table 2, where the
proposed method takes the longest time. Compared to other single-channel methods,
the proposed method considers all channels as a set and the inter-channel correlations,
increasing the time required for iteration.

Table 1. SNR of synthetic data processed by different methods.

Methods ICEEMDAN EWT VMD-DFA Proposed Workflow

0 dB Noise 0.57 1.44 1.02 2.24

5 dB Noise 3.96 6.11 4.55 6.78

10 dB Noise 7.39 10.47 9.26 11.12

Table 2. Time costs of synthetic data processed by different methods.

Methods ICEEMDAN EWT VMD-DFA Proposed Workflow

Time costs (s) 26.7 1.04 7.2 30.4

4. Experimental Results
4.1. System Description

The TDEM system, depicted in Figure 6, developed by the Aerospace Information
Research Institute at the Chinese Academy of Sciences validated the algorithm. This system
consists of a transmitting module, a data acquisition module, and a positioning module.
It features a square transmitting coil measuring 1 m on each side and three concentric
square receiving coils, each with a side length of 0.5 m. The location of the sensor is
precisely determined by a Real-Time Kinematic (RTK) module positioned at the center of
the receiving coil, achieving a positioning accuracy of less than 1 cm.

Figure 6. The TDEM detection system used to verify the proposed method.
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4.2. Test Field Result

Verification experiments were conducted in Liaocheng, Shandong, China. Approx-
imately 1 m beneath the experimental site, a steel gas pipeline with a diameter of about
30 cm was buried. Four parallel measurement lines were planned, spaced approximately
1 m apart, as depicted by the red line in Figure 7. During these tests, the TDEM system
moved at an approximate speed of 1 m per second.

Figure 7. The experimental site with buried pipelines.

Upon completing the measurements, we rendered the original data in graphical form,
as depicted in Figure 8. Figure 8a represents the early-stage data, which show that the
anomalies have greater amplitude and are more distinct in shape due to a higher SNR
in the early signals. However, noise interference results in some roughness at the edges.
Figure 8b displays the late-stage data. Over time, the SNR in these stages decreases, and
although anomalies remain visible, their precise shapes become indiscernible.

We established the optimal modal decomposition number as 6 and applied MVMD to
both early- and late-stage data. This process yielded a series of IMFs, which are depicted
in Figures 9 and 10, respectively. From Figure 8, it is evident that due to the differences in
signal characteristics between early and late stages, the features of the IMFs obtained from
decomposition also differ. In the early-stage signals, IMF1 and IMF2 have higher SNR with
distinct anomaly shapes, whereas in the late-stage signals, only the anomaly shape of IMF1
is distinctive.

Subsequently, we employed MDFA to calculate the scaling indices of the IMFs for both
early and late stages, with the results displayed in Figure 11. Based on the scaling indices,
we reconstructed the early-stage signal by summing IMF1 to IMF3, and the late-stage signal
by summing IMF1 and IMF2.
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(a)

(b)

Figure 8. Early- and late-stage TDEM signals. (a) Early-stage. (b) Late-stage.

(a) (b) (c)

(d) (e) (f)

Figure 9. IMFs obtained from early-stage TDEM signal through MVMD. (a–f) IMF1–IMF6.
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(a) (b) (c)

(d) (e) (f)

Figure 10. IMFs obtained from late-stage TDEM signal through MVMD. (a–f) IMF1–IMF6.

(a) (b)

Figure 11. The scaling exponent of IMFs decomposed from early- and late-stage TDEM signals.
(a) Early-stage. (b) Late-stage.

The denoised early- and late-stage signals are presented in Figure 12. It is observable
that in the denoised early-stage signals, the pipeline response shape is complete, and
the edges are more precise; in the late-stage signals, the SNR has dramatically improved,
accurately extracting the pipeline response from the noise, demonstrating the effective-
ness of the proposed workflow in eliminating noise and restoring the abnormal shape of
the pipeline.
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Figure 12. Denoised early- and late-stage TDEM signals. (a) Early-stage. (b) Late-stage.

5. Discussion

In TDEM survey tasks, when the scale of subsurface anomalies is substantially large
relative to the detection equipment utilized, this scenario typically yields analogous anoma-
lous responses across multiple survey lines, highlighting a prevalent issue in geophysical
exploration. The inherent wide dynamic range of TDEM data further complicates the sce-
nario as later-stage data become increasingly prone to a spectrum of interferences, including
environmental noise, equipment-induced artifacts, and signal attenuation. Traditional ap-
proaches in signal processing predominantly focus on decomposing data trace by trace
without addressing the lateral continuity of data between adjacent channels, potentially
overlooking significant subsurface features.

This paper pioneers a multichannel TDEM data processing methodology combining
MVMD and MDFA. Contrary to VMD and similar single-channel processing methods,
which process data trace by trace, our method astutely extracts IMFs with uniform center
frequencies across all channels. This critical advancement ensures the preservation and
enhancement of lateral data continuity between channels. This approach addresses the
challenges above by exploiting the spatial coherence inherent in geophysical datasets.

Simulation studies meticulously crafted identical pipeline responses in adjacent chan-
nels, mirroring real-world scenarios of significant subsurface anomalies. To emulate varying
degrees of signal fidelity, we introduced three distinct amplitude levels—high, medium,
and low—each representing different SNRs. This setup allowed us to rigorously evaluate
the efficacy of our proposed method against conventional techniques. After undergo-
ing MVMD processing, the simulated TDEM data yielded a series of IMFs, as shown
in Figure 2, where IMF1 consistently exhibits analogous amplitudes and trends across
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different channels, thereby reinforcing the spatial continuity of the subsurface anomaly
signal. Subsequent application of MDFA enables the calculation of scaling indices for
the various IMFs. By selecting signal IMFs before the maximum reduction in long-range
correlations for summation, we effectively complete the signal denoising process, thereby
significantly enhancing the signal clarity and interpretability of TDEM data. The efficacy
of our proposed methodology is vividly demonstrated in Figure 5a, where continuous
anomalous patterns emerge with remarkable clarity, successfully recovering data previ-
ously obscured by noise. The efficacy of this multichannel approach is further corroborated
by Table 1, which showcases superior performance metrics across varying SNRs. Then, we
used a TDEM system to measure the response of underground gas pipelines, and field data
analysis reinforces the method’s robustness, effectively mitigating noise in both early- and
late-stage TDEM data, thus accurately depicting the morphology of subsurface targets.

During our evaluation, traditional VMD processing clocked in at 7.2 s, while our novel
approach required 30.4 s. The MDFA took 1.6 s, and MVMD accounted for 28.8 s, because
of its holistic treatment of all channel data as a unified entity and meticulous consideration
of inter-channel correlations. This approach necessitates more iterations, extending the
computation time required for the ADMM to converge on the optimization problem. The
selection of the parameter α, pivotal for the decomposition’s effectiveness, is manually
determined based on the specific demands of the dataset, representing a potential area
for optimization.

Our future work is poised to delve into more efficient optimization methodologies to
reduce computational overhead. Furthermore, we are committed to developing refined
criteria for selecting MVMD parameters. Additionally, we will explore other multichannel
data processing methods, such as multivariate iterative filtering [35] and multichannel
adaptive Fourier decomposition [36], which do not require prior information and exhibit
higher robustness to enhance the effectiveness and utility of multichannel TDEM data
processing techniques in geophysical exploration.

6. Conclusions

This paper introduces a noise reduction method for multichannel TDEM data. It
involves decomposing 2-D TDEM data into a series of IMFs using MVMD, followed by
MDFA to distinguish between signal and noise IMFs. The final denoising step is achieved by
summing the selected IMFs. Multichannel TDEM data were generated, and various noise
levels (0 dB, 5 dB, and 10 dB) were added to compare the effectiveness of different methods.
The results indicate that the proposed method enhances lateral continuity between channels
and accurately extracts anomalous signal features, effectively reducing noise. Using the
TDEM system, we collected responses from underground pipelines. This process validated
the proposed method’s ability to effectively handle noise in both early- and late-stage data,
significantly improving reliability and interpretability.
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Abbreviations
The following abbreviations are used in this manuscript:

TDEM Time-domain electromagnetic
MVMD Multivariate variational mode decomposition
MDFA Multichannel detrended fluctuation analysis
IMF Intrinsic mode function
SNR Signal-to-noise ratio
WT Wavelet transform
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
WOA Whale optimization algorithm
VMD Variational mode decomposition
DFA Detrended fluctuation analysis
EWT Empirical wavelet transform
ICEEMDAN Improved complete ensemble empirical mode decomposition with adaptive noise
RTK Real-time kinematic
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