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Abstract: The China–France oceanography satellite scatterometer (CSCAT) is a rotating fan-beam
scanning observation scatterometer operating in the Ku-band, and its product quality is affected
by rain contamination. The multiple azimuthal NRCS measurements provided by CSCAT L2A, the
retrieved wind speed and wind direction provided by CSCAT L2B, as well as the rain data provided
by GPM, are used to construct a new rain identification and rain intensity classification model for
CSCAT. The EXtreme Gradient Boosting (XGBoost) model, optimized by the Dung Beetle Optimizer
(DBO) algorithm, is developed and evaluated. The performance of the DBO-XGBoost exceeds that of
the CSCAT rain flag in terms of rain identification ability. Also, compared with XGBoost without
parameter optimization, K-nearest Neighbor with K = 5 (KNN5) and K-nearest Neighbor with K = 3
(KNN3), the performance of DBO-XGBoost is better. Its rain identification achieves an accuracy of
about 90% and a precision of about 80%, which enhances the quality control of rain. DBO-XGBoost
has also shown good results in the classification of rain intensity. This ability is not available in
traditional rain flags. In the global regional and local regional tests, most of the accuracy and precision
in rain intensity classification have reached more than 80%. This technology makes full use of the rich
observed information of CSCAT, realizes rain identification, and can also classify the rain intensity so
as to further evaluate the degree of rain contamination of CSCAT products.
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1. Introduction

The China–France oceanography satellite (CFOSAT) was successfully launched on
29 October 2018, through a collaborative effort between the China National Space Ad-
ministration (CNSA) and the National Center for Space Studies of France (CNES) at the
Jiuquan Satellite Launch Center in China. The satellite is equipped with two microwave
sensors: the CFOSAT SCATterometer (CSCAT) of China and the Surface Wave Investigation
and Monitoring (SWIM) of France. The CSCAT employs a rotating fan beam, which is
different from the fixed fan beam and rotating scanning pencil beam of the traditional
scatterometer. The innovative rotating fan beam facilitates the simultaneous acquisition
of multiple azimuthal measurements of the sea surface, resulting in a large number of
independent samples of backscatter coefficients obtained concurrently. The low-speed
scanning of antennas enhances the redundancy and reliability of azimuth backscatter mea-
surements. The CSCAT is currently the highest original spatial resolution scatterometer
in the world, which provides the possibility to develop high-quality sea surface wind
products [1]. However, studies have found that rain has a serious impact on the echo
signals received by scatterometers [2–8]. The CSCAT, as a Ku-band scatterometer, will
be significantly influenced by rain, thereby limiting the accuracy of its wind products [9].
Therefore, it is necessary to identify the rain-contaminated data in order to improve the
quality of CSCAT L2B wind products.
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In the past few decades, researchers have developed several quality control (QC)
methods for scatterometers. The brightness temperature (TB) provided by the radiometer
exhibits high sensitivity to rain, thus making an important contribution to rain identification.
The Multidimensional Histogram (MUDH) is the earliest technique for identifying rain
using brightness temperature (TB) and other rain characteristics, which was employed to
generate a rain flag for SeaWinds on QuikSCAT [10]. The combination of TB and wind
speed standard deviation has been applied to OSCAT to develop a rain flag [11]. However,
the use of the radiometer TB to identify rain is significantly limited due to the lack of
radiometers synchronized with scatterometers on many satellites. Subsequently, maximum
likelihood estimation (MLE), which identifies low-quality wind by quantifying the deviation
between the measured normalized radar cross-section (NRCS) and the NRCS calculated
using the geophysical model function (GMF), has been demonstrated to significantly flag
rain-contaminated data [12,13]. The empirically normalized objective function (ENOF)
follows a similar principle to MLE, but a weighted approach is used instead of the NRCS
measurement error variance of MLE for error quantification [14]. Notably, the ENOF is pri-
marily applicable for rain detection at low wind speeds, while exhibiting an underreporting
rate ranging from 65% to 75% during high wind speeds and tropical cyclones.

During the early years, MLE was widely used in wind QC and could reject most of the
rain-contaminated data. However, MLE rejects some good wind to ensure the effectiveness
of its QC. Subsequently, some rain-flag technologies complementary to MLE are developed
to improve QC. Singularity Exponent (SE) is based on the spatial derivatives between wind
vector cells (WVCs) [15,16], identifying poor quality wind data from spatial heterogeneity
caused by rain [17], and can therefore be complementary to MLE to flag more low quality
data. JOSS reduces the false alarm rate (FAR) of rain-contaminated data by using the
background wind speed provided in the 2-D variational ambiguity removal (2-DVAR)
process [18]. The Bayesian algorithm (P rain flag) provides a posterior rain probability for
each measurement in WVC with a low false alarm rate (FAR) and a low missing report rate
(MRR) [19].

In recent years, with the rise of artificial intelligence technology, machine learning
models have been found to have great potential in the rain. Two neural network (NN)
models are used for rain detection and rain rate inversion on five sets of data samples from
different regions observed by OCSAT [20]. However, the model cannot independently
utilize scatterometer parameters for rain identification and relies on external collocated
data sources, including parameters derived from numerical weather prediction (NWP)
models: total precipable water (TPW), ground relative humidity (RH), wind speed (WS),
and wind direction (WD). The HY2RRM model for rain identification of HY-2A data was
developed based on the K-nearest Neighbor (KNN) [21], while employing the same set
of rain-sensitive parameters as the MUDH rain flag. Meanwhile, MUDH has also been
transplanted to HY-2A data. The experimental results demonstrate that the effect of the
KNN model surpasses that of MUDH technology.

At present, there are few studies on the rain flag of CSCAT [22,23]. The JOSS rain flag
has been proven to reduce the FAR of rain identification on CSCAT. However, the MLE/Joss-
based rain flagging technique has a large MRR [12,18], and the quality control effect of
wind products needs to be improved. The current CSCAT rain flag lacks specifications
regarding further processing methods for MRR. CFOSAT is not equipped with a radiometer
and cannot provide TB synchronized with CSCAT. Consequently, the MUDH-like method
cannot be used for the CSCAT rain flag. The direct collocation of rain data is considered the
optimal quality control method, but obtaining reliable rain data in the same spatiotemporal
domain as the scatterometer often encounters significant challenges.

CSCAT requires the development of more effective quality control methods in order
to improve the quality of the CSCAT L2B wind products. The rich observation information
in CSCAT provides sufficient data for machine learning to identify rain. EXtreme Gradient
Boosting (XGBoost) has high-dimensional data processing and feature selection capabilities
to make full use of the rich information of CSCAT. In this paper, a rain identification model
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based on the Dung Beetle Optimizer algorithm [24] optimized for XGBoost (DBO-XGBoost)
is constructed. The model independently realizes rain identification and rain intensity
classification using only the own information of CSCAT, without relying on external wind
data or radiometer TB data. This approach enables more timely and efficient rejection of rain
data, thereby enhancing the product quality of CSCAT. This paper is organized as follows:
Section 2 describes the collocated dataset and the methods of constructing the model.
Section 3 analyzes the rain identification and rain intensity classification performance of
the model. Section 4 discusses the effect of the model under different sea conditions and
the influence of different input information on rain identification. The conclusions are
presented in Section 5.

2. Materials and Methods
2.1. Data

In this study, the CSCAT L2A and L2B data and the Global Precipitation Measurement
(GPM) Dual-frequency Precipitation Radar (DPR) Ku-band rain data are used to collocate
a dataset for rain identification and rain intensity classification. All data are described in
detail below.

2.1.1. CSCAT Data

CSCAT is operating at Ku-band (13.256 GHz) and employing medium incidence
angles ranging from 28◦ to 51◦. It is the first rotating range-gated fan beam scatterometer,
using a rotating 1.2 m slotted-waveguide antenna featuring two fan beams positioned
at a 180-degree separation angle, effectively sweeping the surface in a conical manner.
One beam is horizontally polarized (H-pol), while the other is vertically polarized (V-pol).
Consequently, it can provide measured NRCS at both HH and VV polarizations. Its ground
swath width is over 1000 km, so it can achieve global coverage of wind measurements in
about 3 days. The two conically scanning fan beams of CSCAT can respectively acquire
2–8 effective observations for a WVC, contingent upon its cross-track position, surpassing
the capabilities of fixed fan-beam and pencil-beam scatterometers significantly. Both CSCAT
L2A and L2B provide two resolution products, 12.5 × 12.5 km and 25 × 25 km. This paper
utilizes the 12.5 × 12.5 km L2A and L2B products, obtained freely from the China Ocean
Satellite Data Service Center (COSDSC) (https://osdds.nsoas.org.cn/, Accessed on 20
October 2022), which provides HH- and VV-polarized NRCS measurements from multi-
directional observations for the period spanning 1 June 2020 and 30 June 2020. Based on
the data quality flags provided by the product, WVCs containing sea ice, land, and those
with negative SNR due to significant noise contamination were rejected. It is worth noting
that we need to develop a new method to identify rain so the rain-contaminated data can
be retained. The characteristic parameters used for rain identification and rain intensity
classification include NRCS, azimuth angle, incidence angle, time, longitude, and latitude
provided by CSCAT L2A, as well as the retrieved wind speed and wind direction using
GMF without taking rain into account provided by CSCAT L2B.

2.1.2. The ECMWF ERA5 Data

ERA5 is the fifth-generation atmospheric reanalysis conducted by the European Centre
for Medium-Range Weather Forecasts (ECMWF) to comprehensively analyze global climate
and weather patterns. By employing advanced modeling techniques and incorporating the
latest data assimilation system, it effectively integrates a wide range of observations into
model estimates. The ERA5 hourly dataset encompasses single-level data from 1 January
1950 to near real-time, providing estimations for various atmospheric, ocean-wave, and
land-surface variables. It includes the 10 m U-component of neutral wind (U10) and the
10 m V-component of neutral wind (V10), from which the 10 m wind speed (SPD10) and
wind direction (WD) can be obtained. The gridding process ensures that the wind data is
presented on a regular latitude-longitude grid with a resolution of 0.25 degrees. The data
are freely available at the Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/

https://osdds.nsoas.org.cn/
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
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search?type=dataset, Accessed on 11 March 2023). In this paper, the ERA5 global reanalysis
containing U10 and V10 is used as a reference to assess the quality of CSCAT L2B wind
products. The ERA5 data is interpolated to a resolution of 12.5 × 12.5 km, which aligns
with the spatial resolution of CSCAT data.

2.1.3. The Ku-Band GPM-DPR Data

The GPM satellite, launched on 27 February 2014 by the National Aeronautics and
Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA),
is equipped with two advanced instruments, including the Dual-frequency Precipitation
Radar (DPR) and the GPM Microwave Imager (GMI). The project, which bears resemblance
to the Tropical Rain Measuring Mission (TRMM), has been significantly expanded to en-
compass not only the tropical zone but also mid- to high-latitude areas. It operates on a
65◦ inclined, non-sun-synchronous orbit at an altitude of approximately 407 km, with the
primary objective of accurately and precisely quantifying global precipitation. The DPR
consists of two precipitation radars, the KuPR on the Ku-band (13.6 GHz) and the KaPR on
the Ka-band (35.5 GHz). It provides three different rain rate estimation products based on
Ku-band observations, Ka-band observations, and simultaneous use of Ku and Ka-band
observations. Toyoshima et al. [25] compared the Ka-band and Ku-band precipitation detec-
tion capabilities and found that KaPR has no obvious advantage in rain detectability because
the non-Rayleigh scattering effect of KaPR may have partly offset the sensitivity advantage
of KaPR relative to KuPR. Lasser et al. [26] evaluated the GPM DPR precipitation estimation
based on 15 rain events observed on WegenerNet in 4 years. The results showed that the
probability of detection is greater than 0.70 for Ku and DPR but only about 0.50 for Ka. The
above experimental findings demonstrate that the ability of KuPR to detect precipitation is
superior to that of KaPR. Considering that CSCAT operates in the Ku band, the KuPR data is
used to provide the rain information, which is obtained freely from the Globe Portal System
(G-Portal) 2AKu standard product (ver. 7) operated by the Japanese Aerospace Exploration
Agency (JAXA), including precipitation, latitude, longitude, and time. We get the data from
the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
(https://disc.gsfc.nasa.gov/, Accessed on 4 May 2023).

2.1.4. Collocated Dataset

The spatio-temporal collocation of data is a crucial step in establishing the target
dataset. Our purpose is to achieve CSCAT and KuPR spatio-temporally collocating to
obtain the CSCAT-KuPR dataset containing CSCAT measured information and KuPR rain
information. Due to the difference in geographical location and observed time between
the two satellites, as well as the temporal and spatial variability of rain, it is imperative
to impose reasonable constraints on the spatiotemporal collocation threshold to ensure
the validity of the data. The CSCAT measurements are collocated with the ERA5 wind
data, ensuring a temporal separation of less than 30 min and a spatial separation of less
than 12.5 km. When a CSCAT WVC collocates multiple ERA5 points, the wind data of the
ERA5 closest to the CSCAT is selected. The CSCAT-ERA5 collocating data are collocated
with the GPM data with temporal and spatial intervals less than 30 min and 6.25 km,
respectively. Due to the different resolutions of CSCAT and KuPR, a CSCAT WVC may
collocate multiple KuPR rain data sets. We take the average of multiple KuPRs as the rain
observed by CSCAT. The formula is as follows:

RCSCAT =
∑M

i=1 R′
i(KuPR)

M
(1)

where M is the number of KuPRs collocated by a CSCAT WVC.
Figure 1 shows the geographical distribution of the CSCAT-ERA5-KuPR dataset during

the period from 1 June 2020 to 30 June 2020, and it can be seen that the data are distributed
in the global seas. Due to the short revisit period of the satellite, some data overlap in
spatial position.

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://disc.gsfc.nasa.gov/


Remote Sens. 2024, 16, 887 5 of 22

Remote Sens. 2024, 16, 887 5 of 22 
 

 

where M is the number of KuPRs collocated by a CSCAT WVC. 
Figure 1 shows the geographical distribution of the CSCAT-ERA5-KuPR dataset dur-

ing the period from 1 June 2020 to 30 June 2020, and it can be seen that the data are dis-
tributed in the global seas. Due to the short revisit period of the satellite, some data over-
lap in spatial position. 

 
Figure 1. Global geographic distribution of the CSCAT-ERA5-KuPR collocating dataset during the 
period from 1 June 2020 to 30 June 2020. The colors represent the number of data points matched at 
the same location within a 1° × 1° bin. 

Due to the varying number of effective observations of CSCAT in different WVCs, it 
is necessary to select and utilize data with consistent observation counts. There are two 
groups accounting for 100%, six groups accounting for 99.89%, and ten groups accounting 
for 54.24% of effective WVC data in our dataset. In order to achieve an adequate number 
of WVC, some of the observed information will inevitably be sacrificed. Conversely, in 
order to maximize the retention of effective and comprehensively measured information, 
some of the available WVC will be forfeited. This procedure yields approximately 458,000 
data points, of which about 76,400 are contaminated by rain (rain rate > 0.004 mm/h). This 
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The probability density function (PDF) of retrieval wind speed provided by CSCAT L2B 
and the data volume of the CSCAT-KuPR dataset are shown in Figure 2. The average wind 
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Figure 1. Global geographic distribution of the CSCAT-ERA5-KuPR collocating dataset during the
period from 1 June 2020 to 30 June 2020. The colors represent the number of data points matched at
the same location within a 1◦ × 1◦ bin.

Due to the varying number of effective observations of CSCAT in different WVCs, it
is necessary to select and utilize data with consistent observation counts. There are two
groups accounting for 100%, six groups accounting for 99.89%, and ten groups accounting
for 54.24% of effective WVC data in our dataset. In order to achieve an adequate number of
WVC, some of the observed information will inevitably be sacrificed. Conversely, in order
to maximize the retention of effective and comprehensively measured information, some
of the available WVC will be forfeited. This procedure yields approximately 458,000 data
points, of which about 76,400 are contaminated by rain (rain rate > 0.004 mm/h). This
dataset is randomly divided into two subsections: 80% for training and 20% for testing. The
probability density function (PDF) of retrieval wind speed provided by CSCAT L2B and the
data volume of the CSCAT-KuPR dataset are shown in Figure 2. The average wind speed
of the PDF is observed to be lower under rain-free conditions, while it is higher during
rain events, indicating an overall increase in retrieved wind speed during rain compared
to rain-free periods. This characteristic holds significant importance in identifying rain,
indicating the necessity of using L2B retrieval wind data.
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data, respectively. Orange is the cumulative amount of data that increases with wind speed.



Remote Sens. 2024, 16, 887 6 of 22

2.2. Model

A novel rain flag based on the DBO-XGBoost is proposed. XGBoost is a machine
learning model used for rain identification and classification of rain intensity. DBO is
used to optimize the internal parameters of the XGB model. The model is introduced and
constructed as described below.

2.2.1. XGBoost Model

XGBoost is an efficient machine learning technique, particularly well-suited for han-
dling large-scale datasets and high-dimensional features [27,28]. It is an optimized version
of the Gradient Boosting Tree, which combines multiple weak classifiers to build a power-
ful ensemble model. XGBoost reduces overfitting problems with regularization boosting
technology and becomes an excellent model in machine learning to solve regression and
classification problems.

The expression for XGBoost is as follows:

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (2)

where i is the ith sample, k is the kth tree, and ŷ(t)i is the predicted value of the ith sample xi
in the tth tree. The objective function expression is as follows:

L(t) =
n

∑
i=1

(
yi − ŷ(t)i

)2
+

t

∑
k=1

Ω( fi) (3)

where the complexity of the tree Ω is composed of the number of leaf nodes and the l2 norm
of the weight vector of leaf nodes. The second-order Taylor expansion and regularization
term expansion of the objective function are carried out to obtain the weight of each leaf
node and the optimal objective function.

As an improvement of the decision tree model, XGBoost has some adjustable param-
eters that can affect the performance, complexity, and training speed of the model. The
parameters include: (1) Number of estimators: the number of decisions specified during
model training; (2) max_depth: the maximum number of levels that the decision tree may
reach in the training process; (3) learning_rate: a large learning rate gives greater weight
to the contribution of each tree in the set, which can speed up the training time but may
lead to overfitting. In different application scenarios, the performance and generalization
ability of the model can be optimized by changing these parameters. Manual parameter
adjustment or the grid search method will consume a lot of time. Therefore, it is necessary
to find a method to determine the optimal combination of parameters.

2.2.2. Dung Beetle Optimizer Algorithm

DBO, proposed by Xue and Shen, is a novel swarm intelligence optimization algo-
rithm [24]. It updates the position and optimizes the parameters by simulating the ball-
rolling, dancing, foraging, stealing, and reproduction behaviors of dung beetles. Among the
four individual behaviors, only the rolling ball behavior exhibits superior global search ca-
pability throughout each iteration of the algorithm. The foraging behavior conducts a search
in proximity to its own position based on dynamically adjusting upper and lower bounds,
which gradually decrease over iterations, leading the foraging behavior to transition from
global exploration to local exploitation. Reproductive behavior and stealing behavior are
local searches based on the dynamic upper and lower bounds near the best individual.

The four behaviors are executed by distinct subsets of dung beetle populations. There
is no fixed proportion of the number of dung beetles in each behavior. In this paper, we set
the size of the dung beetle population to 30, in which the number of rolling balls, breeding,
foraging, and stealing dung beetles is 6, 7, 7, and 10, respectively. It is imperative to ensure
that each individual dung beetle within the population exhibits a specialized division of
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labor and engages exclusively in one specific behavioral role. The diversified location
update strategy of the DBO algorithm enables a more comprehensive exploration of the
search space, thereby effectively addressing complex search and optimization problems
encountered in practical applications.

2.2.3. XGBoost Parameter Optimization Based on DBO

This paper proposes a method using DBO to optimize XGBoost parameters, thereby
improving model performance. The fitness of the DBO population serves as an index that
represents the optimal performance of XGBoost. In order to optimize the parameters in
XGBoost, it is necessary to define a value range that will serve as the upper and lower
bounds for dung beetle activity. The population fitness of DBO is considered the objective
function, and the calculated minimum fitness represents the optimal solution. In other
words, within the given range, DBO iteratively searches for the optimal fitness of the
population by adjusting parameters.

DBO-XGBoost is used to classify the data as rain-contaminated or rain-free for the
CSCAT-KuPR dataset. The model is trained using a set of physical parameters derived from
CSCAT data, including NRCS, azimuth angle, incidence angle, time, longitude, latitude,
wind speed, and wind direction as input. The GPM rain data is used as the target variable.
Rain-contaminated data is labeled as 1, while rain-free data is labeled as 0. Additionally,
the model is also used for rain intensity classification into four levels, with labels ranging
from 0 to 3.

The evaluation metrics of the DBO-XGBoost include accuracy, receiver operating
characteristic (ROC), precision, recall, etc. ROC is more effective in evaluating the model’s
performance when the proportion of rain-contaminated data is significantly smaller com-
pared to rain-free data. It is defined as the distribution curve of the true-positive rate (TPR)
and false-positive rate (FPR) of the classification model.{

TPR = TP
TP+FN

FPR = FP
FP+TN

(4)

where TP is a positive sample predicted by the model as a positive class, TN is a negative
sample predicted by the model as a negative class, FP is a negative sample predicted by the
model as a positive class, and FN is a positive sample predicted by the model as a negative
class. The model’s performance is considered better when the ROC curve approaches the
(0.0, 1.0) point earlier and completely encompasses the other ROC curve at the lower right.
When the two curves intersect, it is difficult to visually discern the superior performance
between the models. In such cases, it is imperative to compute thea under the curve
(AUC) at the lower right section of both ROC curves. A larger AUC value indicates a
more favorable model performance. Ultimately, our objective is to achieve an optimal AUC
for the ROC. However, the optimal fitness of the population is the minimum value of the
objective function, so the objective function is set to the following:

Fitness = −AUC (5)

The process of optimizing XGBoost parameters based on DBO is shown in Figure 3.
The training set is inputted into XGBoost, followed by substituting the objective function
of XGBoost and the parameters to be optimized into the DBO algorithm with a specified
number of iterations. Each dung beetle in the population completes the task of optimizing
the target parameters and subsequently calculates and updates the optimal fitness of the
population. Consequently, the optimal parameters and the global optimal solution of the
objective function are obtained. Constructing a novel DBO-XGBoost model by optimizing
the parameters of XGBoost and evaluating its performance using a testing set.
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The parameter value range and the optimal parameters of the XGBoost model obtained
by DBO optimization are shown in Table 1. The range of parameters has been preliminarily
tested. For the number of estimators, the performance of the XGBoost is obviously bad
when the value is less than 100, while the performance changes little when the number
is more than 300. Moreover, excessively increasing this value will result in prolonged
model training duration, thereby significantly reducing the model’s efficiency. The result
of the optimization is 300. For max_depth, if this parameter is set too low, it may lead
to underfitting of the model, resulting in suboptimal performance. Conversely, setting a
higher value increases the complexity of the tree structure and can result in overfitting. The
range considered for exploration was from 10 to 60. The result of the optimization is 23.
The learning_rate controls the step size of each iteration when the weights are updated.
The small learning rate suppresses the contribution of each tree and can obtain a more
accurate model, but it also slows down the learning speed. The selected search range is
0.05 to 0.3. The result of the optimization is 0.06.

Table 1. Optimal parameter for XGBoost by DBO.

Parameters Range Optimal Value

Number of estimators [100, 500] 300
Max_depth [10, 60] 23

Learning_rate [0.05, 0.3] 0.06

Figure 4 shows the convergence curve of the DBO algorithm to the AUC. It has a strong
exploration ability in the early stage of the iteration and can fully search for a promising
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spatial range and gradually converge in the later stage of the iteration, so as to ensure that
the searched optimal solution is global optimal rather than local optimal.
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3. Results
3.1. Evaluation of the DBO-XGBoost Model in Rain Identification

In this study, we assessed the performance of DBO-XGBoost and conducted a compar-
ative analysis with K-Nearest Neighborhood (KNN), XGBoost, and CSCAT L2B products
in terms of their effectiveness in rain flagging. The XGBoost is the model using the default
internal parameters, with the number of estimators set to 100, max_depth set to 6, and
learning_rate set to 0.3. KNN is a classical classification algorithm [29]. KNN is a classical
classification algorithm, where the underlying principle is that if a majority of the K sam-
ples in the feature space surrounding the target point belong to a specific category, then
it can be inferred that the sample also belongs to this category. The value of K serves as
a hyperparameter in the KNN algorithm, determining the number of nearest neighbors
considered for accurate classification. A smaller value of K increases model complexity,
resulting in reduced training error but weakened generalization ability. Conversely, a larger
value of K reduces model complexity, leading to increased training error but improved
generalization ability. Therefore, selecting an appropriate value for K plays a pivotal role in
the model. The KNN model has been demonstrated to exhibit favorable performance in
the rain identification of HY-2A [21]. The performance of KNN with K = 3 (KNN3) and
KNN with K = 5 (KNN5) is compared to that of DBO-XGBoost models. The input features
and targets of all comparative models are consistent with DBO-XGBoost.

In order to evaluate the performance of the model more comprehensively, the classi-
fication evaluation metric is used to systematically score the model. The selected model
evaluation indicators are as follows: (1) Accuracy: the proportion of correctly classified data
in the total dataset; (2) Precision: the proportion of accurately predicted rain-contaminated
data among all predicted rain-contaminated data; (3) False alarm rate (FAR): the pro-
portion of data predicted as rain-contaminated but actually rain-free that accounted for
the entirety of the rain-free dataset; (4) Missing report rate (MRR): rain data is predicted
as the proportion of no rain to all rain data; (5) Rejection rate: the proportion of rain-
contaminated data identified by the model to the total data; (6) Actual rain: the proportion
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of actual rain-contaminated data in the total data. The formulas for the evaluation metric
are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

FAR =
FP

FP + TN
(8)

MRR =
FN

TP + FN
(9)

where TP is a positive sample predicted by the model as a positive class; TN is a negative
sample predicted by the model as a negative class; FP is a negative sample predicted by
the model as a positive class; and FN is a positive sample predicted by the model as a
negative class.

Accuracy is the most commonly used evaluation metric. However, given the infre-
quent occurrence of rain events, even if a substantial amount of rain-contaminated data
is misclassified as rain-free data, accurate partitioning of the proportion of rain-free data
will still yield a model with high accuracy. Nevertheless, our primary objective remains to
maximize the identification of rain-contaminated data. Therefore, a superior rain identifi-
cation model should have the ability to classify rain and no rain with high precision, low
FAR, and low MRR. In practical applications, these requirements are often not fully real-
ized. Increasing the precision of reporting each rain event may lead to a higher likelihood
of MRR, whereas aiming for comprehensive reporting may result in increased FAR and
reduced precision.

Table 2 shows the evaluation of DBO-XGBoost, XGBoost, KNN5, KNN3 models,
and the CSCAT rain flag. Among all the models, DBO-XGBoost exhibits the highest
accuracy and precision. Compared with KNN5 and KNN3, XGBoost reduces the FAR
while obviously increasing the MRR. Although the precision of rain identification has
improved, the accuracy of the model has been reduced, and the overall performance
has deteriorated. DBO-XGBoost found a balance between the FAR and the MRR of rain
identification. Compared with XGBoost, the DBO-XGBoost model exhibits a slight increase
in the FAR while significantly reducing the MRR, thereby enhancing its overall performance.
Compared with KNN3 and KNN5, the DBO-XGBoost model has a lower FAR. The ROC
curve and AUC of DBO-XGBoost, XGBoost, KNN5, KNN3, and CSCAT rain flags are
shown in Figure 5. All machine learning models performed better than the CSCAT rain
flag. Among all the curves, the ROC curve of the DBO-XGBoost classifier is the closest to
the coordinate point (0.0, 1.0), and the area under the curve is the largest. The AUC of the
DBO-XGBoost model is 3.93% higher than XGBoost, 3.08% higher than KNN5, 4.84% higher
than KNN3, and 35.63% higher than the CSCAT rain flag. This shows that the performance
of the DBO-XGBoost is better compared to the XGBoost, KNN5, KNN3, and CSCAT rain
flags. Overall, DBO-XGBoost has the best comprehensive performance and excellent rain
identification ability.

Table 2. Evaluation of DBO-XGBoost, XGBoost, KNN5, KNN3 models, and CSCAT rain flag.

Model Accuracy Precision FAR MRR Reject Rate Actual Rain

DBO-XGBoost 91.03% 80.65% 2.92% 39.20% 12.57%

16.68%
XGBoost 88.89% 79.76% 2.21% 55.25% 9.36%
KNN5 90.14% 72.68% 4.93% 34.54% 15.02%
KNN3 90.21% 71.86% 5.33% 32.05% 15.77%

CSCAT Rain Flag 86.72% 28.73% 6.53% 75.71% 8.26%
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Figure 6 shows the retrieved wind speed scatter point density of rain-free data and
rain-contaminated data flagged by DBO-XGBoost, XGBoost, KNN5, KNN3, and the CSCAT
rain flag, which indirectly reflects the accuracy of the model in identifying rain. The root
mean square error (RMSE) between CSCAT L2B wind speed and ERA5 wind speed without
rain-contaminated data is calculated, as is the RMSE between CSCAT L2B wind speed
and ERA5 wind speed flagged as rain-contaminated data by the models. The rain-free
data (Figure 6a–f) and rain-contaminated data (Figure 6g–l) were flagged in the following
four machine learning models: the CSCAT rain flag and the GPM KuPR collocation. The
corr of all data, including rain-free data and rain-contaminated data, is 0.90752; the bias is
0.13155 m/s; and the RMSE is 1.5793 m/s. Due to the limited panel, this data is not shown
in the figure. It can be seen that the RMSE of the wind field is reduced by all methods, and
the effect of the machine learning model is better than that of the CSCAT rain flag. The
effect of DBO-XGBoost is significantly improved compared to XGBoost and is comparable
to the results of KNN5 and KNN3. The RMSE of the retrieved wind speed for data flagged
as rain-contaminated is considerably high, surpassing 2 m/s in all cases. This indicates that
filtered rain data significantly contributes to deviations in the retrieved wind speed. From
the overall trend, the data affected by rain is overestimated in the low wind speed region
and underestimated in the high wind speed region when the wind speed is retrieved.

3.2. Evaluation of the DBO-XGBoost Model in Rain Intensity Classification

In the experiment on rain identification, DBO-XGBoost, KNN5, and KNN3 all had
good performance. In contrast, the XGBoost model performs worse but is still better than
the CSCAT rain flag. The multi-classification ability of the machine learning model can
further classify the rain intensity of the rain-contaminated data, which is an ability that the
CSCAT rain flag does not have. Such classification can augment our capability to evaluate
the degree of rain contamination in CSCAT data and facilitate subsequent product process-
ing. According to the standard of the China Meteorological Administration, we classify
rain intensity into four levels: Light rain ranges from 0.004 to 0.41 mm/h, heavy rain ranges
from 0.41 to 2.08 mm/h, torrential rain ranges from 2.08 to 4.16 mm/h, and the rain rate of
heavy downpour is above 4.16 mm/h. The experimental procedure for this subsection is as
follows: Firstly, the training set used for constructing the rain identification model is also
utilized in building the rain intensity classification model with the same hyperparameter.
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Then, the real labeled rain-contaminated data derived from GPM collocation is used to train
the model to ensure that it is realistic. However, as the rain intensity classification model
was developed after the rain identification experiment, its objective is to further categorize
the identified rain into distinct intensities. Therefore, during the model testing phase, we
specifically selected the dataset that was previously identified as rain contamination to
evaluate the performance of the rain intensity classification model. Figure 7 shows the
process of rain intensity classification.
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and KNN3.

The evaluation of the DBO-XGBoost, XGBoost, KNN5, and KNN3 in the rain intensity
classification is shown in Table 3. The rain intensity classification problem is addressed in
the presence of rain, thereby obviating the need to consider FAR and MRR. Furthermore,
accuracy is defined as the proportion of accurately predicted rain-contaminated data
among all actual rain-level data. The evaluation metrics include accuracy, precision, and
the comparison between rejection rate and proportion of actual rain.

The accuracy and precision of the XGBoost, KNN5, and KNN3 rain intensity clas-
sifications are only a few, reaching more than 80%. The performance of these models in
accurately categorizing rain intensity is suboptimal, with more than half of the classifi-
cation accuracy and rate falling below 70%. Rain intensity classification requires high
classification ability of the model because there exists a certain correlation between the
accuracy of classification across each level. For instance, the classification accuracy of
KNN5 for rain is merely 32.01%, indicating that approximately 70% of rain instances are
misclassified into other three levels instead of being correctly classified, thereby resulting
in a low precision for those levels. The KNN5 model has demonstrated commendable
performance in rain identification. However, it falls short of meeting the requirements for
rain intensity classification. Obviously, the DBO-XGBoost model performs best among the
four machine learning models, and its accuracy and precision for light rain, torrential rain,
and heavy downpour levels have reached more than 80%, or even more than 90%. For the
four machine learning models, the classification precision of heavy rain levels is lower than
that of other levels. The precision of KNN3 is only 19.72%, but DBO-XGBoost in this term
can still be close to 80%, which proves that DBO-XGBoost has an excellent classification
ability across all rain intensities.
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Table 3. The evaluation of the DBO-XGBoost, XGBoost, KNN5, and KNN3 in rain intensity classification.

Model Rain Intensity Accuracy Precision Reject Rate Actual Rain

DBO-XGBoost

Light rain 89.08% 93.88% 52.30% 55.11%
Heavy rain 90.28% 79.92% 35.35% 31.29%

Torrential rain 82.88% 93.36% 6.79% 7.65%
Heavy downpour 88.63% 94.70% 5.57% 5.95%

XGBoost

Light rain 78.34% 79.57% 53.03% 55.11%
Heavy rain 69.04% 57.08% 37.04% 31.29%

Torrential rain 35.54% 74.78% 4.02% 7.65%
Heavy downpour 62.38% 74.41% 5.92% 5.95

KNN5

Light rain 78.71% 81.95% 58.86% 55.11%
Heavy rain 65.14% 53.09% 33.51% 31.29%

Torrential rain 32.01% 54.55% 3.75% 7.65%
Heavy downpour 52.03% 67.23% 3.87% 5.95%

KNN3

Light rain 81.74% 97.46% 77.67% 55.11%
Heavy rain 70.40% 19.72% 20.10% 31.29%

Torrential rain 40.00% 39.29% 1.14% 7.65%
Heavy downpour 53.12% 31.48% 1.10% 5.95%

During the process of rain identification, some rain-free data are mistakenly classified
as rain-contaminated, which is expected to be classified as light rain rather than higher
rain levels in the experiment of rain-level classification. This approach aims to minimize
misclassification errors. In the results of the DBO-XGBoost model, the proportion of
rain-free data being classified in the light rain category is 78%, and the proportion of
no rain data being classified in the moderate rain category is 20.39%. Additionally, a
mere 0.36% and 0.27% of no rain data are respectively misclassified as stormy rain and
heavy stormy rain. This shows that DBO-XGBoost not only exhibits high accuracy in
classifying rain intensity but also effectively reduces the misclassification observed in
previous classification methods.

Figures 8–11 show the retrieved wind speed scatter point density of different rain
intensities classified by DBO-XGBoost, XGBoost, KNN5, and KNN3, respectively, which
indirectly reflects the performance of the model in identifying rain. It can be seen that
higher rain intensity is associated with worse wind quality. Comparing the wind speed
RMSE of DBO-XGBoost and XGBoost in light rain, it is found that the XGBoost model
exhibits a larger RMSE in comparison to the DBO-XGBoost model when discerning the
impact of light rain on wind speed. This discrepancy arises due to the enhanced capability
of DBO-XGBoost in identifying a greater volume of light rain data. To be specific, due to the
low accuracy and precision of light rain detected by XGBoost, a portion of higher-intensity
rain is classified into the category of light rain, leading to an increased RMSE. Therefore, the
effect of the wind speed on the same rain intensity between models is not suitable for direct
comparison, necessitating a comprehensive analysis in conjunction with the evaluation
metrics of the models.
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4. Discussion

The DBO-XGBoost model is constructed to realize rain identification and rain intensity
classification in Section 3. However, the application ability of DBO-XGBoost is not clear
under different background conditions. In this section, we use the data obtained under
different background conditions to test the ability of DBO-XGBoost and determine its
applicability and conditions of use.
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4.1. Analysis of Model Performance under Two Different Sea Conditions

Currently, research findings indicate that variations in background wind speeds can
influence the effect of rain on NRCS [9,30]. The impact of rain on NRCS is more pronounced
at lower wind speeds but diminishes as wind speed increases. When the wind speed
reaches approximately 10–15 m/s, the rain-induced effect on VV polarized NRCS becomes
practically imperceptible, and the effect on HH-polarized NRCS is significantly mitigated
compared to low wind speeds. When the wind speed reaches approximately 15–20 m/s,
the rain-induced effect on HH-polarized NRCS disappears. As an important feature of rain
identification, if the NRCS variation between rain and no-rain conditions is minimal, it will
pose challenges in accurately identifying rain. Therefore, we suspect that the accuracy of rain
identification will be reduced when the background wind speed is high. On the contrary, it
will be more conducive to rain identification when the background wind speed is low.

The data selected for this study includes regions in the North India (55–95◦E, 0–30◦S)
and the Northwest Pacific (20−40◦N, 140−180◦E), as there are significant differences in
the WVC collocated ERA5 wind speeds between these two regions. Rain rates and wind
speeds in the North India and Northwest Pacific are shown in Figure 12. The wind speed in
the North India is comparatively higher, ranging between 10–15 m/s, whereas that of the
Northwest Pacific exhibits a relatively lower range at 3–8 m/s. To facilitate a comparative
analysis of the DBO-XGBoost performance in these two regions, we developed separate
models exclusively for the North India and the Northwest Pacific using training data based
on each region, which are more targeted than models built using global data.
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The evaluation of the DBO-XGBoost model, CSCAT rain flag, and local models in
the North India and Northwest Pacific is shown in Table 4. The application of the DBO-
XGBoost model in the Northwest Pacific outperforms its performance in the North India,
which may be attributed to the more pronounced effect of rain on NRCS at lower wind
speeds. Under different polarization and incidence angle conditions, the increased effect
of rain on NRCS disappears in the wind speed range of 10–20 m/s. Therefore, it is more
conducive to the identification of rain under a lower background wind speed [9]. The
ROC curve and AUC of the DBO-XGBoost, local model, and CSCAT rain flag in North
India and the Northwest Pacific are shown in Figure 13. The application effectiveness
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of the constructed rain identification model surpasses that of the CSCAT rain flag across
diverse sea conditions in both regions. In general, the global rain identification model has
better generalization, and it is better than that of local rain identification models in terms
of performance.

Table 4. The evaluation of the DBO-XGBoost model, CSCAT rain flag, and local models in the North
Indian and Northwest Pacific.

Region Model Accuracy Precision FAR MRR Reject Rate Actual Rain

North Indian
DBO-XGBoost 88.77% 77.22% 2.48% 56.51% 9.12%

16.20%CSCAT rain flag 85.33% 63.74% 2.40% 78.16% 5.55%
Local model 85.90% 85.90% 4.13% 60.55% 10.37

Northwest
Pacific

DBO-XGBoost 95.15% 82.83% 0.85% 51.67% 4.57%
7.86%CSCAT rain flag 81.42% 17.05% 14.64% 64.71% 16.27%

Local model 93.30% 66.67% 1.76% 61.17% 4.85%
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The evaluation of DBO-XGBoost in rain intensity classification in the North India and
Northwest Pacific is shown in Table 5. Due to the use of rain-contaminated data identified
by the DBO-XGBoost in the rain identification experiment (simulated rain-contaminated
data) for classifying rain intensity, instead of actual rain data, the existence of FAR and
MRR led to changes in the proportion of data under different rain levels. The proportion
of simulated rain data for the four levels in the North India is 92.17%, 6.05%, 1.42%, and
0.36%, respectively, and for the Northwest Pacific, it is 92.93%, 4.04%, 2.02%, and 1.01%,
respectively. The classification of rain intensity in the two regions shows that the accuracy
and precision for both torrential rain and heavy downpours are perfect, with a remarkable
rate of 100%. However, a misclassification occurs between light rain and heavy rain,
with some instances of light rain being erroneously categorized as heavy rain and some
instances of heavy rain being erroneously categorized as light rain in the North India. The
rain intensity classification in the Northwest Pacific indicates that, except for a light rain
accuracy rate of 83.70% and a heavy rain precision rate of 21.05%, all other accuracy and
precision achieved 100%. This suggests that the model misclassifies a part of light rain into
heavy rain, and the number of light rains accounts for 92.93% of the total rain-contaminated
data, leading to the low precision of heavy rain. Overall, there is a common problem in
the application of the DBO-XGBoost model in these two regions, wherein there exists a



Remote Sens. 2024, 16, 887 19 of 22

certain misjudgment in distinguishing between light rain and heavy rain. Despite the
limited occurrence of torrential rain and heavy downpours, they are still accurately and
comprehensively identified.

Table 5. Evaluation of the DBO-XGBoost model in the North India and Northwest Pacific.

Region Rain Level Accuracy Precision Reject Rate Actual Rain

North Indian

Light rain 89.58% 98.31% 83.99% 93.15%
Heavy rain 76.47% 32.50% 14.23% 5.00%

Torrential rain 100% 100% 1.42% 1.17%
Heavy downpour 100% 100% 0.36% 0.68%

Northwest Pacific

Light rain 83.70% 100% 77.78% 95.93%
Heavy rain 100% 21.05% 19.19% 2.45%

Torrential rain 100% 100% 2.02% 0.74%
Heavy downpour 100% 100% 1.01% 0.88%

4.2. Analysis of Model Performance by Using an Orbit of CSCAT Data

The occurrence of rain exhibits both temporal and spatial correlation, resulting in
the observation of rain by a WVC of CSCAT being indicative of the presence of rain in
the surrounding WVCs [31,32]. This phenomenon is inherent in physics, but it also has
a certain randomness. Therefore, we chose an orbit of CSCAT data that has continuous
space-time to test the performance of DBO-XGBoost.

The performance of the model constructed in this study is evaluated using an orbit
of CSCAT data, identified as CFO_EXPR_SCA_C_L2A_OR_20200601T071229_08806. The
wind speeds and rain rates of CSCAT and GPM detection tracks and collocating regions
are shown in Figure 14. The red dotted box area is the area where the CSCAT data can
collocate the KuPR. The upper and lower figures on the right are the CSCAT wind speed
diagram and the KuPR rain diagram of the matching area, respectively. The white area is
no data or invalid data, and the gray area is land.
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The evaluation of DBO-XGBoost and CSCAT rain flags in rain identification using an
orbit of CSCAT data is shown in Table 6. The rain identification effect of an orbit of CSCAT
data is better than that of the local area in the previous section and has obvious advantages
over the CSCAT rain indicator. Although the wind speed ranges from 10–15 m/s, the
ability of the model to identify rain is still outstanding, possibly attributed to the analogous
spatiotemporal characteristics of the environment, facilitating accurate identification of
nearby precipitation events. The results show that the time-space continuous data meets
the timeliness and spatial correlation of rain, thereby improving the ability of the DBO-
XGBoost model to identify rain. The evaluation of DBO-XGBoost and CSCAT rain flags in
rain intensity classification using an orbit of CSCAT data is shown in Table 7. The model
has a good effect on the division of light rain and heavy downpour; the precision is more
than 95%, and the accuracy is more than 85%. However, the classification effect of heavy
rain and torrential rain did not reach the average level of the model, indicating a need for
further research in the classification of heavy rain and torrential rain.

Table 6. Evaluation of DBO-XGBoost and CSCAT rain flags in rain identification using
CFO_EXPR_20200601T071229_08806.

Model Accuracy Precision FAR MRR Reject Rate Actual Rain

DBO-XGBoost 94.39% 84.49% 3.06% 18.12% 16.40%
16.92%CSCAT rain flag 59.62% 14.45% 36.07% 65.06% 35.90%

Table 7. Evaluation of the DBO-XGBoost in rain intensity classification using
CFO_EXPR_20200601T071229_08806.

Model Rain Intensity Accuracy Precision Reject Rate Actual Rain

DBO-XGBoost

Light rain 91.04% 96.38% 84.06% 45.79%
Heavy rain 67.27% 39.78% 13.48% 37.36%

Torrential rain 64.29% 81.82% 1.59% 11.10%
Heavy downpour 85.71% 100% 0.87% 5.76%

5. Conclusions

The XGBoost optimized by the DBO algorithm is used to construct DBO-XGBoost to
realize rain identification and rain intensity classification, so as to realize quality control
of CSCAT wind products. A dataset generated by the collocation of CSCAT and GPM is
used for constructing DBO-XGBoost. We evaluated the performance of DBO-XGBoost and
conducted a comparative analysis with KNN, XGBoost, and CSCAT rain flag. In terms
of rain identification, the QCs of all machine learning models are better than those of the
CSCAT rain flag. DBO-XGBoost shows better performance than XGBoost and is comparable
to KNN5 and KNN3. In the experiment of classifying light rain, heavy rain, torrential rain,
and heavy downpour, the DBO-XGBoost demonstrates its excellent performance compared
with XGBoost, KNN3, and KNN5.

Furthermore, we evaluate the performance of DBO-XGBoost in rain identification and
rain intensity classification under two different sea conditions. The accuracy and precision
of DBO-XGBoost in rain identification at low wind speeds are higher than those at high
wind speeds, and the FAR and MRR are lower than those at high wind speeds. This is
probably due to the diminishing impact of rain on NRCS with increasing wind speed.
DBO-XGBoost misclassifies only a part of light rain at low wind speed while misclassifying
light rain and heavy rain at high wind speed, indicating that the classification of rain
intensity at low wind speed is more accurate. An orbit of CSCAT data is used to evaluate
the performance of DBO-XGBoost. The results show that continuous data in time and space
is more conducive to rain identification but did not significantly improve the classification
of rain intensity. Therefore, the classification of heavy rain and torrential rain still needs
further research.
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The DBO-XGBoost model developed for rain identification and rain intensity classifica-
tion has several advantages: (1) The rain-contaminated data can be directly flagged without
collocating with other external data, which improves the timeliness and utilization rate of
CSCAT data. (2) Compared with the CSCAT rain flag, the DBO-XGBoost model exhibits
superior rain identification ability and possesses the capacity to classify rain intensity to
evaluate the severity of rain events that the CSCAT rain flag lacks. (3) The machine learning
model can simplify the data processing flow, which is more efficient than the traditional
rain flag method. In the future, we will consider the correction of rain-contaminated data
and make full use of CSCAT-measured information to play to its advantages.
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