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Abstract: Mangroves grow in intertidal zones in tropical and subtropical regions, offering numerous
advantages to humans and ecosystems. Mangrove monitoring is one of the important tasks to
understand the current status of mangrove forests regarding their loss issues, including deforestation
and degradation. Currently, satellite imagery is widely employed to monitor mangrove ecosystems.
Sentinel-2 is an optical satellite imagery whose data are available for free, and which provides satellite
imagery at a 5-day temporal resolution. Analyzing satellite images before and after loss can enhance
our ability to detect mangrove loss. This paper introduces a LSST-Former model that considers the
situation before and after mangrove loss to categorize non-mangrove areas, intact mangroves, and
mangrove loss categories using Sentinel-2 images for a limited number of labels. The LSST-Former
model was developed by integrating a fully convolutional network (FCN) and a transformer base
with few-shot learning algorithms to extract information from spectral-spatial-temporal Sentinel-2
images. The attention mechanism in the transformer algorithm may effectively mitigate the issue
of limited labeled samples and enhance the accuracy of learning correlations between samples,
resulting in more successful classification. The experimental findings demonstrate that the LSST-
Former model achieves an overall accuracy of 99.59% and an Intersection-over-Union (IoU) score of
98.84% for detecting mangrove loss, and the validation of universal applicability achieves an overall
accuracy of more than 92% and a kappa accuracy of more than 89%. LSST-Former demonstrates
superior performance compared to state-of-the-art deep-learning models such as random forest,
Support Vector Machine, U-Net, LinkNet, Vision Transformer, SpectralFormer, MDPrePost-Net, and
SST-Former, as evidenced by the experimental results and accuracy metrics.

Keywords: mangrove loss detection; few-shot learning; transformer; FCN

1. Introduction

Mangrove forests are crucial in supporting biodiversity, protecting coastlines, and
mitigating climate change [1–4]. These unique ecosystems are home to a diverse variety
of flora and fauna, with many species exhibiting specialized adaptations to survive in the
challenging conditions of the intertidal zone [5]. Mangroves are vital habitats for many
marine organisms, fish, crabs, and other aquatic creatures [6]. In addition, the complex
root systems of mangroves play a crucial role in stabilizing coastal sediments, mitigating
the effects of erosion and storm surges [7]. Mangrove forests have a substantial capacity
for carbon sequestration, rendering them very helpful in reducing the effect of climate
change [8].
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Mangrove forests, although ecologically significant, face multiple threats from nat-
ural disasters and human activities. Extreme climate events [9], sea level rise [10], hur-
ricanes [11], earthquakes [12], tornados [13], and tsunamis [14] are some of the natural
disasters that have caused mangrove forest loss. Meanwhile, aquaculture, hydrological
pollution, agriculture, timber extraction, urban development, and port development are
some human-caused factors contributing to the loss of mangrove forests [15–17].

The accurate identification of mangroves is crucial for comprehending the current
state of their development and decline, and it is highly valuable for mapping the man-
grove ecosystem. Studies have shown that 35% of the world’s mangroves disappeared
between 1980 and 2000 [18], and an additional 2.1% perished between 2000 and 2016 [19].
Furthermore, the yearly rate of mangrove loss was estimated to be between 0.26% and
0.66% from 2000 to 2012 [20]. The primary obstacle in mangrove monitoring is addressing
the degraded state of mangrove forests and their extensive dispersion within a given area.

The biggest challenge for mangrove mapping and monitoring is related to the field
condition and the large area of mangrove ecosystems. The field condition of the mangrove
ecosystem is muddy [21] and is affected by tides [22] and dense forests [23], as well as
other conditions. These are the biggest challenges for direct mangrove surveys in large
areas [24]. In recent years, satellite imagery has become an important tool for monitoring
mangrove ecosystems worldwide. It offers continuous coverage over large areas, frequent
revisits, and valuable spectral information. For mangrove loss mapping, the temporal
resolution (frequent re-visits) of satellite imagery is the main advantage, because this can
provide a satellite image that shows the mangrove condition in the past. Satellite imagery
is helpful for various purposes related to mangroves, such as monitoring their habitats [25],
distinguishing different species within them [26], and detecting changes in these areas over
time [27]. The utilization of satellite imagery has facilitated the evaluation of the scope of
mangroves, the mapping of their distributions, the analysis of factors causing changes, the
identification of deterioration, and the provision of information for management methods.

In recent years, numerous researchers have utilized various methods to gain insights
into the status of mangrove ecosystems. Chen et al. [22] used the Red-Edge Mangrove
Index (REMI) with Sentinel-2 imagery for mapping mangroves on Hainan Island, China. To
map and estimate mangrove areas in Qi’ao Island, China, Zhu et al. [23] used digital surface
models and WorldView-2 Images. Hu et al. [28] mapped global mangrove AGB using multi-
source satellite imagery, spaceborne LiDAR, and ground inventory data. Zhao et al. [29]
mapped mangroves in China using Google Earth images, Sentinel-2 images, and Sentinel-1
data. Sharifi et al. [30] mapped mangrove forests in Qeshm Island, Iran using Sentinel-1
and Sentinel-2 satellite images.

Traditional approaches for obtaining information on the condition of mangrove ecosys-
tems relied on the labor-intensive and time-consuming process of manually interpret-
ing satellite imagery, resulting in high costs [31–33]. However, deep-learning models
have demonstrated significant efficacy in automating this procedure, facilitating extensive
surveillance and producing precise and rapid data [34,35]. Integrating satellite imagery
with machine learning or deep learning might enhance efficiency and cost-effectiveness
compared to traditional methods.

Recently, deep learning (DL) has frequently been used in the analysis of remote-sensing
satellite imagery [36–39]. As an important part of machine learning characterized by utiliz-
ing multiple layers for processing, DL can improve model performance and accuracy [40].
Various deep-learning techniques have been developed to understand the condition of
mangrove ecosystems. For example, Jamaluddin et al. [41] used MDPrePost-Net to deter-
mine the extent of mangrove degradation caused by the impact of Hurricane Irma as well
as training data of around 40 million pixels with Sentinel-2 images and achieved an overall
accuracy of 99.44%. Lin et al. [42] used Convex Deep Mangrove Mapping (CODE-MM) to
map mangroves in several countries, along with Sentinel-2 images and training data of
around 4–50 million pixels, to achieve an overall accuracy of 86.16–97.65%. Iovan et al. [43]
used a Deep Convolutional Neural Network for mangrove mapping in Fiji, South Pacific
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Ocean with Sentinel-2 and World-View 2 imagery. Diniz et al. [44] mapped mangroves
using a random forest (RF) model, with Landsat-8, Landsat-7, and Landsat-5 imagery.
Chen et al. [45] mapped mangroves in Dongzhaigang, China using a random forest (RF)
model with Sentinel-2 imagery and achieved an overall accuracy of 93.23%. Xue et al. [46]
used a two-stream translating long short-term memory network (TSTLN) with Sentinel-2
imagery for mangroves in Maowei Sea, Dongzhai Port, and Quanzhou Bay, China and
achieved an overall accuracy of 90–97%. Al Dogom et al. [47] used random forest (RF) with
Landsat-7 and Landsat-8 imagery for spatiotemporal monitoring and mapping of shoreline
changes and mangroves in Umm al-Quwain, UAE. Though the previously mentioned
method based on deep learning has demonstrated good results, it remains constrained in
its ability to effectively utilize extensive training data. The problem with training deep
learning with satellite imagery is due to a lack of sufficient labels [48]. Thus, creating a
large, labeled image for training data is time-consuming.

Transformer is a deep-learning architecture initially created for natural language
processing applications. However, it is now being utilized in several fields; examples
of tasks include text detection [49], object detection [50], and image classification [51].
Transformers have been extensively utilized in several applications in remote-sensing
fields, including hyperspectral image classification [52], change detection [53], and HSI
super-resolution [54]. Transformers are excellent at understanding the spatial, spectral, and
temporal connections within remote-sensing images [53]. Another deep-learning algorithm
that significantly contributes to the remote-sensing field is a fully convolutional network
(FCN) algorithm. This is a powerful tool for tasks like semantic segmentation, where the
goal is to classify each pixel in an image into a particular class [55]. State-of-the-art FCN
algorithms include U-Net [56], LinkNet [57], FPN [58], PSPNet [59].

The previous deep-learning models have relied on extensive training data. However,
the transformer algorithm has shown remarkable performance with few-shot learning in
hyperspectral images [38,53], and the FCN algorithm is frequently employed in remote
sensing. Few-shot learning is a technique in which a model can accurately classify the
categories in a new dataset using only a few labeled samples during the processing of the
dataset [60,61]. Sentinel-2 is an accessible passive remote-sensing system with global cover-
age that has 13 bands with varying spatial resolutions (10, 20, and 60 m). Several studies
have effectively utilized machine-learning and deep-learning methods with Sentinel-2 data
to understand the condition of mangroves [22,24,27–30,39–42]. The FCN algorithm can
extract more refined deep features and contribute to determining the spatial-spectral pat-
tern of the images. Transformer algorithms are computational models that can effectively
represent and process extended sets of information. The major contributions of this article
for mangrove loss detection under limited labels can be highlighted as follows:

1. A LSST-Former method is proposed for an improved deep-learning model that only
requires a few labeled samples by innovatively combining the FCN algorithm with a
transformer and incorporating spatial, spectral, and temporal data from Sentinel-2
images to detect mangrove loss.

2. Experimental results strongly demonstrate the exceptional efficacy of our approach
compared to other current models.

3. An analysis of the universal applicability of LSST-Transformer algorithms across
different locations of the mangrove ecosystem is given.

The structure of this article is as follows: A discussion of the materials and methods
is included in Section 2. The findings regarding mangrove loss detection under limited
labeling are elaborated upon in Section 3. An analysis of our research is presented in
Section 4. Finally, the author presents the final conclusions in Section 5.

2. Materials and Methods

The study’s work stages are separated into three steps, as shown in Figure 1: (I) data
processing, (II) classification processing, and (III) universal applicability. The data pro-
cessing included collecting and correcting Sentinel-2 images from TOA to BOA surface
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reflectance, producing spectral indices and integrating them with the original bands, cre-
ating visually interpreted labels, and collecting reference samples for testing evaluation
assessments. The classification processing involves setting up the input data for training
and testing, conducting the classification training procedure, and model performance
evaluation. We proposed LSST-Former and trained it using input data (Section 2.4). The
evaluation assessment was separated into two parts. The first part involved calculating
the algorithm’s output using the testing data from the classification process (Section 2.5).
The second part involved calculating the different image locations from the classification
process using the collected validation images (Section 2.6).
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Figure 1. Scheme of all work stages in this research.

2.1. Study Area

Mangrove forests are primarily found inside the tropical and sub-tropical zones,
specifically between the latitudes of 30◦N and 30◦S. The coastal zones chosen for analysis
are located in southwest Florida, a mangrove area that can protect the land from natural
disasters such as Hurricane Irma [41]; the Papua region of Indonesia, which has roughly
13.4% of the global carbon stores in mangroves [62]; PIK, Jakarta, Indonesia, a region that
protects the land from seawater flooding, seawater intrusion, and abrasion from the north
coast of Jakarta [63]; and Tainan, Taiwan, a region with a rich variety of wildlife and plant
life, including a rare migratory bird species known as the black-faced spoonbill [64], as
shown in Figure 2. The coastal zone of southwest Florida is the key investigation area,
where Hurricane Irma, a Category 3 storm, passed through in September 2017 and caused
significant loss to the local mangrove environment.
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2.2. Satellite Data and Preprocessing

The satellite data utilized in this study include Sentinel-2 images provided by the Eu-
ropean Space Agency (ESA), which were acquired between 2016 and 2019 and downloaded
from the Google Earth Engine [65]. The properties of Sentinel-2 images are presented
in Table 1. A total of 14 images were used in this study: seven images captured before
mangrove ecosystem loss and seven images captured after mangrove ecosystem loss. A
summary of the longitude and latitude coordinates, retrieval year, and picture size of the
Sentinel-2 data used in the experimental investigation is presented in Table 2. The date of
the image data is chosen based on the criterion of minimal cloud cover, particularly at the
specific study location. The southwest Florida dataset was chosen for the training model. In
September, southwest Florida encountered Hurricane Irma, which was highly valuable for
developing a classification model for mangrove loss detection in this period. In addition,
the purpose is to observe the spatial variations in mangroves in different regions.

Table 1. Properties of Sentinel-2 images.

Band Band Name Central Wavelength (nm) Spatial Resolution

B1 Aerosol 442.3 60
B2 Blue 492.1 10
B3 Green 559 10
B4 Red 665 10
B5 Red Edge 1 703.8 20
B6 Red Edge 2 739.1 20
B7 Red Edge 3 779.7 20
B8 Near-infrared (NIR) 833 10

B8A Red Edge 4 864 20
B9 Water-vapor 943.2 60

B10 Cirrus 1376.9 60
B11 Short-wave infrared (SWIR 1) 1610.4 20
B12 Short-wave infrared (SWIR 2) 2185.7 20

Table 2. Latitude, longitude, date acquisition, image size, and usage of the Sentinel-2 data in our
experiments.

Name (Scene Code) (Lon)◦ (Lat)◦ Date Before Date After Image Size Usage

Southwest Florida-1
(T17RMJ)

−81.263197
−81.2488207

25.6407337
25.6497094 20161001 20180104 145 × 100 Training/testing

Southwest Florida-2
(T17RMJ)

−81.7059548
−81.7026501

25.9303954
25.9393493 20161001 20180104 35 × 100 Training/testing

Southwest Florida-3
(T17RMJ)

−81.2741405
−81.2583906

25.6556281
25.6668073 20161001 20180104 159 × 125 Model

applicability

Southwest Florida-4
(T17RMJ)

−81.286543
−81.2405811

25.6903579
25.6195264 20161001 20180104 464 × 786 Universal

applicability

Southwest Florida-5
(T17RMJ)

−81.4133421
−81.413342

25.3594457
25.8375025 20161001 20180104 3000 × 5276 Universal

applicability

PIK Jakarta (T48MXU) 106.7384884
106.7644093

−6.1047809
−6.0976117 20190505 20191101 289 × 81 Universal

applicability

Papua (T54LVR) 140.2627755
140.2871514

−8.3748976
−8.3514604 20171104 20181005 270 × 260 Universal

applicability

Tainan (T50QRL) 120.079663
120.1093595

23.0201424
23.0383102 20180302 20180903 310 × 209 Universal

applicability
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The Sentinel-2 satellite contains a total of 13 bands, which have three different spatial
resolutions. There are 4 bands with a spatial resolution of 10 m, 6 bands with a spatial
resolution of 20 m, and 3 bands with a spatial resolution of 60 m. We selected Level-1C
imagery, which refers to Top-of-Atmosphere (TOA) products that have gone through
radiometric and geometric correction to align with a global reference system. Using the
SIAC atmospheric correction module [66], we converted Level-1C data into Level-2A
images, specifically orthoimages that have been corrected for Bottom-of-Atmosphere
(BOA) reflectance. Upon receiving the Sentinel-2 Level-2A products, we adjusted the
spatial resolution of the SWIR-1 and SWIR-2 data to a 10 m spatial resolution, because
calculating mangrove indices and the deep-learning model input require consistent spatial
resolution.

The input bands and spectral indices for the training model are based on previous
research on mangrove mapping [41,44–46]. Spectral indices are mathematical formulas that
are frequently used to evaluate the bands of remote-sensing images in order to enhance the
ability to distinguish various objects of interest according to their spectral properties. Four
spectral indices were computed: the modular mangrove recognition index (MMRI) [44], the
normalized difference mangrove index (NDMI) [67], the combined mangrove recognition
index (CMRI) [68], and the normalized difference vegetation index (NDVI) [69]. The
formulas are demonstrated in Table 3.

Table 3. Formulas for spectral indices.

Total Label (Pixel) Formula Reference

NDVI (NIR − Red)/(NIR + Red) [69]
NDWI (Green − NIR)/(Green + NIR) [70]
CMRI (NDVI − NDWI) [68]
NDMI (SWIR2 − Green)/(SWIR2 + Green) [67]

MNDWI (Green − SWIR1)/(Green + SWIR2) [71]
MMRI (|MNDWI| − |NDVI|)/(|MNDWI + |NDVI|) [44]

These indices can contribute to defining objects as either mangrove or non-mangrove
based on previous findings. The normalized difference vegetation index (NDVI) is fre-
quently employed in remote sensing to assess varied vegetation objects, including man-
grove objects [41,46]. The CMRI is obtained by analyzing the difference between the
normalized difference water index (NDWI) values [70] and the normalized difference
vegetation index (NDVI) values. This process helps to distinguish between mangroves
and non-mangrove objects; it can address seasonal features and improve the pattern of
mangrove objects within the output result. The NDMI was created to improve upon the
disparity between mangrove and non-mangrove vegetation types in satellite imagery by
leveraging the normalization difference between the green and SWIR-2 bands, which are
connected with the pattern of mangrove objects. The MMRI was developed to improve
the disparity in brightness between mangrove and non-mangrove objects, allowing for
recognition of mangrove objects. The NDVI and modified NDWI (MNDWI) [71] are com-
bined to create the MMRI. This study utilized a total of 10 input bands, which included
the original band (blue, green, red, NIR, SWIR-1, SWIR-2) and four spectral indices (NDVI,
CMRI, NDMI, and MMRI), as shown in Figure 3.

2.3. Input Data for Model

The training data utilized for the model consisted of pixel-level samples, where
each pixel in the sample was assigned a specific attribute value. The original remote-
sensing imagery from Sentinel-2 was manually annotated with high-resolution photos
obtained from Google Earth, which were used to produce visually interpreted labels for
the areas before and after the loss occurred. The labels were visually interpreted and
divided into three categories: (1) intact mangroves, which refers to mangrove objects that
remained unchanged in the images taken before and after; (2) mangrove loss, which refers
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to mangrove objects that were intact in the initial images but disappeared or degraded
in the subsequent images; and (3) non-mangrove areas, which includes all objects that
were not classified as mangrove objects, such as water bodies, buildings, bare land, and
non-mangrove vegetation. Prior studies [39,40] have employed large training data of
4–50 million pixels, whereas our research utilizes small training data that are typically
a hundred to ten thousand times smaller [72]. We utilized the random shot method, as
depicted in Figure 4, to select 2870 pixels for training data and 10,717 pixels for testing data.
This approach was employed to obtain improved outcomes despite the constraint of few
labeled data.
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Table 4 shows the total number of training and testing pixels for each class in our
study. The non-mangrove class has a greater overall pixel count, because it covers various
land cover types (such as water bodies, non-mangrove vegetation, urban areas, open areas,
etc.) and is a background class.
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Table 4. Training and testing size.

Total Label (Pixels) Training (Pixels) Testing (Pixels)

Non-mangrove 1194 4549
Mangrove 1268 4608

Mangrove loss 408 1560

Total 2870 10,717

2.4. LSST-Former Architecture

Generally, the proposed LSST-Former is a combination model of a FCN algorithm and
a transformer algorithm; we adopted LinkNet architecture and SST-Former architecture,
as shown in Figure 5. Firstly, we employ the FCN algorithm to train the data and obtain
the FCN pre-trained model. Afterward, the input image is forwarded to the pre-trained
fully convolutional network (FCN) model to generate a feature map. This feature map is
then concatenated with the original image. Finally, the image concatenation is randomly
sampled and sent to the SST-Former to obtain the final feature map. The details about
sub-models in the proposed LSST-Former are introduced in Sections 2.4.1 and 2.4.2.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 26 
 

 

data. This approach was employed to obtain improved outcomes despite the constraint of 
few labeled data. 

 
Figure 4. (a) Visually interpreted labels in Southwest Florida-1 and Southwest Florida-2, (b) training 
data, and (c) testing data. Blue, green, and red are non-mangrove, mangrove, and mangrove loss, 
respectively. 

Table 4 shows the total number of training and testing pixels for each class in our 
study. The non-mangrove class has a greater overall pixel count, because it covers various 
land cover types (such as water bodies, non-mangrove vegetation, urban areas, open 
areas, etc.) and is a background class. 

Table 4. Training and testing size. 

Total Label (Pixels) Training (Pixels) Testing (Pixels) 
Non-mangrove 1194 4549 

Mangrove 1268 4608 
Mangrove loss 408 1560 

Total 2870 10,717 

2.4. LSST-Former Architecture 
Generally, the proposed LSST-Former is a combination model of a FCN algorithm 

and a transformer algorithm; we adopted LinkNet architecture and SST-Former 
architecture, as shown in Figure 5. Firstly, we employ the FCN algorithm to train the data 
and obtain the FCN pre-trained model. Afterward, the input image is forwarded to the 
pre-trained fully convolutional network (FCN) model to generate a feature map. This 
feature map is then concatenated with the original image. Finally, the image concatenation 
is randomly sampled and sent to the SST-Former to obtain the final feature map. The 
details about sub-models in the proposed LSST-Former are introduced in Sections 2.4.1 
and 2.4.2. 

 
Figure 5. Architecture of LSST-Former. SS-Former and T-Former are adopted from [48]. 

2.4.1. FCN Feature Extractor 
The FCN feature extractor in LSST-Former is a spatial-spectral extractor specifically 

designed to assess the status of mangroves. This extractor utilizes the LinkNet [57] 
architecture as the convolutional network to enhance the differentiation between various 

Figure 5. Architecture of LSST-Former. SS-Former and T-Former are adopted from [48].

2.4.1. FCN Feature Extractor

The FCN feature extractor in LSST-Former is a spatial-spectral extractor specifically
designed to assess the status of mangroves. This extractor utilizes the LinkNet [57] archi-
tecture as the convolutional network to enhance the differentiation between various objects
of interest, relying on their spatial-spectral features. The sub-model comprises encoder and
decoder components.

We utilized the VGG-16 design to build the encoder component by eliminating two
complete connection layers and the SoftMax function from the VGG-16 architecture. The
initial and subsequent encoder blocks comprise two 2D convolutional layers and the
activation function utilizing the Rectified Linear Unit (ReLU), followed by a 2D max-
pooling layer. The remaining three encoder blocks comprise three 2D convolutional layers
and the activation function utilizing ReLU, followed by a 2D max-pooling layer. The lower
section of this sub-model, located after the encoder section, has a feature map size of 2 × 2.
It comprises two 2D convolutional layers, which are followed by batch normalization and
ReLU activation. The decoder component employs the Upsampling2D layer to increase the
resolution of the feature map. The decoder component comprises two 2D convolutional
layers, Upsampling2D, ReLU, and batch normalization.

This sub-model utilized a skip connection with an add operation layer between each
block of the encoder and decoder. This is demonstrated in Equation (1).

Xsc,i = Xec,i + Xdc,i, i ∈ {1, 2, . . . , 5} (1)

where Xsc represents the skip connection, Xec represents the encoder block, and Xdc repre-
sents the decoder block. The last 2D convolutional layer employs a kernel size of 1 × 1 and
utilizes the SoftMax activation algorithm.
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Xout,i = so f tmax(Xsc,5), i ∈ {1, 2, . . . , n} (2)

where Xout,i is the output of the FCN feature extractor.

2.4.2. Transformer Classifier

The LSST-Former includes a transformer architecture as the last classifier in its second
sub-model. We adopted SST-Former architecture [53]. This sub-model consists of SS-Former
and T-Former components, and we modified it with a soft cross-entropy loss function [73].
The transformer structures have three primary components: position embedding, attention,
and multi-layer perceptron (MLP). Position embedding helps reduce network complexity.
The attention mechanism module learns and categorizes relationships by comparing and
scoring similarities between different samples. High scores indicate that they are in the
same class; low scores indicate that they are in different classes. Meanwhile, the MLP is
employed as a feedforward network within the transformer encoder, and it is classified in
the transformer decoder.

The sequential order is encoded as an input series using position embedding. Vaswani
et al. [74] employed position embedding using sine and cosine functions with different
frequencies. Gehring et al. utilized position embedding using trainable weights [75]. The
input items x = (x1, . . . , xn) were embedded in the distribution space w = (w1, . . . , wn),
where n represents the number of input components. The model was then given posi-
tional embedding p = (p1, . . . , pn), and the two were merged to yield the input element
representation e = (w1 + p1, . . . , wn + pn). Model training was used to determine e and p.

Attention is a crucial component of the transformer model, primarily employed to
ascertain the similarity between various samples and facilitate classification. The objective
of attention is to acquire the similarity among any two training samples. The relationship
score between different samples is determined by assessing their similarities. Relationship
scores are higher for samples within the same category and lower for samples between
different categories. By employing this approach, the attention mechanism may effectively
capture the relational information among samples, leading to enhanced classification accu-
racy and model robustness. The SST-Former model consists of two attention mechanisms,
as shown in Figure 6: multi-head self-attention (MSA) in the SS-Former part and multi-head
cross-attention (MCA) in the T-Former part.
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The transformer encoder utilizes a feedforward network employing a MLP. This MLP
comprises linked layers and employs a rectified ReLU activation function. The MLP also
serves a non-linear function. Another function within the transformer decoder is the
classification task, which is referred to as the MLP head. The MLP head consists of a fully
linked layer and a layer normalization. Hence, MLP is essential for transformers.

The training and testing process involves patch pairs, where X = {X1, X2}. For one
branch, we reshape a patch X ∈ Rw×h×c into a spectral sequence set x = {x1, x2, . . . , xc},
where w, h represent the spatial resolution of the patch, and c represents the number of
channels. In order to simplify the calculation process, we regard x as a matrix of c × wh.

The SST-Former method for mangrove loss detection is a sophisticated process that
involves several key steps.

The process begins with linear projection and position encoding. In this step, the
SST-Former position encodes each pixel on the cube. This is a crucial step, as it allows the
model to remember the spectral and spatial sequences of each pixel.

E = xω1, ω1 ∈ Rwh×n (3)

Z = E + p, E ∈ Rc×n, p ∈ Rc×n (4)

where E represents linear projection, ω1 represents the weight matrix, p represents position
embedding, and Z represents output position embedding. Next, the spectral transformer
encoder comes into play. This structure is specifically designed to extract spectral sequence
information. It processes the spectral data of the spectral images.

H = TE(Z), H ∈ Rc×n (5)

where TE represents the transformer encoder, and H represents the output spectral trans-
former encoder. Then, we reshape H ∈ Rc×n into H ∈ Rn×c. Following this, a class token
C ∈ R1×m is used. This token serves to store the class information of a single temporal
image. Interestingly, this token concatenates the output of the spectral transformer encoder,
effectively combining the spectral information with the class information.

E = Hω2, ω2 ∈ Rc×m (6)

Z = E + p, E ∈ Rn×m, p ∈ Rn×m (7)

G = Concat(C, Z) (8)

The spatial transformer encoder is then used. This encoder is tasked with extracting
spatial texture information. It focuses on the spatial data of the images, thereby comple-
menting the spectral data processed by the spectral transformer encoder.

F3 = TE(G), F3 ∈ R(n+1)×m (9)

Thus, a pseudo-category of patch can be observed. We can obtain two results, F31 =
{C1, P1} and F32 = {C2, P2}, where F3 represents the output spatial transformer encoder, C
represents the class token, and P represents the patch token.

Finally, the temporal transformer and MLP are utilized. The features of different
temporal images are sent as the input of the temporal transformer. This transformer is used
to extract useful mangrove loss detection features between the current image pairs. The
result is then obtained through a multilayer perceptron (MLP).

y′ = LN(TF{[F31, F32] )ω, ω ∈ Rm×3, y′ ∈ R1×3 (10)

where y′ is the final result. We modified the loss function with the soft cross-entropy loss
function [73], as calculated by
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CE = −
C

∑
i=1

y(i)log(y′(i)), (11)

SCE = −
C

∑
i=1

((1 − σ)δi,y +
1
C
)log(y′(i)), (12)

where CE is cross-entropy, SCE is soft cross-entropy, y is the target, y′ is the prediction, σ is
the smoothing factor, C is the class, and δi,y is the Dirac delta, which equals 1 for i = y and 0
otherwise.

2.5. Evaluation Assesment

The Intersection over Union (IoU) [76], overall accuracy (OA), and F1-Score [77] were
utilized as quantitative indicators. They are calculated as follows:

IoU =

∣∣∣∣ target ∩ prediction
target ∪ prediction

∣∣∣∣ (13)

OA =

C
∑

i=1
TPi

c
∑

i=1
(TPi + FPi + TNi + FNi)

(14)

F1 − Score = 2 × precision × recall
precision + recall

(15)

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

IoU is calculated as the area of overlap between the target and prediction results
divided by the area of union between the target and prediction results. A true positive
(TP) refers to the situation where the model accurately predicts the positive class. A true
negative (TN) refers to the situation where the model accurately predicts the negative class.
A false positive (FP) refers to the situation where the model makes an incorrect prediction
by classifying an instance as positive when it is actually negative. On the other hand, a
false negative (FN) refers to the situation where the model makes an incorrect prediction
by classifying an instance as negative when it is actually positive.

2.6. Validation of Universal Applicability Model

The final task was to evaluate our model’s efficacy in detecting mangrove loss under
limited labels. We tested the model in several areas different from the training process. We
utilized the model to analyze Southwest Florida-4, PIK Jakarta, Papua, and Tainan images
to obtain the detection outcome. We employed stratified random sampling within the study
zone to obtain prediction point samples for the precise calculation of the accuracy of the
mangrove loss map. Prediction point samples were compared using historical ESRI World
Imagery Wayback [78]. A total of 1500 prediction points were validated across Southwest
Florida-4, 300 prediction points were validated across PIK Jakarta, Indonesia, 900 prediction
points were validated across Papua, Indonesia, and 600 prediction points were validated
across Tainan, Taiwan. Specifically, there were 500, 100, 300, and 200 prediction points for
each class, respectively. A kappa coefficient (Kappa) was utilized for quantitative indicators,
which are calculated as follows:

Kappa =
OA − Pc

1 − Pc
, (18)
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Pc =
(TP + FP)(TP + FN)(TN + FN)(TN + FP)

(TP + FP + TN + FN)2 , (19)

A true positive (TP) refers to the situation where the model accurately predicts the
positive class. A true negative (TN) refers to the situation where the model accurately pre-
dicts the negative class. A false positive (FP) refers to the situation where the model makes
an incorrect prediction by classifying an instance as positive when it is actually negative.
On the other hand, a false negative (FN) refers to the situation where the model makes an
incorrect prediction by classifying an instance as negative when it is actually positive.

2.7. Implementation Detail

The Sentinel-2 images were acquired before and after mangrove loss, consisting of
10 bands (blue, green, red, NIR, SWIR1, SWIR2, NDVI, CMRI, NDMI, and MMRI). These
bands, together with visually interpreted labels, were initially selected as random shot
samples and used as input data for our deep-learning model. We employed Adam as the
optimizer, utilizing the default parameter configuration and a learning rate of 0.001, as
suggested in the original Adam paper. The training process consisted of 400 iterations,
utilizing 2870 input data for training and 10,717 for testing. The training loss during
training was derived using the soft cross-entropy loss. This approach employs the Python
programming language along with the Tensorflow, Keras, and PyTorch frameworks. The
Python code was run on a Windows 11 operating system using an Intel Core i9-11900K
central processing unit, an NVIDIA GeForce RTX 3090 graphics processing unit, and
64 GB RAM.

3. Results

The following section showcases the experimental findings of the LSST-Former (Sec-
tion 3.1). The LSST-Former results are compared with a well-established architecture in
Section 3.2. We examined the input data when integrated with vegetation and mangrove
indices including CMRI, NDVI, MMRI, and NDMI. We discovered that including these
spectral indices enhanced the accuracy of the results (Section 3.3). We evaluate the ef-
fects of the parameters of LSST-Former in Section 3.4. Finally, we applied the proposed
LSST-Former for universal applicability in Section 3.5.

3.1. LSST-Former

The LSST-Former’s trained model was assessed using a distinct testing dataset, which
differed from the training data used for input. The proposed method for learning with
low data utilizes only 2870 training samples for LSST-Former. Given that the effective-
ness of deep-learning methods depends greatly on the quantity of data at hand, a direct
demonstration of the advantages of our small-data learning strategy is the remarkable
performance attained by LSST-Former utilizing only 2870 restricted training samples. The
performance metrics for areas that are not mangroves, areas with intact mangroves, and
areas with mangrove loss can be seen in Table 5. A visual representation of these results
can be observed in Figure 7.

Table 5. Quantitative classification results from 10,717 pixels of testing data.

Metrics Non-Mangrove Intact Mangrove Mangrove Loss

IoU 99.62 99.33 97.59
F1-Score 99.81 99.66 98.78
Precision 99.91 99.58 98.72

Recall 99.71 99.74 98.84

The impacts of different total numbers of labels used for training are illustrated in
Figure 8 and tabulated in Table 6. To investigate the impact of the total number of input
data on the accuracy and IoU score, we conducted experiments utilizing label sizes of



Remote Sens. 2024, 16, 1078 13 of 25

717, 1435, 2152, and 2870 pixels for training data. The experimental results demonstrate a
gradual increase in both the overall accuracy and IoU scores as the total number of input
data increases and the dashed line show evaluation assessment more than 90%. For this
investigation, we ultimately used 2870 pixels as the definitive quantity of labeled data
for training.
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Table 6. The impact of various training sizes on 10,717 pixels of testing data.

Training Size Overall Accuracy F1-Score Mean IoU

717 97.18 95.74 92.05
1435 98.02 97.02 94.34
2152 98.81 98.21 96.54
2870 99.59 99.41 98.84

Ablation tests were undertaken to assess the efficacy of each component in LSST-
Former. In order to assess the impact of each component on the overall architecture,
we selectively eliminated different elements of LSST-Former and analyzed the resulting
accuracy. The classification outcomes of eliminating components in the proposed model
are presented in Table 7. The findings indicate that excluding LinkNet from our model
resulted in a 5.74% decrease in mean IoU, a 3.07% decrease in F1-score, and a 2.01%
decrease in overall accuracy. Conversely, removing SST-Former from our model led to
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a 14.29% decrease in mean IoU, an 8.38% decrease in F1-score, and a 3.68% decrease in
overall accuracy.

Table 7. Analysis of each removed part in LSST-Former.

Architecture Overall Accuracy F1-Score Mean IoU

LSST-Former 99.59 99.41 98.84
No LinkNet 97.58 96.34 93.10

No SST-Former 95.81 91.03 84.55

3.2. Comparison with Other Well-Established Architectures

The performance of the suggested model was evaluated by comparing it to various
established architectures, such as random forest (RF) and Support Vector Machine (SVM),
U-Net [56], LinkNet [57], Vision Transformer (ViT) [51], SpectralFormer [38], MDPrePost-
Net [41], and SST-Former [53]. The RF, SVM, ViT, SpectralFormer, and SST-Former models
were trained using the same input data of 2870 samples. In contrast, the U-Net, LinkNet,
and MDPrePost-Net models were trained using patch images of size 32 × 32, generated
using the patchify Python module with a step size of 16 pixels. Figure 9 visually compares
the LSST-Former output and several established architectural models. According to the
visualization analysis, the proposed model obtained a superior classification performance
compared to other existing architectures.
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Southwest Florida-2. Blue, green, and red are non-mangrove, mangrove, and mangrove loss, respectively.

Traditional classification techniques such as random forest (RF) and Support Vector
Machine (SVM) produce salt-and-pepper noise in classification maps, implying that these
classifiers fail to identify the materials of objects accurately. Convolutional neural net-
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work models, such as U-Net and LinkNet, provide smooth classification maps using their
robust nonlinear data-fitting capabilities. However, these models still have significant
underestimation and overestimation areas. Transformers like ViT and Spectralformer are a
developing network architecture that can effectively mitigate huge underestimations and
overestimations, even though they still have salt-and-pepper noise. Utilizing the temporal
image convolution-based models MDPrePost-Net and SST-Former can effectively minimize
misclassification. Our proposed LSST-Former model obtains highly desirable classification
maps and less misclassification than other architectures. Figure 10 show a comparison of
model applicability with a Southwest Florida-3 image.
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The classification results are presented in Table 8, including three main metrics: mean
IoU, F1-Score, and overall accuracy. Additionally, the IoU for each individual class is also
reported. The LSST-Former architecture surpasses other architectures in terms of the mean
Intersection-over-Union (IoU) and IoU scores, the F1-Score, and the overall accuracy for
each individual class.

Table 8. Quantitative comparison of LSST-Former with other architectures in testing portion. Mg,
Non-Mg, and MgLs are intact mangrove, non-mangrove, and mangrove loss class, respectively.

Class

Non-Temporal Imagery Temporal Imagery

Conventional
Network

Convolution
Network

Transformer
Network

Convolution
Network

Transformer
Network

RF SVM U-Net LinkNet Vit Spectralformer MDPrePost-Net SST-Former LSST-Former

IoU Non-Mg 81.33 88.33 92.41 92.42 96.04 95.71 93.06 98.39 99.62
IoU MgLs 55.60 57.40 54.80 65.79 76.69 82.29 67.44 85.33 97.59

IoU Mg 90.27 94.37 93.57 95.44 94.58 96.32 94.56 95.58 99.33

Mean IoU 75.74 80.04 80.26 84.55 89.10 91.44 85.02 93.10 98.84
F1-Score 85.35 87.94 87.84 91.03 86.81 95.41 91.39 96.34 99.41

OA 90.84 93.64 94.42 95.81 96.20 96.96 95.71 97.58 99.59
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3.3. The Impact of Mangrove and Vegetation Indices

This section illustrates the impact that modifying the overall quantity of input bands
has on LSST-Former. During the preliminary evaluation, the input data consisted solely of
RGB bands obtained from Sentinel-2. RGB images are frequently employed in classifying
images using deep-learning techniques. During the second experiment, RGB images were
utilized that incorporated the near-infrared band consisting of wavelengths ranging from
blue to red. During the third experiment, RGB images were employed to incorporate
the near-infrared and short-wave infrared bands. Specifically, the blue, green, red, near-
infrared, short-wave infrared 1, and short-wave infrared 2 bands were utilized. In the third
experiment, the impact of employing short-wave infrared (SWIR) bands on the distinction
between undisturbed mangrove areas and those that have experienced mangrove loss
was evaluated. This is due to the fact that the SWIR spectrum is particularly sensitive to
moist objects. The last experiment demonstrated that incorporating the 10 input bands,
including the MMRI, NDMI, CMRI, and NDVI, enhances the effectiveness of classifying
mangroves and detecting mangrove decline using the initial input data. The accuracy
evaluation outcomes, comprising the average overall accuracy (OA), F1-Score, and mean
Intersection over Union (IoU), are displayed in Table 9. After examining the input data
using vegetation, wet objects, and mangrove indices, it is clear that using these indices
greatly improved the accuracy of the classification.

Table 9. Accuracy results of added vegetation and mangrove indices.

Architecture Overall Accuracy F1-Score Mean IoU

RGB 94.31 92.01 85.72
RGB NIR 94.70 91.10 86.71

RGB NIR SWIR1 SWIR2 95.03 93.13 87.53
All 99.59 99.41 98.84

3.4. Effects of Parameters

The efficacy of LSST-Former is based on the quality of the parameters. Hence, the
impact of parameters such as the number of spectral transformer encoders, the number of
spatial transformer encoders, the number of temporal CA layers, and the loss function are
examined. The mean Intersection-over-Union (IoU), F1-Score, and overall accuracy (OA)
findings obtained in our investigation are presented in Figure 11.
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Remote Sens. 2024, 16, 1078 17 of 25

Optimal spectral transformer encoders: Four encoder quantities were evaluated in
order to determine the optimal number for a spectral transformer encoder set: one, two,
three, and four. As illustrated in Figure 11a, the optimal number of spectral transformer
encoder layers is two.

Optimal spatial transformer encoders: It is crucial to utilize a spatial transformer when
evaluating the efficacy of the proposed method. Four distinct encoder counts (one, two,
three, and four) were evaluated in order to determine which is the most efficient for a
spatial transformer. SST-Former functions admirably with three and four encoders, as
shown in Figure 11b. For this investigation, three encoders were chosen.

Optimal temporal CA layers: An investigation into the quantity of CA layers in T-
Former is similarly required. Four distinct CA layer counts [1–4] were evaluated in an
effort to identify the most effective number of temporal encoders. Three CA layers produce
the optimal combined effect, as shown in Figure 11c.

Loss function: Utilizing a loss function is crucial for assessing the efficacy of the pro-
posed method. Two different loss functions, including cross-entropy and soft cross-entropy,
were evaluated to determine the most effective loss function. Figure 11d demonstrates that
the SST-Former soft cross-entropy has a strong performance.

3.5. Universal Applicability of the Model

To determine whether the method is applicable to general locations, the LSST-Former
model used in this study for mangrove loss detection was run in different study regions
with training models in order to validate the stability of the algorithm’s output. The visual
results of LSST-Former are presented in Figure 12.
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Prediction point samples from LSST-Former results were compared using historical
ESRI World Imagery Wayback, as shown in Figure 13. A confusion matrix was employed
to compute the accuracy using samples of prediction points: 1500 prediction points were
validated across the Southwest Florida-4 dataset (Table 10), 300 prediction points were
validated across the PIK Jakarta, Indonesia dataset (Table 11), 900 prediction points were
validated across the Papua, Indonesia dataset (Table 12), and 600 prediction points were
validated across the Tainan, Taiwan dataset (Table 13). Specifically, each class had 500, 100,
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300, and 200 prediction points, respectively. The overall accuracy and kappa score have
been calculated for map accuracy based on the confusion matrix shown in Tables 10–13.
The results in Table 14 show that the overall accuracy is more than 90%, and the kappa
accuracy is more than 89%. Based on these results, our model can be applied universally,
even though it has a small number of labels.
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Table 12. Confusion matrix for Papua, Indonesia.

Prediction

Reference Data

NonMg Mg MgLs

NonMg 281 12 7
Mg 1 294 5

MgLs 5 28 267

Table 13. Confusion matrix for Tainan, Taiwan.

Prediction

Reference Data

NonMg Mg MgLs

NonMg 197 2 1
Mg 6 187 7

MgLs 25 2 173

Table 14. Validation accuracy metrics.

NonMg Mg MgLs OA Kappa

Southwest Florida-4 0.986 0.984 0.97 0.98 0.97
PIK Jakarta, Indonesia 0.97 0.98 0.88 0.9433 0.9150

Papua, Indonesia 0.937 0.98 0.89 0.9356 0.9033
Tainan, Taiwan 0.985 0.935 0.865 0.9283 0.8925

4. Discussion

Integrating remote-sensing satellite images using deep learning or machine learning
can increase efficiency and cost-effectiveness compared to conventional digitization ap-
proaches. We only need a small sample to use as training data for the model we have
designed. Even with a small sample, we can apply the model universally. This research ar-
ticle presents mangrove loss detection utilizing Sentinel-2 data and a deep-learning model.
The model takes into account the spatial–spectral–temporal relationship between images
captured prior to and subsequent to a loss event, and the model is applied for universal
applicability. As we mentioned before, the temporal resolution of satellite imagery is
the main advantage that can be used for mangrove loss mapping purposes. Our model
considers temporal images that take advantage of satellite imagery, which has data from
the past. The proposed model with SST-Former that uses temporal images improved the
mapping accuracy of mangrove loss in our study areas (Tables 7 and 8). On the other hand,
the proposed model also successfully produced large intact areas and a lost mangrove map
within several study areas (Figure 12). The produced large intact areas and lost mangrove
maps also have satisfactory results based on the map accuracy assessments (Tables 10–14).
This finding shows the applicability of remote-sensing images with the proposed deep-
learning model for mangrove loss mapping in large areas and can reduce the costs required
compared to direct field activities or visual interpretation.

Remote-sensing satellite images are obtained through sensors that capture electromag-
netic radiation in various spectral bands. The interaction of light with the Earth’s surface
provides valuable information about various features, such as land cover, vegetation health,
and water bodies, causing the spectral and spatial features in satellite images to change over
time and space. Figures 14 and 15 show spectral variation in images from the Southwest
Florida-1 dataset before and after a hurricane event.
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A comparison of the spectral curves of the mangrove classes before and after the
hurricane shows similarities in the pattern of the spectral response. However, the spectral
response of the mangrove object after the hurricane differs, with near-infrared being lower
than the mangrove object; a plant with more chlorophyll will reflect more near-infrared
energy than an unhealthy plant [79], and another band after the hurricane is higher than the
mangrove object before the hurricane. Most mangrove objects with a low spectral response
have been degraded and are classified as mangrove loss in the after-hurricane image. The
SWIR bands are sensitive to the water content; it can be seen that the mangrove loss class
has higher spectral reflectance in SWIR bands than the mangrove object class does.

This study considers two kinds of satellite imagery for mangrove loss detection. We
took images before and after the mangrove area was lost. We assume the mangrove
object exists in the image before and is then lost or degraded in the image after. The
proposed LSST-Former model combines FCN and transformer architecture. The LSST-
Former model considers the relationship between before and after mangrove loss using
the SST-Former part. Previous studies have used the SST-Former model for hyperspectral
change detection [51].

Our proposed model achieved good accuracy metrics. Our proposed model has an
overall accuracy, F1-Score, and mean IoU score of 99.59%, 99.41%, and 98.84%, respectively,
and IoU mangrove loss was obviously high at 97.59%. We evaluated LSST-Former by
comparing it to various established architectures, including random forest (RF), Support
Vector Machine (SVM), U-Net [56], LinkNet [58], Vision Transformer (ViT) [51], Spectral-
Former [38], MDPrePost-Net [41], and SST-Former [53]. In the testing comparison, RF and
SVM show that the architecture does not accurately detect objects; for the transformer
networks, these give a better performance than other architectures, because the trans-
former pays attention to obtaining similarity between classes while the model considers
spatial–spectral–temporal image relationships for detecting changing areas.
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We investigated the training set size by examining a broad range of training sample
sizes, ranging from a small sample size of 717 to a large training sample size of 2870. The
effects of the various total numbers on the experimental results demonstrate a progressive
rise in the overall accuracy, F1-Score, and IoU scores as the total number of the training
size increases. Our method consistently achieves good accuracy—more than 90% in terms
of the overall accuracy, F1-Score, and mean IoU score—even though there are only 717
labeled samples.

According to a prior study, the variation in input bands impacts the accuracy outcome
of mangrove categorization [41]. We examined the impact of vegetation and mangrove
indices on the accuracy of the results, as mangroves possess distinct spectral properties
and are a distinct type of vegetation with wet vegetation features. The short-wave infrared
(SWIR) band is valuable for differentiating moist objects. Several mangrove indices are
established based on the spectral features specific to mangroves. Sentinel-2 can generate
indices for vegetation and mangroves. The vegetation index, consisting of the CMRI,
NDMI, and MMRI, exhibits a strong ability to differentiate between mangrove objects [41].
The initial dataset for this investigation consisted of 10 input bands, including blue, green,
red, NIR, SWIR1, SWIR2, NDVI, CMRI, NDMI, and MMRI, which included mangrove
and vegetation indices. The findings in Section 3.3 demonstrated that the incorporation of
vegetation and mangrove indices significantly enhanced the categorization accuracy in a
progressive way.

We evaluated the optimal parameters for the LSST-Former model, including the
number of spectral encoders, the number of spatial encoders, the number of cross-attention
layers, and the loss function. We found that the optimal number of spectral encoders is
two, the optimal number of spatial encoders is three, the optimal number of cross-attention
layers is three, and the optimal loss function is soft cross-entropy in our study.

Our result shows that the model can be applied universally and clearly distinguish
between intact/healthy mangroves, mangrove loss, and non-mangrove areas. By analyz-
ing the outcome, we may observe the distinct distribution of mangrove loss and intact
mangrove areas. We validated the results with historical high-resolution images. Due to
the lack of coverage of mangrove loss among the four regions, we focused on large-scale
mangrove loss detection in southwest Florida, covering an area of 158,332.76 ha. A previous
study used CODE-MM [42], Clark Labs, and MDPrePost-Net [41] with high-resolution
Google Earth images for validation. In the present study, we used high-resolution Google
Earth images, false colors, and a global mangrove watch map to validate the predictions of
mangrove loss, as shown in Figure 16.

In Figure 16e, a false color composite (NIR, SWIR1, red) shows the area before the
hurricane, and mangrove vegetation is displayed in orange in the composite results. Man-
groves experiencing loss can be seen if we compare this with Figure 16f, with a false color
composite (NIR, SWIR1, red) after the hurricane, where the mangrove, which was initially
orange, experienced a change in spectral value so that it changed color in composite Fig-
ure 16f. This indicates the degradation or loss of mangrove vegetation after the hurricane.
We found that 126.1852 ha of mangroves have been lost, and 391.8897 ha of mangroves
remained healthy.

The results show that the overall accuracy and kappa accuracy for all study areas is
more than 90%, except for kappa accuracy for the area in Tainan, Taiwan. Our validation
data showed the image in high resolution, and Sentinel-2 images were quite tricky to obtain
on the same date and time, because Sentinel-2 has a problem with cloud cover, and ESRI
World Imagery Wayback or Google Earth images do not provide the same temporal data as
the Sentinel-2 images, so we just took the closer time for validation. Sentinel-2 provides
optical satellite images that are accessible but unable to penetrate clouds. We cannot use
Sentinel-2 for observing objects that are covered by clouds. Data selection and location are
based on the percentage of cloud cover to obtain effective results. The use of images from
active remote sensing to penetrate clouds needs more attention in future research.



Remote Sens. 2024, 16, 1078 22 of 25

Remote Sens. 2024, 16, x FOR PEER REVIEW 22 of 26 
 

 

indices are established based on the spectral features specific to mangroves. Sentinel-2 can 
generate indices for vegetation and mangroves. The vegetation index, consisting of the 
CMRI, NDMI, and MMRI, exhibits a strong ability to differentiate between mangrove 
objects [41]. The initial dataset for this investigation consisted of 10 input bands, including 
blue, green, red, NIR, SWIR1, SWIR2, NDVI, CMRI, NDMI, and MMRI, which included 
mangrove and vegetation indices. The findings in Section 3.3 demonstrated that the 
incorporation of vegetation and mangrove indices significantly enhanced the 
categorization accuracy in a progressive way. 

We evaluated the optimal parameters for the LSST-Former model, including the 
number of spectral encoders, the number of spatial encoders, the number of cross-
attention layers, and the loss function. We found that the optimal number of spectral 
encoders is two, the optimal number of spatial encoders is three, the optimal number of 
cross-attention layers is three, and the optimal loss function is soft cross-entropy in our 
study. 

Our result shows that the model can be applied universally and clearly distinguish 
between intact/healthy mangroves, mangrove loss, and non-mangrove areas. By 
analyzing the outcome, we may observe the distinct distribution of mangrove loss and 
intact mangrove areas. We validated the results with historical high-resolution images. 
Due to the lack of coverage of mangrove loss among the four regions, we focused on large-
scale mangrove loss detection in southwest Florida, covering an area of 158,332.76 ha. A 
previous study used CODE-MM [42], Clark Labs, and MDPrePost-Net [41] with high-
resolution Google Earth images for validation. In the present study, we used high-
resolution Google Earth images, false colors, and a global mangrove watch map to 
validate the predictions of mangrove loss, as shown in Figure 16. 

 
Figure 16. Large-scale prediction: (a) true-color (RGB) Google Earth image 2018/01 (after hurricane);
(b) after hurricane, false color (SWIR1, NIR, red); (c) prediction; (d) Global Mangrove Watch Map
2018; (e) before hurricane, false color (NIR, SWIR1, red); and (f) after hurricane, false color (NIR,
SWIR1, red).

5. Conclusions

This paper introduces LSST-Former, a novel deep-learning network that utilizes few-
shot learning to identify mangrove loss in a small number of labeled data. Our approach
effectively captures spatial, spectral, and temporal information from Sentinel-2 images
while maintaining a relatively simple model structure using a combination of FCN and
a transformer network, even with limited labeled samples. Furthermore, our approach
was compared to many other approaches. The experimental results indicate that the
LSST-Former approach outperforms other methods in accuracy and resilience for detecting
mangrove loss using Sentinel-2 images. Finally, experiments were carried out on four
distinct regions, and our approach was compared to a high-resolution image. The exper-
imental results indicate that the LSST-Former technique exhibits superior accuracy and
resilience in detecting mangrove loss.
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