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Abstract: Temperature analysis is of special interest in polar areas because temperature is an essential
variable in the energy exchange between the Earth’s surface and atmosphere. Although land surface
temperature (LST) obtained using satellites and air temperature (Ta) have different physical meanings
and are measured with different techniques, LST has often been successfully employed to estimate
Ta. For this reason, in this work, we estimated Ta from LST MODIS collection 6 (C6) and used
other predictor variables. Daily mean Ta was calculated from Spanish State Meteorological Agency
(AEMET) stations data on the Livingston and Deception Islands, and from the PERMASNOW
project stations on Livingston Island; both islands being part of the South Shetland Islands (SSI)
archipelago. In relation to our previous work carried out in the study area with collection 5 (C5) data,
we obtained higher R2 values (R2

CV = 0.8, in the unique model with Terra daytime data) and lower
errors (RMSECV = 2.2 ◦C, MAECV = 1.6 ◦C). We corroborated significant improvements in MODIS
C6 LST data. We analyzed emissivity as a possible factor of discrepancies between C5 and C6, but we
did not find conclusive results, therefore we could not affirm that emissivity is the factor that causes
differences between one collection and another. The results obtained with the applied filters indicated
that MODIS data can be used to study Ta in the area, as these filters contribute to the reduction of
uncertainties in the modeling of Ta from satellites.

Keywords: MODIS; land surface temperature; air temperature

1. Introduction

Temperature, defined as a physical quantity that characterizes the average energy of
random molecular motion within a substance [1,2], is an essential variable in the energy
exchange between the Earth’s surface and the atmosphere [3–8]. In meteorology, air
temperature at various heights and the temperature of the ground surface can be measured,
among others [1], the latter being the one that corresponds to land surface temperature
(LST) obtained from satellites.

Air temperature (Ta) can also influence the behavior of the active permafrost layer,
as described for James Ross Island (JRI)—one of the largest permafrost regions in the
northeastern Antarctic Peninsula (PA)—by Hrbáček et al. [9], who found a significant
effect of Ta on the thermal regime of the soil, especially in the absence of snow and during
the advection of warm air masses that cause important gradients in Ta during winter. In
addition, major changes in temperature could lead to changes in the snowpack on the
Antarctic ice sheet, which would have both immediate and long-term impacts on the global
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mean sea level [10]. Therefore, Ta constitutes an essential parameter in a wide range of
environmental applications, such as hydrology and climate change studies [11]. Surface
temperature, for its part, is the primary climatic factor that governs the existence, spatial
distribution and thermal regime of permafrost which is a major component of the terrestrial
cryosphere [12]. In summary, both Ta and LST constitute essential factors for permafrost,
which is determined by the climate and the geothermal gradient [13].

Ta and LST generally present a similar behavior that can be considered as a sinusoidal
oscillation with a period of one year. It is also known that ground temperature can delay
Ta variations [14], therefore it could be considered that this energy exchange can favor the
correlation between Ta and LST. However, it must be taken into account that Ta and LST
are two different variables, and the correlation between them could vary throughout the
year because in the cold season the snow acts as an insulating layer [15]. In addition, it has
been described that the correlation also depends on land cover and sky conditions [16,17],
as well as elevation changes [18], latitude and solar radiation. On the other hand, land
and air have different thermal capacities [19,20] and Ta and LST have different physical
meanings and are measured with different techniques: for example, in the case of the
Moderate Resolution Imaging Spectroradiometer (MODIS), LST data indicate the land
surface temperature in an area of 1 km2, while, in this work, Ta refers to the temperature
measured 2 m above the ground surface. Also, unlike Ta, LST provides direct information
on long-wave radiation from the Earth’s surface [19].

However, its different nature has not prevented LST from becoming an important
alternative to overcome the lack of Ta data, generally only obtained at certain points with
very limited area coverage [18]. Likewise, LST has been used to validate in situ data on
surface air temperature (Ts) [21]. Furthermore, as indicated by Sobrino et al. [22], it is
known that there is a correspondence between LST and Ta, in general terms—not only with
MODIS sensor data—as has been shown for local studies, among others, by the works of
Jin and Dickinson [19,23], Prihodko and Goward [24] and Urban et al. [25].

The possibility of having LST measurements from satellites has favored the develop-
ment of studies for the estimation of Ta. The high temporal resolution of MODIS has made
it possible to widely develop studies on the temperature of the polar regions [6]. The utility
of applying statistical methods to MODIS sensor data, due to its high temporal resolution,
is evident in the numerous works that have estimated Ta with MODIS LST data in various
study areas including Portugal [11] and the United States [26]. Also, statistical methods
combined with the Temperature-Vegetation Index (TVX) have been used on different sites
in Africa [27]. The above examples highlight the variety of ecosystems that are represented
in these studies.

In Antarctica, there have been several works that estimated Ta from MODIS LST
data with statistical methods. Also Meyer et al. (2016) [28] estimated Ta values using
MODIS data and data from 32 weather stations in Antarctica, adding to LST other predictor
variables to three machine learning algorithms: Random Forest (RF), Gradient boosting
(GBM) and cubist. In addition, MODIS LST has been used to model the near-surface
permafrost temperature [29] in all ice-free areas in Antarctica and on Antarctic islands,
using reanalysis data. Intercomparison studies between MODIS LST and Ta in situ data
have also been carried out; for example, Wang et al. [30], based on the monthly average
values and measurements of Ta at 1 m and 2 m, in stations in Eastern Antarctica.

Analysis of numerous authors who have studied temperature variability [31–44]
demonstrates the complexity of Antarctic climatology, on both a spatial and temporal scale,
observed on and around the Antarctic Peninsula (AP), it is essential to continue monitoring
it with both in situ Ta and satellite LST data. But the in situ Ta data, although continuous
and precise, are spatially sparse, so the LST could help, after comparing with the Ta, to
extend the spatial coverage of these data, in spite of the known drastic reduction in LST
data due to the frequent cloudiness in the regions of the Antarctic. On the other hand, the
estimation of Ta from LST will be more precise as the LST data are more precise, so the
improvement of the LST data is essential, both with new methods and new sensors. In this
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scenario, the aim of this work is to estimate Ta from daytime and nighttime LST data at
Maritime Antarctica sites in the South Shetland Archipelago using empirical models, based
on the addition of spatiotemporal variables to LST. The need to use satellites and sensors to
estimate in situ data in polar areas is well known, given the impossibility of installing and
maintaining a dense network of stations in these areas. To date, the estimation of Ta from
MODIS 6 (C6) collection data has not been performed on Livingston Island. In the case of
Deception Island, Ta has not been estimated with any MODIS collection so far. In addition,
this work analyses the emissivity, taking into account that in C6 important changes were
introduced with respect to collection 5 (C5), especially in the emissivity adjustment.

Following the Introduction (Section 1), in Materials and Methods (Section 2) we
describe the study area, MODIS and in situ data, as well as the digital terrain model data
and methodology used to compare Ta with LST. The sections on Results, Discussion and
Conclusions are provided in Sections 3–5, respectively.

2. Materials and Methods

Figure 1 shows the analytical framework for estimating Ta from LST.
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Figure 1. Framework diagram of the study.

2.1. Study Area

This work focuses on the Livingston and Deception Islands, both in the South Shetland
Island (SSI) archipelago (Figure 2), which occupies an area of 3687 km2 and is in Maritime
Antarctica, approximately 120 km from the AP, separated from South America by the
Drake Passage and from the Antarctic continent by the Bransfield Strait. Livingston Island
(Figure 3), the second largest in the SSI, with an area of 974 km2, is located 110 km northwest
of Cape Roquemaurel, in Antarctica; 830 km south-southeast of Cape Horn and 820 km
southeast of the Diego Ramírez Islands, both in Chile, and 3000 km from the South Pole;
90% of its surface is covered with ice all year round [45]. The Juan Carlos I (JCI) Spanish
Antarctic base is located on this island. Deception Island (Figure 3), much smaller than
Livingston Island and of volcanic origin, has an average diameter of 15 km, and it is
110 km from AP. The Gabriel de Castilla (GDC) Spanish Antarctic base is located on it.
The climatology of the SSI and the AP, as well as the Antarctic continent in general, is
ideal for studying atmospheric turbulence and energy exchanges, radiative fluxes, snow
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drift, precipitation and accumulation mechanisms, among other phenomena that would
have an influence on the global climate, therefore these studies would facilitate forecasting
tasks [46]. These characteristics, together with the fact that the permafrost in the SSI
presents a very complex distribution [47], make the archipelago an important center for
monitoring meteorological variables, including Ta.
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Figure 3. RGB composites (4-3-2) of Landsat 8 (9 February 2020). Images are projected in WGS84 UTM20S.
Above, image of Livingston Island; bottom left, zoom image of the Hurd Peninsula with stations Juan
Carlos I (JCI), Reina Sofía (SOF), Johnsons Glacier (JG), Incinerador (INC) and Collado Ramos (CR), and,
on the right, Deception Island with station Gabriel de Castilla (GDC). In the case of the stations that had
two locations during the study period (JCI, INC and GDC), the current location is shown.
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2.2. MODIS LST

The MODIS sensor is onboard the Terra and Aqua satellites, which have sun-synchronous
orbits, with almost polar inclination [48,49], which allows for two images per day for each
satellite to be obtained [50]. The MOD11A1 (Terra Land Surface Temperature and Emissivity
Daily Global 1 km) and MYD11A1 (Aqua Land Surface Temperature and Emissivity Daily
Global 1 km) products provide daytime and nighttime Terra and Aqua LST data, respectively.
They were obtained with the Generalized Split Window (GSW) algorithm, from MODIS bands
31 and 32 data (10.78–11.28 µm and 11.77–12.27 µm, respectively) [51]. According to these
authors, GSW allows for greater precision and, furthermore, is less affected by the uncertainty
associated with the emissivity and optical properties of the atmosphere. In GSW, LST is
initially obtained using the following equation:

LST = b0 +

(
b1 + b2

1 − ε

ε
+ b3

∆ε

ε2

)Ti + Tj

2
+

(
b4 + b5

1 − ε

ε
+ b6

∆ε

ε2

)Ti − Tj

2
(1)

where ε and ∆ε are the mean and difference of emissivity values in MODIS bands 31 and 32,
i is band 31, j is band 32 and bk (k = 0–6) are coefficients that depend on the viewing zenith
angle, surface air temperature and atmospheric column water vapor, and were derived
from regression analysis of radiative transfer simulation data for LST values varying from
Ta – 16 K to Ta + 16 K [51,52].

Many improvements were introduced in Collection 6 (C6), such as the removal of
data contaminated by clouds at levels 2 and 3 [6]. Furthermore, for example, in C6, in
MOD11A1, LST values in all grids are from MODIS observations obtained under clear-sky
conditions [53]. It is known that, in remote sensing, LST can only be measured in clear
sky conditions, since the presence of clouds introduces biases. However, overcorrection,
especially from statistical methods, could also introduce errors. Specifically, in the GSW
algorithm, the most notable changes in C6 are related to the separation of the coefficients
to recover day and night LST over bare soil surfaces in latitudes from −38◦ to 49.5◦, the
emissivity differences in MODIS bands 31 and 32 over bare soil surfaces were adjusted and
incorporated the quadratic difference between brightness temperatures in bands 31 and
32 into the equation. In this way, in C6, LST is recovered using the following equation [52]:

LST = b0 +

(
b1 + b2

1 − ε

ε
+ b3

∆ε

ε2

)Ti + Tj

2
+

(
b4 + b5

1 − ε

ε
+ b6

∆ε

ε2

)Ti − Tj

2
+ b7

(
Ti − Tj

)2 (2)

where a quadratic term has been added to Equation (1) with the difference between the
brightness temperatures in bands 31 and 32 depending on the viewing angle [52]. The
MODIS data used in this work were obtained through the Google Earth Engine (GEE)
platform [54].

LST Data Quality Filters

MODIS LST product quality bits indicate some of the errors that may be present,
including cloud mask failures and emissivity errors. For this study, only the highest quality
data (QC = 00 in all bits) were selected. In addition, we filtered the data using the albedo
products. Considering that sometimes MODIS cloud mask fails and that, in addition,
the repercussion of these errors can increase in LST products, due to their lower spatial
resolution compared to the albedo MODIS products (1000 m and 500 m, respectively),
MOD11A1 and MYD11A1 data were filtered taking into account the information of the
Snow_Albedo_Daily_Tile layer of the MOD10A1 and MYD10A1 products, respectively,
and those corresponding to “clouds” were eliminated.

Once the previously explained filters were applied, some outliers were still observed.
It is known that these outliers can be caused by cloud pollution [11] and must be removed
to obtain robust LST validation statistics [55]. Likewise, previous studies indicate that this
problem can be solved through statistical methods [56,57]. Therefore, those values consid-
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ered outliers were eliminated here; that is, those that were outside the range between the
lower (Cl) and upper (Cu) dataset caps, calculated using Equations (3) and (4), respectively,

Cl = Q1 − 1.5(Q3 − Q1) (3)

Cu = Q3 + 1.5(Q3 − Q1) (4)

where Q1 and Q3 are the first and third quartile of the data. This method has been used to
detect outliers in MODIS LST studies [18,58–60].

2.3. In Situ Data

Ta data, at a height of ~2 m above ground, were taken from the AEMET stations Juan
Carlos I (JCI) and Johnsons Glacier (JG) on Livingston Island and Gabriel de Castilla (GDC)
on Deception Island, and from the PERMASNOW project stations Incinerador (INC), Reina
Sofía (SOF) and Collado Ramos (CR) on Livingston Island [61,62]. Ta data are obtained
every 10 min in JCI and GDC throughout the year and in JG from December to February,
whereas, during the rest of the year, they are obtained every half hour. In all cases, the
instruments have a precision of ±0.1 ◦C [63,64]. Daily mean Ta was only obtained at each
weather station if daily data were complete (n = 144 for 10-min data and n = 48 for half-
hourly data). Table 1 indicates the study period taken for each station. At INC and GDC
stations, only data corresponding to the current location (INC2 and GDC2, respectively)
were used, given the lack of MODIS quality data in GDC1 and instrument failures in INC1.
Data were filtered following Recondo et al. [64].

Table 1. Study period taken into account for the stations.

Station Latitude Longitude Operation Dates

JCI1 62◦39′47′′S 60◦23′16′′W 1 January 2000–30 December 2009
JCI2 62◦39′48′′S 60◦23′19′′W 31 December 2009–10 April 2020
JG 62◦40′16′′S 60◦21′51′′W 1 December 2006–24 January 2015

GDC2 62◦58′38′′S 60◦40′33′′W 12 February 2007–10 April 2020
INC2 62◦39′53′′S 60◦23′08′′W 23 January 2006–9 February 2016
SOF 62◦40′16′′S 60◦22′46′′W 23 February 2002–20 January 2015
CR 62◦40′03′′S 60◦23′32′′W 2 February 2006–9 February 2016

2.4. Digital Terrain Model Data

The topographic variables included in the model to estimate Ta were obtained from
the DEM ALOS World 3D (AW3D), published by the Japan Aerospace Exploration Agency,
Tokyo, Japan (JAXA) in 2016, which was generated using images from the Panchromatic
Remote-sensing Instrument for Stereo Mapping (PRISM) sensor, which is on board the
Advanced Land Observing Satellite (ALOS) [65]. The dataset used has a spatial resolution
of 30 m (AW3D30) [65].

2.5. Ta Estimation

To estimate Ta from LST, both variables were compared, using the daily mean Ta data
and MOD11A1 and MYD11A1 daytime and nighttime data. To quantify the goodness of fit,
the following statistics were used: R2 and residual standard error (RSE).

RSE =

√
∑(y − ŷ)2

v
(5)

where ŷ is the y value predicted by the model and v are the degrees of freedom, calculated as
the total number of observations minus the number of parameters. In addition to simple linear
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regressions, to estimate Ta, multiple linear regressions were used for each station, in which
variables from a harmonic model were included (Equation (6)), following Recondo et al. [64]:

Ta = c1 + c2LST + c3t + c4sin 2πt + c5cos 2πt (6)

where ci are constants, LST and Ta are in ◦C and t is time in decimal year units.
Then, we built a unique model including Ta from all the stations along with to-

pographic variables and other spatiotemporal variables (distance to the coast, latitude,
longitude and LST observation time), just as we did in a previous work [64]. Previous stud-
ies in other regions around the world have used spatiotemporal variables in the estimation
of meteorological variables from MODIS data [11,66,67]. The structure of our unique model
is based on Equation (7):

Ta = c1 + c2LST + c3t + c4sin 2πt + c5cos 2πt + c6c + c7s + c8h + c9r + c10a+c11H (7)

where ci are constants, LST and Ta are in ◦C; t is the time in decimal year units; c is the
curvature in m−1; s is the slope in degrees; h is the height in m; r is the roughness, calculated
as the variance of the slope [68], dimensionless; a is the aspect in radians and H is LST
observation time. Only statistically significant variables (p value ≤ 0.05) were included in
the final models obtained.

As a matter of fact, two unique models were built: one for all the stations including
GDC and another only for the Livingston Island stations. This separation is due to the
different characteristics of Deception Island, where in the summer most of the surface
is bare soil, unlike Livingston Island, where up to 90% usually remains covered with
snow/ice during that period [45,69]. On the other hand, although slight, there are also
some differences in terms of ground cover with mosses/lichens on both islands: while on
Deception Island, in the area near GDC, the presence of organic matter is negligible [70], on
Livingston the populations of D. antarctica and C. quitensis have been reported, although
the rate of demographic expansion is not very rapid [71].

Finally, the applied models were evaluated using the leave-one-out cross-validation
method (CV), based on the R2

CV, MAECV, RMSECV and Bias statistics.

MAE =
∑|yobserved − yestimated|

n
(8)

RMSE =

√
∑(yobserved − yestimated)

2

n
(9)

Bias = ∑(yobserved − yestimated)

n
(10)

where yobserved are the observed data, yestimated are the estimated data by a given model
and n is the total amount of data.

3. Results
3.1. Simple Linear Regression Ta-LST

Table 2 shows the results for the simple linear regression from MODIS daily day-
time and nighttime C6 values and in situ data for all stations. In our case, a better
fit is always achieved with daytime data (R2 average = 0.73) than with nighttime data
(R2 average = 0.56). If we analyze the spatial variation of the correlation, we see that, of
all the stations, the best behavior in terms of R2 is obtained in GDC2 (R2 = 0.79, with
Terra daytime data), followed by JCI2 (R2 = 0.78, with Terra and Aqua daytime data), JCI1
(R2 = 0.78, with Aqua daytime data) and CR (R2 = 0.77, with Terra and Aqua daytime data).
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Table 2. Results for simple linear regression (daily mean Ta-LST).

Station MODIS Data n R2 RSE (◦C)

JCI1

Terra-Day 54 0.68 2.58
Terra-Night 30 0.56 2.88
Aqua-Day 56 0.78 2.52

Aqua-Night 21 0.69 3.31

JCI2

Terra-Day 74 0.78 1.76
Terra-Night 29 0.60 2.71
Aqua-Day 65 0.78 1.86

Aqua-Night 27 0.71 2.93

JG

Terra-Day 23 0.64 1.53
Terra-Night 22 0.29 1.38
Aqua-Day 66 0.62 2.25

Aqua-Night Not applicable

INC2

Terra-Day 83 0.73 1.96
Terra-Night 48 0.63 2.24
Aqua-Day 87 0.73 2.46

Aqua-Night 45 0.62 2.82

SOF

Terra-Day 78 0.71 1.61
Terra-Night 83 0.54 2.20
Aqua-Day 190 0.62 2.61

Aqua-Night 44 0.44 3.37

CR

Terra-Day 56 0.77 2.32
Terra-Night 46 0.64 2.36
Aqua-Day 75 0.77 2.27

Aqua-Night 33 0.62 3.43

GDC2

Terra-Day 58 0.79 2.43
Terra-Night 31 0.56 4.29
Aqua-Day 66 0.76 2.29

Aqua-Night 35 0.37 3.35

In summary, all stations show a good fit with the daytime data, with an R2 = 0.62–0.79.
On the other hand, the mean RSE for daytime data is 2.18 ◦C, with only two stations
showing errors greater than 2.5 ◦C (SOF, MYD11A1, RSE = 2.61 ◦C and JCI1, MOD11A1,
RSE = 2.58 ◦C). The range of RSE is between 1.53 and 2.58 ◦C. Likewise, although R2 average
values of the daytime data from Terra and Aqua are similar (0.73 and 0.72, respectively),
Terra data present, with an average of 2.03 ◦C, lower RSE values than those from Aqua, the
average RSE of which increases to 2.32 ◦C. For this reason, we can affirm that the daytime
data from Terra present a better agreement with in situ data.

3.2. Models of Ta Based in Multiple Linear Regressions

In relation to the simple linear regression analyzed in the previous section, our results,
shown in Table 3, improve, in general, with the addition of new variables.

In all cases in which at least one of the three added variables was significant, the
R2 values are higher. As in simple regression, here, too, better results were obtained
with daytime data (R2 average = 0.75) than with nighttime data (R2 average = 0.60), and
specifically with Terra daytime data (R2 average = 0.76).

On the other hand, when applying the model obtained with Equation (6), RSE values
obtained are in the range of 1.34 to 3.35 ◦C, except in GDC2, with the nocturnal data from
Terra, where they reach 4.29 ◦C. In fact, if we exclude JCI1 and GDC2, at least with Terra
daytime data at all stations, the RSE values are at the precision level considered exact (1 to
2 ◦C) according to Benali et al. [11]. Subsequently, spatiotemporal variables were added to
the model of Equation (6), with the purpose of obtaining two unique models, both from
Equation (7), the first of them only with Livingston Island stations (Table 4), and the second
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including GDC (Table 5). In both cases, the following significant explanatory variables
were added to the model: curvature (c6, c), slope (c7, s), height (c8, h), roughness (c9, r),
aspect (c10, a) and time of LST observation (c11, H). Obtaining two unique models allows
for mapping the behavior of the Ta in the study area.

Table 3. Results of the multiple linear regression for the estimation of Ta for each station, following
Equation (6).

Station MODIS Data n R2 RSE (◦C) c1 c2 (LST) c3 (t) c4 (sin) c5 (cos)

JCI1

Terra-Day 54 0.71 2.10 659 ± 287 0.56 ± 0.06 −0.33 ± 0.14 0 0
Terra-Night 30 0.56 2.88 1.31 ± 1.66 0.64 ± 0.13 0 0 0
Aqua-Day 56 0.78 2.52 −1.53 ± 0.39 0.61 ± 0.04 0 0 0

Aqua-Night 21 0.69 3.31 4.38 ± 2.20 0.98 ± 0.16 0 0 0

JCI2

Terra-Day 74 0.80 1.48 0.5 ± 0.3 0.69 ± 0.05 0 0 −1.5 ± 0.5
Terra-Night 29 0.60 2.71 1.30 ± 1.07 0.59 ± 0.09 0 0 0
Aqua-Day 65 0.78 1.86 −0.57 ± 0.27 0.51 ± 0.03 0 0 0

Aqua-Night 27 0.71 2.93 2.39 ± 1.30 0.75 ± 0.10 0 0 0

JG

Terra-Day 23 0.64 1.53 −1.15 ± 0.39 0.39 ± 0.05 0 0 0
Terra-Night 22 0.53 1.66 0.5 ± 1.3 0.29 ± 0.12 0 0 3.0 ± 1.2
Aqua-Day 66 0.67 2.21 −2.4 ± 0.5 0.40 ± 0.04 0 1.5 ± 0.5 0

Aqua-Night Not applicable

INC2

Terra-Day 83 0.77 1.34 −537 ± 126 0.57 ± 0.03 0.27 ± 0.06 0 0
Terra-Night 48 0.63 2.24 1.30 ± 0.82 0.64 ± 0.06 0 0 0
Aqua-Day 87 0.76 2.25 −611 ± 178 0.54 ± 0.03 0.30 ± 0.09 0 0

Aqua-Night 45 0.66 2.45 −741 ± 273 0.81 ± 0.09 0.37 ± 0.14 0 0

SOF

Terra-Day 78 0.75 1.71 −392 ± 127 −0.55 ± 0.04 0.19 ± 0.06 0 0
Terra-Night 83 0.54 2.20 −0.68 ± 0.72 0.61 ± 0.06 0 0 0
Aqua-Day 190 0.65 2.78 −231 ± 115 0.60 ± 0.05 0.11 ± 0.006 0.7 ± 0.3 1.4 ± 0.6

Aqua-Night 44 0.56 2.77 −4 ± 2 0.57 ± 0.12 0 −5.1 ± 1.9 0

CR

Terra-Day 56 0.81 1.75 −590 ± 163 0.57 ± 0.04 0.29 ± 0.08 0 0
Terra-Night 46 0.64 2.36 0.78 ± 1.01 0.63 ± 0.07 0 0 0
Aqua-Day 75 0.81 2.07 −498 ± 178 0.67 ± 0.06 0.25 ± 0.09 0 −1.8 ± 0.7

Aqua-Night 33 0.75 2.76 −1245 ± 322 0.74 ± 0.09 0.6 ± 0.2 0 0

GDC2

Terra-Day 58 0.82 2.30 1.0 ± 0.4 0.84 ± 0.08 0 0 −2.3 ± 0.8
Terra-Night 31 0.56 4.29 5.39 ± 1.96 0.89 ± 0.16 0 0 0
Aqua-Day 66 0.76 2.29 −0.22 ± 0.47 0.60 ± 0.04 0 0 0

Aqua-Night 35 0.37 3.35 0.62 ± 1.74 0.56 ± 0.15 0 0 0

In the case of the unique model that excludes GDC2, if we compare its results with
those obtained after individually applying the model to each of the stations, we can see
increases in R2 values with respect to the daytime and nighttime Terra data obtained at JG
station. Likewise, the single model shows lower RSE values than the stations in several
cases, for example, if compared to JCI1, the model error decreases for all MODIS LST data,
presenting values below 2.5 ◦C, except for the Aqua-night data, where it reaches a value
of 2.98 ◦C. Regarding the unique model that includes Deception Island, the correlation
of Aqua-night data with Ta data improves with respect to the values obtained in GDC2
with the model of Equation (6). Furthermore, with respect to this station, the unique model
yielded lower RSE values for all MODIS LST data, except for Aqua daytime data. However,
in general, the performance of the model that includes GDC2 is slightly lower than the
model that does not. Figures 4 and 5 show the Ta maps generated for 16 January 2014 from
the models with and without the GDC station, respectively.



Remote Sens. 2024, 16, 1084 11 of 25

Table 4. Unique model to estimate Ta from LST, excluding GDC, following Equation (7).

MODIS Data n R2 RSE (◦C) c1 (◦C) c2 (LST) c3 (t) c4 (sin) c5 (cos) c6 (c) c7 (s) c8 (h) c9 (r) c10 (a) c11 (H)

Terra-Day 368 0.76 1.56 −184 ± 53 0.67 ± 0.03 0.10 ± 0.03 0 −1.3 ± 0.3 0 20 ± 9 −0.03 ± 0.01 572 ± 271 −0.7 ± 0.3 −0.7 ± 0.2
Terra-Night 258 0.61 2.30 2.1 ± 0.5 0.59 ± 0.03 0 0 1.7 ± 0.5 156 ± 34 −3.58 ± 1.09 0 0 0 0
Aqua-Day 539 0.74 2.34 −197 ± 63 0.59 ± 0.03 0.10 ± 0.03 0.39 ± 0.17 −1.1 ± 0.3 329 ± 85 −7 ± 2 0.02 ± 0.01 0 −0.36 ± 0.16 0

Aqua-Night 191 0.69 2.98 −442 ± 136 0.73 ± 0.05 0.22 ± 0.07 −3.8 ± 0.9 0 0 0 0 0 0 −0.07 ± 0.03

Table 5. Unique model to estimate Ta from LST, including GDC, following Equation (7).

MODIS Data n R2 RSE (◦C) c1 (◦C) c2 (LST) c3 (t) c4 (sin) c5 (cos) c6 (c) c7 (s) c8 (h) c9 (r) c10 (a) c11 (H)

Terra-Day 426 0.76 1.71 −143 ± 50 0.69 ± 0.03 0.07 ± 0.02 0 −1.3 ± 0.2 141 ± 24 −2.8 ± 0.7 0 0 0 −0.60 ± 0.19
Terra-Night 289 0.59 2.48 2.4 ± 0.5 0.61 ± 0.03 0 0 1.6 ± 0.6 167 ± 34 −3.88 ± 1.14 0 0 0 0
Aqua-Day 560 0.74 2.36 −182 ± 58 0.59 ± 0.03 0.09 ± 0.03 0.53 ± 0.16 −1.1 ± 0.03 142 ± 30 0 0 −78 ± 33 0 0

Aqua-Night 226 0.65 2.88 −434 ± 113 0.72 ± 0.04 0.22 ± 0.06 0 4.3 ± 0.8 0 0 0 0 0 −0.06 ± 0.02
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3.3. Validation

All results were validated using the R2
CV, RMSECV and MAECV statistics. It is known

that the use of cross-validation techniques favors obtaining more reliable results [28,64].
Generally, as expected, in validation, the regression values are lower, and the errors are
higher. The same behavior is maintained here as in the simple linear regression analysis
(Table 6): the fit between MODIS LST and Ta is better with daytime data than with night-
time data (R2

CV average = 0.71 and 0.52, respectively). Regarding the stations, the best
agreement is obtained in GDC2 (R2

CV = 0.77, bias = −0.01 with daytime data from Terra),
JCI2 (R2

CV = 0.76, for daytime data from Terra and Aqua with bias = −0.04 and −0.11,
respectively), JCI1 (R2

CV = 0.76, bias = −0.12 with Aqua daytime data) and CR (R2
CV = 0.76,

bias = −0.06 with Aqua daytime data). In terms of errors, except in JCI1, Terra daytime
data show the lowest values, both for RMSECV and MAECV, following the same behavior
of RSE in simple linear regression. RMSECV and MAECV values are in most cases below
3 ◦C, and even below 2 ◦C.

Table 6. Simple linear regression cross validation results.

Station MODIS Data n R2
CV RMSECV (◦C) MAECV (◦C) Bias (◦C)

JCI1

Terra-Day 54 0.66 2.70 2.12 −0.07
Terra-Night 30 0.49 3.19 2.54 0.01
Aqua-Day 56 0.76 2.61 2.03 −0.12

Aqua-Night 21 0.63 3.65 3.03 −0.08

JCI2

Terra-Day 74 0.76 1.82 1.44 −0.04
Terra-Night 29 0.56 2.71 2.01 0.0003
Aqua-Day 65 0.76 2.33 1.69 −0.11

Aqua-Night 27 0.67 2.53 2.14 0.03

JG

Terra-Day 23 0.56 1.88 1.43 0.21
Terra-Night 22 0.24 2.10 1.62 −0.37
Aqua-Day 66 0.60 2.30 1.84 −0.04

Aqua-Night Not applicable

INC2

Terra-Day 83 0.72 2.33 1.75 −0.11
Terra-Night 48 0.59 2.72 2.04 0.07
Aqua-Day 87 0.72 2.93 2.22 −0.24

Aqua-Night 45 0.58 3.33 2.54 −0.07

SOF

Terra-Day 78 0.70 2.35 1.72 0.11
Terra-Night 83 0.53 2.39 1.87 −0.03
Aqua-Day 190 0.61 2.85 2.24 −0.03

Aqua-Night 44 0.41 3.93 2.90 0.11

CR

Terra-Day 56 0.75 2.19 1.77 −0.07
Terra-Night 46 0.61 2.56 1.97 0.01
Aqua-Day 75 0.76 2.58 1.97 −0.06

Aqua-Night 33 0.58 3.55 2.69 −0.25

GDC2

Terra-Day 58 0.77 2.19 1.81 −0.01
Terra-Night 31 0.50 3.48 3.05 −0.05
Aqua-Day 66 0.74 2.47 2.02 −0.07

Aqua-Night 35 0.32 3.27 2.50 −0.18

Table 7 shows the results of the cross-validation of the models for each of the stations.
R2

CV highest values were obtained with Terra daytime data with which, by station, the
best results are found in GDC2, JCI2 and CR, stations in which, together with JG, also have
the lowest values of the RMSECV. Tables 8 and 9 show the results of the cross-validation,
excluding GDC2 and with this station within the unique model, respectively. As can
be seen, in the validation of both models, worse results are also obtained and the best
agreements are obtained with Terra and Aqua daytime data, sets in which the highest R2

CV
values and the lowest errors are obtained.
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Table 7. Results of cross-validation of the models for each of the stations.

Station MODIS Data n R2
CV RMSECV(◦C) MAECV(◦C) Bias (◦C)

JCI1

Terra-Day 54 0.67 2.65 2.01 −0.08
Terra-Night 30 0.49 3.19 2.54 0.01
Aqua-Day 56 0.76 2.61 2.03 −0.12

Aqua-Night 21 0.63 3.65 3.03 −0.08

JCI2

Terra-Day 74 0.78 1.77 1.35 −0.01
Terra-Night 29 0.56 2.71 2.01 0.0003
Aqua-Day 65 0.76 2.33 1.69 −0.11

Aqua-Night 27 0.67 2.53 2.14 0.03

JG

Terra-Day 23 0.56 1.88 1.43 0.21
Terra-Night 22 0.41 1.81 1.52 −0.12
Aqua-Day 66 0.63 2.19 1.77 −0.01

Aqua-Night Not applicable

INC2

Terra-Day 83 0.75 2.20 1.59 −0.04
Terra-Night 48 0.59 2.72 2.04 0.07
Aqua-Day 87 0.74 2.83 2.08 −0.26

Aqua-Night 45 0.61 3.20 2.44 0.07

SOF

Terra-Day 78 0.73 2.23 1.68 0.06
Terra-Night 83 0.53 2.39 1.87 −0.03
Aqua-Day 190 0.63 2.77 2.19 0.02

Aqua-Night 44 0.48 3.67 2.80 −0.05

CR

Terra-Day 56 0.78 2.03 1.61 −0.03
Terra-Night 46 0.61 2.56 1.97 0.01
Aqua-Day 75 0.79 2.41 1.87 −0.06

Aqua-Night 33 0.70 2.96 2.25 −0.14

GDC2

Terra-Day 58 0.80 2.06 1.73 0.01
Terra-Night 31 0.50 3.48 3.05 −0.05
Aqua-Day 66 0.74 2.47 2.02 −0.07

Aqua-Night 35 0.32 3.27 2.50 −0.18

Table 8. Unique model cross-validation results (excluding GDC2).

MODIS Data n R2
CV RMSECV (◦C) MAECV (◦C) Bias (◦C)

Terra-Day 368 0.75 2.19 1.60 0.01
Terra-Night 258 0.59 2.51 1.97 0.01
Aqua-Day 539 0.73 2.61 2.00 −0.07

Aqua-Night 191 0.67 3.06 2.40 −0.03

Table 9. Unique model cross-validation results (including GDC2).

MODIS Data n R2
CV RMSECV (◦C) MAECV (◦C) Bias (◦C)

Terra-Day 426 0.75 2.18 1.61 0.02
Terra-Night 289 0.58 2.63 2.10 0.04
Aqua-Day 605 0.73 2.59 1.99 −0.07

Aqua-Night 226 0.64 3.13 2.42 −0.01

4. Discussion

Previous studies have shown that MODIS LST products can be used to estimate Ta in
Antarctica. With simple linear regression, R2 ≥ 0.6 in more than 82 % of cases. This overall
result is consistent with other studies in the area. For example, Wang et al. [35] found, under
clear sky conditions, a statistically significant correlation (R2 = 0.41–0.98) between monthly
averaged MODIS LST Collection 5 (C5) data and in situ data from eight stations over the
Lambert Glacier Basin, East Antarctica, between 2000 and 2009, over a Ta range of −70 ◦C to
−15 ◦C. Our R2 values, taking into account that Ta and LST are different magnitudes, are in
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the range of those obtained in similar studies in different regions with MODIS, and also with
other sensors, for example: Urban et al. [25] compared daytime C5 MODIS LSTs and daily
mean Ta from ≈600 stations on the Pan-Arctic Scale (>60◦N), and obtained an R2 = 0.85 and
R2 = 0.64, for a Ta range from −60 to 0 ◦C, and from 0 to 30 ◦C, respectively; these authors
also compared LST products from (A)ATSR, MODIS and AVHRR, concluding that MODIS
LSTs had the highest agreement with Ta. Recondo et al. [66], who obtained an R2 = 0.87
comparing daytime Terra-MODIS data and daily mean Ta from 331 stations in peninsula
Spain; and Kawashima et al. [72] obtained R2 values ≈ 0.76 from Landsat data at several of
their stations in the Kanto plain and surrounding mountainous area, in central Japan. Our
minimum value is equal to the minimum R2 obtained by Wang et al. [30] between daytime
MODIS data observed LST and air temperature 2 m above ground level, for Antarctica. Also,
our error values are only slightly higher than those obtained by Duan et al. [56], who found
that, with daytime data, MODIS LST C6 was well correlated with in situ LST, with bias < 0.2 K
and RMSE < 1.3 K. However, it must be taken into account that these authors compared
MODIS LST with LST calculated with in situ data, a magnitude equivalent to MODIS LST;
therefore, a better agreement between the two would be expected than that obtained with Ta,
given the differences between these variables [19,20]. Additionally, Duan et al. [56] analyzed
data from areas with different cover types. Thus, the proximity of our error values to those
obtained by these authors is indicative of the daytime MODIS measurement quality in our
study area and of the filters applied.

On the other hand, with nighttime data the fit between MODIS and in situ values is worse.
R2 values are in the range of 0.29 (JG, MOD11A1) to 0.71 (JCI2, MYD11A1) and RSE values are
in the range of 1.38 (JG, MOD11A1) to 4.29 ◦C (GDC2, MOD11A1). This worse fit could be due
to the effects of clouds on MODIS LST estimation, since cloud detection error rates are higher
at night than those achieved during the day [73–77], and undetected clouds introduce errors
in MODIS nighttime LST estimate as stated by Zhang et al. [78]. These failures in MODIS
cloud detection algorithm cause the sensor to estimate an LST value that actually corresponds
to the temperature of the clouds and not to the Earth’s surface temperature, which leads,
according to Westermann et al. [79], to erroneous measurements, with the consequent bias.
In fact, in other polar regions, such as Svalbard, considerably higher error values have been
obtained on cloudy days (7 K) than on clear days (3 K) when comparing MODIS LST with Ts
measurements [75]. This masking effect of the in situ measurement real value had already
been described for LST in Siberia [80] and it has been verified that the same occurs with the
albedo in our study area: the cloud mask failure can cause MODIS estimate to correspond to
cloud albedo values and not snow albedo values [81].

Our study area presents high cloudiness, being close to 60◦S, where it is estimated that
there is cloudiness between 85% and 90% of the year [82]. Specifically, in the SSI archipelago,
abundant cloudiness is related to the dynamic circulation of air masses and atmospheric
fronts [83]. It has also been reported for other areas that MODIS products were largely
contaminated by frequent cloud cover [84,85]. In our case, it must be taken into account
that to minimize the cloudiness effect, our LST data were also filtered using MOD10A1 and
MYD10A1 data, given their higher spatial resolution. Furthermore, although these results
are consistent with those described for these same stations—except GDC—for the multiple
linear regressions of MODIS C5 data, with C5 good results were not obtained in the simple
linear regression (R2 ≤ 0.4) [64]. Therefore, the results presented here corroborate an
improvement in MODIS LST C6 product performance.

Previous studies have suggested that the better results obtained with C6 compared to
C5 could be related to the improvements in MODIS emissivity data. Taking into account
the importance of emissivity to estimate LST from satellites [86], we compared the C5 and
C6 mean emissivity values of bands 31 and 32, as well as the mean and the difference of
both bands for all stations (Figures 6–9), except for GDC, for which we did not have C5
data. We included the mean and the difference because they were both parts of the equation
for calculating MODIS LST using the GSW. The emissivity value of each band for each
station was calculated, following the criteria of previous studies [56], as the average of the
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emissivity values for the entire study period using the dates with data after applying all of
the filters described in Section 2.3.
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As is well known, emissivity varies with wavelength or soil type, although it has
also been suggested that soil moisture or surface viewing geometry may influence it [87].
Specifically, on snow-covered surfaces, the emissivity varies with depth, density and grain
size [51,88]. The behavior described by Salisbury et al. [89] was that the snow emissivity
decreased both with increasing particle size and with increasing snow density, while
melting contributed to an increase in emissivity. However, it is very difficult to analyze the
effects of grain size change on snow emissivity, since such information is not available on a
large scale [90].

Figure 6 shows the mean emissivity values of bands 31 and 32, as well as the mean
and the difference of both bands for each station for daytime Terra data with C5 and C6.
The values of bands 31 and 32 are in the same range in both collections (band 31: between
0.989 and 0.992 and band 32: between 0.987 and 0.989). In the case of the means of both
bands, the behaviors of C5 and C6 are also very similar: in INC2 and JCI2, both collections
present the same value (0.988) and in the rest of the stations the C5 values are far from
those of C6 only in |0.001|. Regarding the differences (band 31–band 32), the results of
both collections are very close for all stations, especially for CR, SOF and JG, where C5
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and C6 are separated by 0.0002, 0.0003 and −0.0004, respectively. If we examine R2 values
of Terra C6 daytime data for the different stations on Livingston Island, we find that the
best agreement occurs in JCI2 (R2 = 0.78), followed by CR (R2 = 0.77), INC2 (R2 = 0.73),
SOF (R2 = 0.71), JCI1 (R2 = 0.68) and JG (R2 = 0.64). On the other hand, with C5 values, the
simple linear regression between MODIS LST and Ta of each station shows a low R2 for all
the stations (R2 ≤ 0.4), values that, at least taking these data into account, would not be
justified by problems only related to emissivity in C5.
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Figure 7 shows C5 and C6 emissivity values with Terra nighttime data. The values
from both collections are still very close. For example, in the case of the band 32 values (to
the right, top, in the figure) and the band 31 and 32 mean values (to the left, bottom, in the
figure) the differences between the emissivity values of both collections for all stations are
in the range of 0 to |0.001|, except for station GJ, where it is 0.002. Emissivity values with
the Aqua data are shown in Figure 8. The difference between the values of bands 31 and 32
(to the right, bottom, in the figure) is in the range of 0 (CR and SOF) to −0.002 (JCI1). In
addition, when analyzing the mean of both bands (to the left, below, in the figure) we find
that at all the stations C5 and C6 values are separated by |0.001|, except for JCI1, where
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the C6 mean values exceed that of C5 by 0.003. Finally, Figure 9 shows the results for the
Aqua nighttime data, where C5 and C6 emissivity behavior is also similar. For example,
the mean values of both bands (to the left, bottom, in the figure) differ in this case in both
collections in the range 0 to |0.001|, except in JG, where the value of C5 exceeds that of C6
by 0.004. In all cases, the JG value is not representative due to the lack of nighttime Aqua
data at this station.
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As can be seen, the discrepancies in the emissivity values are not conclusive to explain
the better or worse correlation of MODIS LST with respect to the in situ data, either
separately from the values of bands 31 and 32 nor from their means and differences.
Although Wan [52] indicated that the GSW algorithm is more sensitive to the change in the
difference in emissivity values in bands 31 and 32 than to the change in their mean, this
behavior is not evident in our data, because although the correspondence with the in situ
data is worse with the C5 data, there are no big differences in the emissivity behavior for
both collections. It has been described that the highest and most unreliable uncertainties in
emissivity are found beyond the 10.50 µm to 12.50 µm atmospheric window that MODIS
uses for GSW algorithm retrievals [91]. This allows us to state that, for our data, the
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emissivity of the surface is not the main factor that generates the discrepancy between the
MODIS LST of C5 and C6, which is consistent with what was described by Duan et al. [56].
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The stations where MODIS achieves the best agreement with the in situ data are, in
this order, GDC2 (R2 = 0.82, with Terra daytime data), CR (R2 = 0.81, with Terra and Aqua
daytime data) and JCI2 (R2 = 0.80, using Terra daytime data). In these stations, R2 values
contrast with those obtained for the study area with data from C5, where the R2 average is
0.53 (with daytime data), being even lower with nighttime data (R2 average = 0.49) [64].
Our results are also superior to those obtained in other studies estimating Ta from MODIS
LST for Antarctica, such as Meyer et al. [28], who also used other variables besides to LST,
with data from 32 stations distributed in continental Antarctica (R2 = 0.78) and in two of the
stations studied by Wang et al. [30] in the Lambert Glacier Basin in East Antarctica using
MODIS daytime LST data (LGB00 and LGB20, with R2 = 0.62 and R2 = 0.74, respectively).
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With respect to cross-validation, as in the case of C5 data [64], the worst results are
also obtained with C6 with the nighttime data. The problems that MODIS presents in
cloud detection have already been commented on in previous sections. The validation of
the two unique models confirms that our results are within the range of values obtained
with the MODIS LST product assessment for Antarctica and other study areas. Thus, for
example, if we compare our results with the model obtained by Shi et al. [92] using LST
MODIS data at nine sites around the world—America (3), Europe (1), Africa (1), Oceania
(2) and Asia (2)—we can see that while our R2

CV average values (0.69 for the model that
excludes the GDC2 station and 0.68 including it) are lower than the average value obtained
in these nine regions (R2 = 0.93), these authors reported higher errors (MAE = 2.1 ◦C,
RMSE = 2.7 ◦C) than those obtained in our study in the cross-validation with daytime data
(MAECV = 1.60 ◦C and 2.00 ◦C, RMSECV = 2.19 ◦C and 2.61 ◦C, in the unique model without
GDC2; MAECV = 1.61 ◦C and 1.99 ◦C, RMSECV = 2.18 ◦C and 2.59 ◦C, in the unique model
with GDC2). MODIS LST products have also been evaluated, for example, in Northeast
China by Yang et al. [93], who obtained the following results with their best model for Ta
average: R2 = 0.94, RMSE = 3.60 ◦C and MAE = 2.80 ◦C. As can be seen, although R2

CV
values obtained here are lower than those obtained in other study areas, cross-validation
yields smaller errors, which is indicative of the performance of the models we evaluated.

Specifically in polar areas, in the Arctic, Westermann et al. [79] found deviations from
weekly averages with MODIS LST data versus Svalbard in situ data to be less than 2 K,
which is consistent with the MAECV average value obtained here for all data (1.99 ◦ C
and 2.03 ◦C for the models without GDC2 and with GDC2, respectively), and especially
excepting Aqua nighttime data (1.9 ◦C for both models). Similarly, our results yield a
RMSECV average (2.59 ◦C and 2.63 ◦C, in the unique model, without GDC2, and including
it, respectively), which is consistent with the 3 K error between MODIS LST and temperature
of surface measured in situ during the period between 2002 and 2009, also in Svalbard
by Westermann et al. [94]. Note that, on the one hand, higher errors would be expected
in our study area, given the differences between Ta and surface temperature, and that,
furthermore, we could expect even worse agreements given the range of temperatures in
SSI, since the performance of MODIS measurements degrades as LST values increase and
approach 0 ◦C [94].

Specifically in the studies on Antarctica, Meyer et al. [28] obtained as best results an
R2

CV value of 0.71 and an RMSECV of 10.51 ◦C, with Ta data from 32 stations distributed
in continental Antarctica. In the case of R2

CV, although its results are slightly higher than
those obtained here for all data (R2

CV average = 0.69 and 0.68, in the unique model without
GDC2 and with that station, respectively), our daytime data show better agreement in
both cases (R2

CV = 0.75 and 0.73, Terra and Aqua, respectively). On the other hand, our
errors, calculated from RMSECV are significantly lower, since they are in a range between
2 ◦C and 3 ◦C, except with Aqua nighttime data, which, however, do not exceed 3.13 ◦C.
Regarding the MAECV, our errors do not exceed 2 ◦C, except with Terra nighttime data in
the model without GDC2 and with Terra and Aqua nighttime data in the model with GDC2.
These error values are also below the 3.4 ◦C obtained by Wang et al. [30] from the mean of
the standard deviation of the differences between LST MODIS and Ta with data from the
Lambert Glacier Basin. Another factor that should be taken into account when evaluating
the performance of the models obtained here is that MODIS LST daily products provide
data with a spatial resolution of 1 km. At both the Livingston and Deception Islands there
is the advantage that at most sites there are no pixel coverage differences, thus minimizing
the problem of surface coverage heterogeneity that has been noted as a potential biasing
factor for MODIS LST studies in permafrost areas [79].

5. Conclusions

In this study, we estimated Ta from daytime and nighttime C6 MODIS LST data at sites
in the SSI archipelago, in Maritime Antarctica, using empirical models. We obtained a clear
improvement in the estimation Ta from LST using C6 over C5. The abundant cloudiness
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that affects latitudes below 60◦S made it necessary to use high temporal resolution satel-
lites/sensors, and MODIS data were thus appropriate. With Terra and Aqua LST MODIS
data, R2 averages of 0.73 and 0.56 were obtained with the daytime and nighttime data,
respectively. In addition, errors were consistent with the results of the correlation between
both variables, in different study areas and also with other satellites and/or sensors and
constituted evidence of the good agreement between Ta and LST, taking into account the
difference between both variables. The addition of predictive variables improved the corre-
lations provided that at least one of them was significant. The best results were obtained
with Terra daytime data. In addition, RSE values were, at all stations, except at JCI1 and
GDC2, at the precision level considered exact (from 1 to 2 ◦C).

The unique models improved the correlation and reduced the errors with respect
to the results obtained at some stations. However, although the application of a unique
model did not allow the same level of accuracy to be achieved for the estimation of Ta in all
cases, it did describe the behavior of temperature in Maritime Antarctica, where it is not
possible to install and maintain a dense network of weather stations. In general, the results
of the cross-validation corroborated the improvements obtained. In summary, regardless of
the fact that future improvements in MODIS products should pay special attention to the
distinction between snow and thin clouds, which would allow for improvements in cloud
mask algorithms, the satisfactory results obtained here with the applied filters indicate that
MODIS data can be used to study Ta in the area, as these filters contribute to the reduction
of uncertainties in the modeling of Ta from satellites.
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