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Abstract: Non-side-looking airborne radar provides important applications on account of its all-round
multi-angle airspace coverage. However, it suffers clutter range dependence that makes the samples
fail to satisfy the condition of being independent and identically distributed (IID), and it severely
degrades traditional approaches to clutter suppression and target detection. In this paper, a novel
reweighted extreme learning machine (ELM)-based clutter suppression and range compensation
algorithm is proposed for non-side-looking airborne radar. The proposed method involves first
designing the pre-processing stage, the special reweighted complex-valued activation function
containing an unknown range compensation matrix, and two new objective outputs for constructing
an initial reweighted ELM-based network with its training. Then, two other objective outputs, a new
loss function, and a reverse feedback framework driven by the specifically designed objectives are
proposed for the unknown range compensation matrix. Finally, aiming to estimate and reconstruct
the unknown compensation matrix, special processes of the complex-valued structures and the
theoretical derivations are designed and analyzed in detail. Consequently, with the updated and
compensated samples, further processing including space–time adaptive processing (STAP) can be
performed for clutter suppression and target detection. Compared with the classic relevant methods,
the proposed algorithm achieves significantly superior performance with reasonable computation
time. It provides an obviously higher detection probability and better improvement factor (IF).
The simulation results verify that the proposed algorithm is effective and has many advantages.

Keywords: clutter suppression; range compensation; reweighted extreme learning machine;
non-side-looking airborne radar

1. Introduction

With the significant advantages of the moving platform, airborne radar is highly
valuable. However, the targets to be detected by airborne radar are covered by clutter,
thus suppressing the clutter becomes the main challenge, whose core solution is space–
time adaptive processing (STAP) [1]. Sufficient independent and identically distributed
(IID) samples are essential for the convergence of STAP that involves a covariance matrix
estimation. Unfortunately, IID samples are always insufficient because of the complex non-
uniform clutter especially caused by non-side-looking radar arrays, which is common for
airborne radar and contributes to all-round multi-angle airspace coverage [2,3]. In this case,
the clutter characteristics appear to be range-dependent and the corresponding samples
are unable to satisfy the IID condition; thus, STAP degrades seriously [4].

To solve this, range compensation methods such as Doppler warping (DW) [5,6],
angle-Doppler compensation (ADC) [7], and registration-based compensation (RBC) [8]
are effective and classic. In different domains, for example, one-dimension in DW and
two-dimension in ADC, these methods aim to align the clutter spectrum centers for all of

Remote Sens. 2024, 16, 1093. https://doi.org/10.3390/rs16061093 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16061093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2205-8759
https://orcid.org/0000-0001-5842-3629
https://orcid.org/0000-0002-1865-6214
https://doi.org/10.3390/rs16061093
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16061093?type=check_update&version=2


Remote Sens. 2024, 16, 1093 2 of 22

the range cells and overcome the non-uniformity of clutter. Therefore, the performance of
the STAP processor is improved. However, they are usually non-adaptive methods; further-
more, they are sensitive to the complex external clutter environment such as topographic
fluctuation, whose clutter non-uniformity is also caused by the external environment and
makes the range compensation incorrect when estimating the spectrum centers.

Another kind of approach to address the problem of insufficient IID samples is dimen-
sionality reduction [9–12], rank reduction [13–15], sparsity representation (SR) [16–21], and
knowledge-aided (KA) [22] methods, aiming to directly decrease the sample requirement
for clutter characteristic estimation in a STAP processor. For dimensionality reduction,
the joint domain localized (JDL) [9] and extended factored algorithm (EFA) [10] methods
reduce the sample demand through the adjacent two-dimensional auxiliary beam and the
extended Doppler filter spatial weights, respectively. In addition, the method based on a
sum–difference beam [11] and the method based on multiple Doppler channels [12] extend
the dimensionality reduction approaches for insufficient IID samples. In terms of rank
reduction, the cross spectral metric (CSM) [13] algorithm picks a set of eigenvectors as the
space–time degrees of freedom, and the eigenvectors can maximize the cross spectra for
the output signal-to-clutter ratio (SCR). Moreover, in multistage Wiener filter (MWF) [14]
algorithms, the Ritz value estimation (RVE) scheme [15] avoids eigenvalue decomposition
and reduces sample requirements, transforming the vector weight solution into the multi-
ple scalar weight one. However, the methods mentioned above usually lose a part of the
signal information and are sensitive to the degree of sample non-uniformity; furthermore,
for a non-side-looking array, they cannot solve the clutter range dependence directly.

The corresponding SR-STAP methods, including those based on multiple focal un-
derdetermined system solver (M-FOCUSS) [16], parameter-search orthogonal matching
pursuit (PSOMP) [17], sparse Bayesian learning (SBL) [18], and local-search clutter sub-
space (LSCS) [19], achieve the sparsity solution of the representation of clutter, which is
recovered with small IID samples under iterative optimization. A spectrum-aided SR-STAP
method [20] reduces the computing burden with the design of a reduced dictionary di-
mension. Additionally, KA-STAP [22] obtains prior information from the carrier and the
radar system, aiming to pre-estimate clutter-plus-noise covariance matrix (CNCM) and
pre-whiten the clutter. However, for above-mentioned methods, almost all of the SR-STAP
methods whose sparse reconstruction of data usually needs IID samples, are inapplicable
to non-side-looking arrays whose samples are non-IID. In addition, for KA-STAP methods,
internal and external unknown non-ideal factors give rise to large deviations between the
true clutter covariances and their estimations.

Machine learning is receiving increasing attention and great success in a variety of
research and application domains, which mainly include image processing and identifica-
tion [23–25]. Notably, the extreme learning machine (ELM) [26–28] is distinctive for its fast
processing and high efficiency with randomization; however, there is no relevant develop-
ments available to address the radar range compensation or clutter suppression. For radar,
most machine learning schemes are designed for synthetic aperture radar (SAR), whose
signal processing is always based on images. For clutter suppression, a DU-CG-STAP
method [29] suppresses the clutter by a deep unfolding (DU) and CycleGAN (CG) network,
and it exploits the technologies of SR-STAP and unsupervised learning. Additionally, a
generative adversarial network (GAN) method [30] proposed for clutter suppression brings
in attention mechanisms and residual networks. Another coding method, convolutional
neural network (CNN) [31], learns the hierarchical features with large data for sea clut-
ter suppression. Unfortunately, these methods are not fit for non-uniform clutter from
non-side-looking airborne radar.

For a non-side-looking array, some machine learning methods have been proposed.
The autoencoder (AE)-STAP algorithm [32] suppresses the clutter for inadequate samples of
airborne radar, and the target detection method of affinity propagation (AP) clustering [33]
is used to design the weighted input data and the detection discriminant criterion. However,
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they are not directed at the range compensation for clutter, that is, they do not aim at directly
solving the sample problem by means of clutter range compensation.

In this paper, to address the problems of the above-mentioned methods, we propose a
reweighted extreme learning machine-based clutter suppression and range compensation
algorithm for non-side-looking airborne radar. The novel method involves first designing
a pre-processing stage, a reweighted complex-valued activation function containing an
unknown range compensation matrix, two new outputs specifically for clutter suppression
and range compensation, and an initial training based on a reweighted ELM network. Next,
two other objective outputs, a new loss function, and a reverse feedback framework driven
by the designed objectives are proposed for the unknown range compensation matrix.
Then, special processes of the complex-valued structures and the theoretical derivations
are designed and analyzed inn detail for estimating and reconstructing the unknown
compensation matrix, and they maximally preserve the internal features of the complex-
valued matrices. Finally, the compensation matrix is designed to be modified and updated
until the desired network precision, and the clutter suppression and target detection can
be achieved by means of STAP. The proposed algorithm provides the best performance
among traditional classic methods including STAP, DW, ADC, JDL, and SR-STAP based on
sparse M-FOCUSS.

The proposed methodologies innovatively construct the special machine learning and
intelligent framework, which involves creatively designing an initial reweighted network,
an objectives-driven reverse feedback framework, and novel complex-valued processes
of theoretical derivations specifically for reconstructing the unknown compensation ma-
trix. They improve the adaptability and the performance of range compensation and
clutter suppression for non-uniform samples of non-side-looking airborne radar. Moreover,
the computation time is reasonable.

2. Signal Model

A non-side-looking antenna array configuration of an airborne radar is considered.
The array is an N-elemental half-wavelength λ/2 spaced uniform linear array, transmitting
K coherent pulses and collecting space–time samples from L range cells. Based on the
received data x(l), clutter vector xc(l), and Gaussian white noise vector xn(l) corresponding
to the lth range cell, target detection is usually thought to be a binary hypothesis with H0
and H1 represented as [34,35]{

H0 : x(l) = xc(l) + xn(l)
H1 : x(l) = xs(l) + xc(l) + xn(l)

(1)

where xs(l) is the target echo and x(l) without the target can be further expressed as [36]

x(l) =
Np

∑
i=1

ρi(l)vl( fd,i, fs,i) + xn(l) (2)

where the lth clutter cell is divided into Np clutter blocks including the ith one, whose com-
plex amplitude and space–time steering vector are ρi(l) and vl( fd,i, fs,i) = d( fd,i)⊗ a( fs,i) ∈
CNK×1, respectively. Furthermore, temporal and spatial steering vectors
d( fd,i) = [1, ej2π fd,i/ fr , . . . , ej(K−1)2π fd,i/ fr ]T and a( fs,i) = [1, ej2π fs,i , . . . , ej(N−1)2π fs,i ]T with
(·)T being the transpose, involve the corresponding clutter Doppler frequency fd,i, the radar
pulse repetition frequency fr, and the corresponding clutter spatial frequency fs,i. With x(l)
for l = 1, 2, . . . , L, STAP achieves clutter suppression through the weight vector

w = R−1
x v( f d

0 , f s
0)/[v

H( f d
0 , f s

0)R
−1
x v( f d

0 , f s
0)] (3)

from the optimization problem {min
w

wHRxw, s.t. wHv( f d
0 , f s

0) = 1}. Specifically, the space–

time steering vector v( f d
0 , f s

0) corresponds to the target, whose temporal and spatial fre-
quencies are f d

0 and f s
0 , respectively. Moreover, (·)H and (·)−1 are the conjugate-transpose
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and inverse operators. In STAP, for IID samples, Rx is estimated from the samples corre-
sponding to the L clutter range cells, that is, R̂x ≈ ∑L

l=1, l 6=lt x(l)xH(l)/(L− 1) [37], in which
lt is the interested cell to be detected. However, the estimation of Rx is hard to be obtained
when the samples are non-IID, and it causes a significant performance decrease or even
failure in STAP.

For all clutter scatterers, their Doppler and spatial frequencies can be denoted as
fd = 2va cos(θ) cos(ϕ)/λ and fs = cos(β) = cos(θ) cos(ϕ− ϑ) by defining va, θ, ϕ, ϑ, and
β as the radar platform velocity, the clutter elevation angle, the clutter azimuth angle,
the array yaw angle (non-side-looking angle), and the angle between clutter and antenna
array, respectively. Therefore, the following relationship for non-side-looking airborne
radar with 0 < ϑ ≤ 90 is obtained, that is [3,5],

f̄d
2 − 2 f̄d cos(β) cos(ϑ) + cos2(β) = cos2(θ) sin2(ϑ) (4)

where f̄d = fd/ fr, and it indicates that for non-side-looking radar, the clutter spectrum
behaves as ellipses and oblique ellipses, whose distributions vary with the ranges. Thus,
the different clutter distributions make the samples non-IID, and the acquisition of R̂x
required by STAP is inaccurate. Range compensation addresses this by spectrum shifting,
thus making the clutter spectrum centers of all range cells coincident with that of the cell to
be detected. For instance, the ADC method constructs the compensation matrix for the lth
range cell as follows:

Al = Adl ⊗Asl (5)

where ⊗ is the Kronecker product operator; meanwhile, Adl ∈ CK×K and Asl ∈ CN×N are
expressed as follows:{

Adl = diag{[1, ej2π( f̄dl− f̄dlt ), . . . , ej(K−1)2π( f̄dl− f̄dlt )]} = diag{adl} ∈ CK×K

Asl = diag{[1, ej2π( fsl− fslt ), . . . , ej(N−1)2π( fsl− fslt )]} = diag{asl} ∈ CN×N
(6)

where diag{·} stands for a diagonal matrix with specified diagonal elements. Correspond-
ing to the spectrum centers of the lth range cell and the detected one, ∆ f̄dl = f̄dl − f̄dlt
and ∆ fsl = fsl − fslt are their Doppler and spatial frequency differences, respectively.
Accordingly, in the ADC method, x(l) is compensated, as follows:

xADC(l) = AH
l x(l) (7)

With the updated data after compensation as in Equation (7), the clutter non-uniformity
can be eliminated for a non-side-looking array. Range compensation contributes to the
correct estimation of R̂x, which means that STAP can be performed successfully for accu-
rate radar target detection. However, traditional methods, including ADC, are usually
non-adaptive methods and rely heavily on the inertial navigation parameters and the
estimation of signal parameters. As a result, an adaptive range compensation and clutter
suppression method is proposed in this paper by specifically designing reweighted extreme
learning machine.

3. The Proposed Algorithm
3.1. Design of Pre-Processing and Initial Reweighted Network Training

For the complex received data X = [x(1), x(2), . . . , x(L)] of radar, to reduce the non-
uniformity of its real part and imaginary part, the data pre-processing with the coefficient
pre is introduced as follows:

pre =

√
{

∑L
l=1, l 6=lt ∑NK

i=1 |real[X(i, l)]|
NK(L− 1)

}2 + {
∑L

l=1, l 6=lt ∑NK
i=1 |imag[X(i, l)]|

NK(L− 1)
}2 (8)
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and then

X̄ = [
1

pre
X(:, 1), . . . ,

1
pre

X(:, lt − 1),
1

pre
X(:, lt + 1), . . . ,

1
pre

X(:, L)] =
1

pre
X̄0 (9)

where X̄ ∈ CNK×(L−1) is the pre-processed clutter matrix for the complex X. Unlike the
traditional activation functions of machine learning methods that only contain unknown
weights and bias, firstly, a reweighted complex-valued activation function containing
another unknown parameter matrix, named range compensation matrix C, is designed
as follows:

z(W, C, b, l) =log{1 + exp{real[W[C(:, l)� X̄(:, l)] + b]}}
+ j · log{1 + exp{imag[W[C(:, l)� X̄(:, l)] + b]}}

(10)

where z(W, C, b, l) ∈ CH×1 activates the nodes of the hidden layer, with H being the
number of hidden neurons. Furthermore, the variables W and b are the weight matrix and
the bias vector, respectively. Meanwhile, real[·] represents the real part of [·], and imag[·]
represents the imaginary part. C(:, l) and X̄(:, l) are the lth columns of C and X̄, and � is
the Khatri–Rao product. The neurons of input and hidden layers, are, respectively, fully
connected with the hidden layer and the output layer. For the proposed reweighted ELM,
with the unknown compensation matrix C and the range cell number l, the outputs of the
hidden layer and their expectations are expressed as follows:

H

∑
i=1

βi,qzi(W, C, b, l) = oq, q = 1, 2, . . . (11)

where βi,q is the weight that connects the ith hidden neuron with the qth output neuron,
and zi(W, C, b, l) is the ith element of the proposed activation function. Meanwhile, oq
represents the qth output of the network for q = 1, 2, . . . Q. In the proposed method, one
output is specially proposed as follows:

o1(l) =
arcsin[R̄/T(l)]

max{arcsin[R̄/T]} −min{arcsin[R̄/T]} (12)

and the other output is designed as follows:

o2(l) =
|vHl ( fd,i, fs,i)R−1

x vl( fd,i, fs,i)|
|vH0( f d

0 , f s
0)R

−1
x v0( f d

0 , f s
0)|

(13)

where T(l) is the corresponding slant range distance of the lth range cell, and T is the vector
for all l = 1, 2, . . . , L. Additionally, R̄ is the height of the radar platform. The aim of the
network training and learning is to minimize the error of outputs, which can be converted
into a problem of optimization. In the proposed method, exploiting the designed output
function o1(l) in Equation (12) and o2(l) in Equation (13), an initial network training with
Θ = [o1(l), o2(l)]T is proposed as follows:{

‖ H̃(Ŵ, C, b̂)Υ̂−Θ ‖2
F= min

W,b,Υ
‖ H̃(W, C, b)Υ−Θ ‖2

F

C = Ẽ1
(14)

where Υ is the output weight matrix whose (i, q)th element is βi,q. In addition, Ŵ, b̂, and
Υ̂ stand for the estimations of W, b, and Υ, respectively. The initial range compensation
matrix C in the initial optimization of Equation (14) is set as the NK× (L− 1)-dimensional
matrix Ẽ1 with its elements being Ẽ1(i, l) = 1 or Ẽ1(:, l) = adl ⊗ asl temporarily, which
is modified and updated in the process of obtaining the unknown range compensation
matrix for clutter suppression and target detection with non-IID samples. In Equation
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(14), H̃(W, C, b) is the output matrix consisting of the activation functions of the hide layer.
Specifically, the entries of H̃(W, C, b) are designed as follows:

H̃(W, C, b)(l, i) = zi(W, C, b, l) (15)

for l = 1, 2, . . . , L− 1 and i = 1, 2, . . . , H. Moreover, H̃(W, C, b)(l, i) represents the (l, i)th
element of H̃(W, C, b). As a result, for the initial network training in the proposed method,
the estimations of W, b, and Υ can be obtained by seeking the optimal solutions to the
minimum of the loss function as follows:

(W0, b0, Υ0) = arg min{
2

∑
q=1

L−1

∑
l=1
|ΥT

(:,q)z(W, Ẽ1, b, l)− oq(l)|2} (16)

where z(W, Ẽ1, b, l) designed in Equation (10) additionally contains the initial compensa-
tion matrix setting Ẽ1 and the range cell number l, and oq(l) with the range cell is specifically
designed in Equations (12) and (13) for non-side-looking radar. In the theory of ELM for
learning objective H̃(W, b)Υ = Θ, once the weights and biases are randomly determined,
the output matrix H̃ of the hidden layer is uniquely determined, then the accurate solution
of output weights in Υ̂ can be determined as well [26]. That is, Υ̂ = H̃+

(W, b)Θ, and [·]+ is
the Moore–Penrose operator. As a result, exploiting the designed o1(l), o2(l), z(W, C, b, l),
X̄, and Ẽ1, as well as random W and b, for the initial network training of the proposed
method by means of Equations (8)–(16), the initial output weight matrix can be directly
obtained from

Υ0 = H̃+
(W0, Ẽ1, b0)Θ (17)

3.2. Design of Objectives-Driven Reverse Feedback Framework

After the initial network training, the proposed reweighted ELM algorithm further
designs the estimation and reconstruction of the unknown range distance compensation
matrix C by designing another complex network with a new loss function and new out-
put objectives, and then it designs an objective data-driven feedback reverse deduction
process for an unknown complex matrix C to maximally preserve the characteristics of
complex values.

The original received data matrix is complex-valued; therefore, in order to maximally
preserve its internal features in the proposed method, the unknown compensation matrix
is designed to be estimated and reconstructed with the form of complex values. For the
unknown complex C, the designed activation function with obtained X̄, W0, and b0 is
rewritten as follows:

z(C, l) =log{1 + exp{real[
NK

∑
i=1

W0(:,i)C(i,l)X̄(i,l) + b0]}}

+ j · log{1 + exp{imag[
NK

∑
i=1

W0(:,i)C(i,l)X̄(i,l) + b0]}}
(18)

where l is the range cell number; meanwhile, [·](i,l) and [·](:,i) denote the (i, l)th element
and the ith column, respectively. To better show the derivation of the complex-valued
C, let zr

0 = real[∑NK
i=1 W0(:,i)C(i,l)X̄(i,l) + b0] and zj

0 = imag[∑NK
i=1 W0(:,i)C(i,l)X̄(i,l) + b0].

Equation (18) can be reformulated as follows:

z(C, l) =log(1 + ez
r
0) + j · log(1 + ez

j
0)

=log(1 +zr
1) + j · log(1 +zj

1)

=zr + j ·zj

(19)

where zr
1 = ez

r
0 , zj

1 = ez
j
0 , zr = log(1 +zr

1) and zj = log(1 +zj
1). With the initial

trained network, for further obtaining the estimation of the unknown matrix C by the
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proposed complex network, specific new, desired objective outputs o3(l) and o4(l) are
proposed as follows:

H

∑
i=1

Υ0
(i,1)zi(C, l) = o3(l) = o1(lt) =

arcsin[T(lt)/R]
max{arcsin[T]/R} −min{arcsin[T]/R} (20)

where lt is the detected range cell containing the possible target, and it means that for all
range cells l = 1, 2, . . . , L, their objective outputs are consistent with that which corresponds
to lt. In addition, o4(l) is designed as follows:

H

∑
i=1

Υ0
(i,2)zi(C, l) = o4(l) = o2(lt) =

|vHlt( fd,i, fs,i)R−1
x vlt( fd,i, fs,i)|

|vH0( f d
0 , f s

0)R
−1
x v0( f d

0 , f s
0)|

= 1 (21)

As a consequence, at this point, the estimation of C can be expressed as follows:

Ĉ = arg min{
4

∑
q=3

L−1

∑
l=1

[
H

∑
i=1

Υ0
(i,q)zi(W0, C, b0, l)− oq(l)]2} (22)

where Υ0, W0, and b0 are obtained from the designed initial network training with the
special activation function and objective outputs. Furthermore, with o3(l) = o1(lt) and
o4(l) = o2(lt), the minimization of the final loss function for obtaining the estimation of the
range compensation matrix is proposed as follows:

(Ĉ) = arg min{
L−1

∑
l=1

[|
H

∑
i=1

Υ0
(i,1)zi(C, l)− o1(lt)|2

+ |
H

∑
i=1

Υ0
(i,2)zi(C, l)− o2(lt)|2] + ε ‖ C− Γ ‖2

F}
(23)

where Γ ∈ CNK×(L−1) whose lth column is Γ(:, l) = adl ⊗asl can be acquired from Equation (6),
and ε is the scaling factor. They are used to improve the convergence when solving Equation (23).
In brief, the loss function in the proposed method to be minimized for estimating the compensa-
tion matrix is as follows:

Ψloss = Ψ1 + Ψ2 + εΨ3 (24)

where Ψ1, Ψ2 and Ψ3, respectively, stand for the following particular functions:
Ψ1 = ∑L−1

l=1 |∑
H
i=1 Υ0

(i,1)zi(C, l)− o1(lt)|2 = |Ψ̃1|2 = (Ur
1)

2 + (U j
1)

2

Ψ2 = ∑L−1
l=1 |∑

H
i=1 Υ0

(i,2)zi(C, l)− o2(lt)|2 = |Ψ̃2|2 = (Ur
2)

2 + (U j
2)

2

Ψ3 =‖ C− Γ ‖2
F

(25)

where Ur
1 = real[∑H

i=1 Υ0
(i,1)zi(C, l) − o1(lt)], U j

1 = imag[∑H
i=1 Υ0

(i,1)zi(C, l) − o1(lt)],

Ur
2 = real[∑H

i=1 Υ0
(i,2)zi(C, l)− o2(lt)], and U j

2 = imag[∑H
i=1 Υ0

(i,2)zi(C, l)− o2(lt)].

3.3. Design of Special Processes and Theoretical Derivations for Estimating Compensation Matrix

To maximally preserve the internal characteristics of complex-values when obtain-
ing the compensation matrix C whose (i, l)th element is cil , let Υ0

(:,1) and cil represent

Υ0
(:,1) = y1 = yr

1 + j · yj
1 and cil = cr

il + j · cj
il , respectively. Then, combining

z(C, l) = zr + j ·zj in Equation (19), it can be derived that

Ur
1 = (yr

1)
Tzr − (yj

1)
Tzj − or

1(lt)

U j
1 = (yr

1)
Tzj + (yj

1)
Tzr − oj

1(lt)
(26)
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The real part cr
il and the imaginary part cj

il are both implied in the compensation matrix
C that is estimated. Therefore, they are designed to be estimated severally in order to ensure
the accuracy of the estimation. Simultaneously, since the loss function Ψloss is represented
as the compositions of Ψ1, Ψ2, and Ψ3 in Equation (25), firstly, for cr

il , the derivative of Ψ1 is

∂Ψ1

∂cr
il

=
∂[(Ur

1)
2 + (U j

1)
2]

∂cr
il

= 2Ur
1

∂Ur
1

∂cr
il
+ 2U j

1
∂U j

1
∂cr

il

(27)

for i = 1, 2, . . . , NK and l = 1, 2, . . . , L− 1. It is worth noting that there are two parts in ∂Ψ1
∂cr

il

of Equation (27), and they are separately derived in detail. As one part of ∂Ψ1
∂cr

il
, ∂Ur

1
∂cr

il
is first

proposed in detail to demonstrate the designed process clearly, as follows:

∂Ur
1

∂cr
il

=(yr
1)

T zr

∂cr
il
− (yj

1)
T zj

∂cr
il
−

or
1(lt)
∂cr

il

=(yr
1)

T[
zr

1(1)
1 +zr

1(1)
∂zr

0(1)
∂cr

il
, . . . ,

zr
1(H)

1 +zr
1(H)

∂zr
0(H)

∂cr
il

]T

− (yj
1)

T[
zj

1(1)

1 +zj
1(1)

∂zj
0(1)

∂cr
il

, . . . ,
zj

1(H)

1 +zj
1(H)

∂zj
0(H)

∂cr
il

]T

=
∂Λr

1
∂Cr

(i,:)
−

∂Λj
1

∂Cr
(i,:)

(28)

where zr
1(h), z

j
1(h), z

r
0(h) and zj

0(h) are defined in Equation (19). Moreover, the detailed

z0(h) = zr
0(h) + j ·zj

0(h) can be expressed as follows:

z0(h) =
NK

∑
i=1

[Wr
hi + j ·Wj

hi](c
r
il + j · cj

il)[X̄
r
(i,l) + j · X̄j

(i,l)] + br
0 + bj

0 (29)

where Wr
hi, X̄r

(i,l), and br
0 are the corresponding real part. Meanwhile, Wj

hi, X̄j
(i,l), and bj

0

are the corresponding imaginary part, and Whi = Wr
hi + j ·Wj

hi is the (h, i)th element of
the weight matrix W. Hence, with Equation (29), the real part of z0(h) can be derived
as follows:

zr
0(h) =

NK

∑
i=1

cr
il [W

r
hiX̄

r
(i,l) −Wj

hiX̄
j
(i,l)]−

NK

∑
i=1

cj
il [W

j
hiX̄

r
(i,l) + Wr

hiX̄
j
(i,l)] + br

0 (30)

for h = 1, 2, . . . , H. Similarly, the imaginary part of z0(h) is

zj
0(h) =

NK

∑
i=1

cr
il [W

r
hiX̄

j
(i,l) + Wj

hiX̄
r
(i,l)] +

NK

∑
i=1

cj
il [W

r
hiX̄

r
(i,l) −Wj

hiX̄
j
(i,l)] + bj

0 (31)

For further proposing the estimation of ∂Ur
1

∂cr
il

in Equation (28), combining Equation (28)

with Equation (30), the involved ∂Λr
1

∂Cr
(i,:)

is proposed as follows:

∂Λr
1

∂Cr
(i,:)

=(yr
1)

T zr

∂cr
il

=[yr
1 �Wr

:,i]
T[

zr
1(1)

1 +zr
1(1)

, . . . ,
zr

1(H)

1 +zr
1(H)

]TX̄r
(i,:)

− [yr
1 �Wj

:,i]
T[

zr
1(1)

1 +zr
1(1)

, . . . ,
zr

1(H)

1 +zr
1(H)

]TX̄j
(i,:)

(32)
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where [·]:,i stands for its ith column. In addition, the other part ∂Λj
1

∂Cr
(i,:)

in Equation (28) is

derived as follows:

∂Λj
1

∂Cr
(i,:)

=[yj
1 �Wr

:,i]
T[

zj
1(1)

1 +zj
1(1)

, . . . ,
zj

1(H)

1 +zj
1(H)

]TX̄j
(i,:)

+ [yj
1 �Wj

:,i]
T[

zj
1(1)

1 +zj
1(1)

, . . . ,
zj

1(H)

1 +zj
1(H)

]TX̄r
(i,:)

(33)

As a result, Equations (32) and (33) indicate that the final estimation of ∂Ur
1

∂Cr
(i,:)

in

Equation (28) is

∂Ur
1

∂Cr
(i,:)

=[yr
1 �Wr

:,i]
TF̃r

1X̄r
(i,:) − [yr

1 �Wj
:,i]

TF̃r
1X̄j

(i,:)

− {[yj
1 �Wr

:,i]
TF̃j

1X̄j
(i,:) + [yj

1 �Wj
:,i]

TF̃j
1X̄r

(i,:)}
(34)

in which the detailed F̃r
1 and F̃j

1 are proposed as follows:

F̃r
1 = [

zr
1(1)

1 +zr
1(1)

, . . . ,
zr

1(H)

1 +zr
1(H)

]T

= [
ez

r
0(1)

1 + ez
r
0(1)

, . . . ,
ez

r
0(H)

1 + ez
r
0(H)

]T

= { ereal[∑NK
i=1 W0(1,i)C(i,l)X̄(i,l)+b0]

1 + ereal[∑NK
i=1 W0(1,i)C(i,l)X̄(i,l)+b0]

, . . . ,
ereal[∑NK

i=1 W0(H,i)C(i,l)X̄(i,l)+b0]

1 + ereal[∑NK
i=1 W0(H,i)C(i,l)X̄(i,l)+b0]

}T

(35)

and

F̃j
1 = { eimag[∑NK

i=1 W0(1,i)C(i,l)X̄(i,l)+b0]

1 + eimag[∑NK
i=1 W0(1,i)C(i,l)X̄(i,l)+b0]

, . . . ,
eimag[∑NK

i=1 W0(H,i)C(i,l)X̄(i,l)+b0]

1 + eimag[∑NK
i=1 W0(H,i)C(i,l)X̄(i,l)+b0]

}T (36)

Noting that estimating ∂Ur
1

∂Cr
(i,:)

is not enough for deducing ∂Ψ1
∂cr

il
when obtaining a com-

pensation matrix from Equation (23), ∂U j
1

∂Cr
(i,:)

is also required as can be seen in Equation (27).

Similar to the derivations above, the proposed method further obtains the following:

∂U j
1

∂Cr
(i,:)

=[yr
1 �Wr

:,i]
TF̃j

1X̄j
(i,:) + [yr

1 �Wj
:,i]

TF̃j
1X̄r

(i,:)

+ [yj
1 �Wr

:,i]
TF̃r

1X̄r
(i,:) − [yj

1 �Wj
:,i]

TF̃r
1X̄j

(i,:)

(37)

where the expressions of F̃r
1 and F̃j

1 are given in Equations (35) and (36). Then, as Equation (27)
shows, for l = 1, 2, . . . , L− 1 of cr

il in the compensation matrix, we have the following:

∂Ψ1

∂Cr
(i,:)

= 2Ur
1

∂Ur
1

∂Cr
(i,:)

+ 2U j
1

∂U j
1

∂Cr
(i,:)
∈ C1×L−1 (38)

where Ur
1 and U j

1 are shown in Equation (26). Furthermore, ∂Ur
1

∂Cr
(i,:)

and ∂U j
1

∂Cr
(i,:)

are derived

in Equations (34) and (37), respectively. In consequence, with the derivation procedure of
∂Ψ1

∂Cr
(i,:)

, for the total loss function of the estimation and reconstruction of the compensation

matrix C, we can derive and conclude that
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∂Ψ
∂Cr

(i,:)
=

∂Ψ1

∂Cr
(i,:)

+
∂Ψ2

∂Cr
(i,:)

+
∂Ψ3

∂Cr
(i,:)

= 2Ur
1

∂Ur
1

∂Cr
(i,:)

+ 2U j
1

∂U j
1

∂Cr
(i,:)

+ 2Ur
2

∂Ur
2

∂Cr
(i,:)

+ 2U j
2

∂U j
2

∂Cr
(i,:)

+ 2ε · imag[∆C(i, :)]∈ C1×L−1
(39)

where Ur
2 and U j

2 are defined in Equation (26), and the acquirement of ∂Ur
2

∂Cr
(i,:)

and ∂U j
2

∂Cr
(i,:)

is the

same as the derivation procedure of ∂Ur
1

∂Cr
(i,:)

and ∂U j
1

∂Cr
(i,:)

, through replacing yr
1, yj

1, F̃r
1, and F̃j

1

with yr
2, yj

2, F̃r
2, and F̃j

2, respectively. In addition, ∆C(i, :) is the ith row of ∆C = C− Γ.
At this point, the derivative of the total loss function regarding the real part Cr of the
compensation matrix is obtained.

However, the derivative corresponding to the imaginary part Jc
(i,:) is also required to es-

timate and reconstruct the compensation matrix C. Therefore, similar to Equations (24)–(39),
∂Ψ

∂Jc
(i,:)

is proposed as follows:

∂Ψ
∂Jc

(i,:)
=

∂Ψ1

∂Jc
(i,:)

+
∂Ψ2

∂Jc
(i,:)

+
∂Ψ3

∂Jc
(i,:)

= 2Ur
1

∂Ur
1

∂Jc
(i,:)

+ 2U j
1

∂U j
1

∂Jc
(i,:)

+ 2Ur
2

∂Ur
2

∂Jc
(i,:)

+ 2U j
2

∂U j
2

∂Jc
(i,:)

+ 2ε · real[∆C(i, :)]∈ C1×L−1
(40)

in which, unlike Equations (34) and (37), ∂Ur
1

∂Jc
(i,:)

and ∂U j
1

∂Jc
(i,:)

are designed to take the following form:

∂Ur
1

∂Jc
(i,:)

=− [yr
1 �Wj

:,i]
TF̃r

1X̄r
(i,:) − [yr

1 �Wr
:,i]

TF̃r
1X̄j

(i,:)

− {[yj
1 �Wr

:,i]
TF̃j

1X̄r
(i,:) − [yj

1 �Wj
:,i]

TF̃j
1X̄j

(i,:)}
(41)

and simultaneously

∂U j
1

∂Jc
(i,:)

=[yr
1 �Wr

:,i]
TF̃j

1X̄r
(i,:) − [yr

1 �Wj
:,i]

TF̃j
1X̄j

(i,:)

− [yj
1 �Wj

:,i]
TF̃r

1X̄r
(i,:) − [yj

1 �Wr
:,i]

TF̃r
1X̄j

(i,:)

(42)

Finally, exploiting ∂Ψ
∂Cr

(i,:)
and ∂Ψ

∂Jc
(i,:)

, the proposed reweighted ELM-based range compen-

sation and clutter suppression algorithm with the designed initial network and special output
objectives updates the derivation procedures of the compensation matrix C, as follows:

Ĉ(k+1)
(i,:) = Ĉ(k)

(i,:) + ξ{[ ∂Ψ
∂Rc

(i,:)
](k) + j · [ ∂Ψ

∂Jc
(i,:)

](k)} (43)

where Ĉ(k)
(i,:) and Ĉ(k+1)

(i,:) stand for the kth and the (k + 1)th iterations for estimating the ith
row of C, respectively. Moreover, ξ is the factor of the step length to update the unknown
compensation matrix C gradually until the desired accuracy |Ψloss| < ∆e is achieved or the
given maximum number of iterations is reached. Making full use of the designed estimation
and reconstruction of C, non-IID samples that lead to the degradation and failure in clutter
suppression and target detection, are overcome by the proposed range compensation
C(:, l)� X̄0(:, l) with l = 1, 2, . . . , L− 1 for STAP. To sum up, the main procedures of the
proposed method are shown in Algorithm 1.
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Algorithm 1 The main procedures of the proposed algorithm.
1. With the received radar data x(l) in Equation (2), the pre-processing and the reweighted complex-valued activation function

z(W, C, b, l) containing unknown range compensation matrix C are designed in Equations (8)–(10).
2. Based on the clutter characteristics and the corresponding relationship between output SCR and range cells, an initial training

of the reweighted network is proposed.

(a) Two new objective outputs o1(l) and o2(l) are designed as Equations (12) and (13);
(b) The initial range compensation matrix Ẽ1 is specified, and the initial network training problem is constructed as

Equation (14);
(c) Randomly set the weight matrix W0 and bias vector b0 to achieve the loss minimum with the designed z(W, Ẽ1, b, l),

o1(l), o2(l), and Ẽ1, as Equation (16);
(d) The output weight matrix Υ0 is directly and quickly obtained by Equation (17) to complete network training based on

the theory of ELM.

3. Two other objective outputs, new loss function Ψloss and the objectives-driven reverse-feedback framework, are proposed for
the unknown range compensation matrix C.

(a) Using W0, b0, and x(l), the activation function is redefined as z(C, l) in complex-value form containing the unknown
C, as Equations (18) and (19);

(b) The desired objective outputs are redesigned as o3(l) in Equation (20) and o4(l) in Equation (21);
(c) The new minimization problem with Ψloss is further proposed with the designed Γ as Equation (23).

4. To estimate and reconstruct the unknown C, the complex-valued Ψloss is redefined with Ur
1, U j

1, Ur
2, and U j

2 in Equation (25),
and their detailed complex structures are derived in Equation (26) based on the designed z(C, l).

5. The derivation ∂Ur
1/∂Cr

(i,:) is proposed in Equation (34) with F̃r
1 and F̃j

1 designed in detail in Equations (35) and (36), and its
theoretical derivation is from Equation (28) to Equation (33).

6. Compute the designed ∂U j
1/∂Cr

(i,:) as Equation (37).

7. In terms of the real part Cr
(i,:), ∂Ψ/∂Cr

(i,:) is proposed as the derived form in Equation (39), combining the calculated ∂Ψ1/∂Cr
(i,:)

from Equation (38).
8. Aiming at the imaginary part Jc

(i,:) of C, ∂Ψ/∂Jc
(i,:) is further proposed.

(a) The derivation of ∂Ur
p/∂Jc

(i,:) is computed from Equation (41);

(b) ∂U j
p/∂Jc

(i,:) is proposed in Equation (42);

(c) ∂Ψ/∂Jc
(i,:) is designed as Equation (40).

9. Exploiting ∂Ψ/∂Rc
(i,:) and ∂Ψ/∂Jc

(i,:), C is updated as Equation (42) to finally achieve the proposed estimation of the unknown
range compensation matrix.

10. With the compensated samples C(:, l)� X̄0(:, l) of the proposed method, further processing including STAP can be performed
for clutter suppression and target detection.

4. Simulation Results

In this section, simulations are performed to verify the superiority of the proposed
method. The classic STAP method [1], DW method [5], ADC method [7], JDL method [9],
and SR-STAP method [16] based on sparse M-FOCUSS are used for comparison. The target
azimuth velocity, clutter-to-noise ratio, signal-to-noise ratio, height, and velocity of the
radar platform are expressed as vc, CNR, SNR, h = 6000 m, and va, respectively. The im-
provement factor (IF), with the meaning of the ratio of the SCR at the output to the SCR
at the input, is employed as the metric that compares the performance of different clutter
suppression methods.

The statistical characteristics of clutter can be described by a probability density
function (PDF), primarily using the amplitude statistics to describe clutter models. In the
simulations, the clutter model considered is mainly Rayleigh distribution, which is the
commonly used clutter distribution model for ground clutter. Specifically, its amplitude
and phase radiated by clutter scatterers are random. When accumulating the echoes with
the increase in the number of scatterers, the envelope amplitude of the echoes follows the
Rayleigh distribution.

The added clutter model of the Rayleigh distribution in the simulations is applicable
to different kinds of clutter, including meteorological clutter, as well as clutter from the
ground and sea received by low- and medium-resolution radar systems with large incident
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angles. In this case, it can generally be considered that the ground clutter and the sea clutter
distributions of airborne radar follow the Rayleigh distribution, whose PDF is

f (x) =
x

σ2 exp(− x2

2σ2 ), x ≥ 0 (44)

where x represents the clutter amplitude, and its root-mean-square value is the Rayleigh
coefficient σ. The mean and variance of this Rayleigh distribution are E(x) =

√
π/2 and

var(x) = (4− π)σ2/2, respectively.

4.1. Space–Time Distribution of the Clutter Spectrum

Figure 1 depicts the clutter spectrum of the proposed algorithm in spatial and temporal
domains, where the left sub-figures correspond to the original STAP processor and the
right ones correspond to the proposed processor. The non-side-looking angle is ϑ = 50◦.
Moreover, N = 14, K = 20, L = 250, va = 105 m/s, vc = 95 m/s, CNR = 45 dB, and the two
bottom sub-figures contain the target. Figure 1 shows that due to the differences of the
clutter spectrum distributions of the L range cells, the method of direct sample averaging
of adjacent range cells leads to the serious broadening of clutter spectrum, which further
leads to the serious degradation of the STAP processor, especially the performance of the
mainlobe clutter suppression. This simulation verifies that through the proposed method,
the clutter spectrum is obviously narrowed, which is beneficial for highlighting the target
as can be seen in the red box of the bottom-right sub-figure. The similarity degree of clutter
from different range cells is increased, indicating the effectiveness of the proposed method.
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Figure 1. Space–time clutter spectra for the original STAP method (left) and the proposed
method (right).

4.2. Results of the Improvement Factor

The relationship between the IF and normalized Doppler frequency is demonstrated
in Figure 2. The clutter suppression results of different methods for different conditions
are evaluated. Specifically, ϑ = −90◦, N = 13, K = 16, L = 70, va = 70 m/s, vc = 130 m/s,
and CNR = 80 dB in Figure 2. The results show that the severe broadening of the IF curve
notches occurs for the STAP and JDL methods, and after range compensation using the
DW and ADC methods, the non-uniformity of the clutter is improved. Overall, the IF
notch of the proposed algorithm is kept the narrowest compared to the others, indicating
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that the proposed algorithm can achieve better clutter suppression performance than the
other methods.
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Figure 2. Comparison of IF with the variation of normalized Doppler frequency.

The results of IF with different radar and clutter conditions are presented in Figure 3.
The differences are ϑ = −75◦, va = 55 m/s, vc = 120 m/s, and CNR = 70 dB. They show
that compared with the others, the proposed algorithm still possesses clear advantages
with a narrower IF curve notch. It indicates that the proposed algorithm reduces the
possibility of the target submersion in the broadened clutter spectrum, and it enhances
the performance of detection by increasing the output ratio of the signal-to-clutter power.
Moreover, the ADC method is better than the methods of STAP, DW, JDL, and SR-STAP
based on sparse M-FOCUSS because of its effective range compensation that improves the
uniformity of clutter.
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Figure 3. IF versus normalized Doppler frequency under different conditions.

For a further comprehensive evaluation, different methods under conditions va = 85 m/s,
vc = 118 m/s, CNR = 65 dB, and L = 100 are considered as shown in Figure 4, whose other
conditions are consistent with Figure 3. The proposed method maintains an outstanding
ability of clutter suppression, as can be seen from its high IF curve with a narrow and deep IF
notch. This indicates that with a desired performance, the proposed method can be applicable
to different radar and signal environments adaptively.
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Figure 4. IF versus normalized Doppler frequency for different radar and signal circumstances.

4.3. Results of the Probability of Detection

By comparing the probability of detection, abbreviated as PD under variational SNR
circumstances, different methods are evaluated in Figure 5 to demonstrate the performance
of target detection. Another radar configuration and target environment is considered
for a more comprehensive assessment of the proposed method, that is, N = 11, K = 18,
va = 120 m/s, vc = 90 m/s, ϑ = −90◦, CNR = 70 dB, and L = 70. When detecting the target,
the commonly applied constant false alarm rate (CFAR) [38] with cell averaging is brought
in, and its false alarm probability is PFA = 10−5 for all the methods. It can be concluded
that within the entire scope of the considered SNR, the proposed algorithm accomplishes
the highest PD among different methods, indicating that it owns the best performance in
this condition.
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Figure 5. Comparison of PD with the variation of SNR.

Figure 6 shows the PD versus SNR for different methods under N = 6, K = 18,
va = 130 m/s, vc = 105 m/s, ϑ = −75◦, CNR = 65 dB, and L = 70. Among the analyzed
methods in Figure 6, the target detection of the proposed method is the best with the
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maximal probability of successfully detecting the target. The advantages of the proposed
method remain significant within a large range of SNR.
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Figure 6. Comparison of PD with the variation of SNR under different conditions.

4.4. Influence of Different Radar Circumstances

Figure 7 shows the impact of the numbers (N, K) of array elements and coherent
pulses in radar configuration on the performance of different methods. The changed N
and K are considered; meanwhile, the other circumstances are consistent with those in
Figure 5, except that SNR = −5 dB and CNR = 65 dB. Figure 7 demonstrates that, usually,
the decrease in N and K leads to decreased probabilities of target detection for all the
methods. In addition, the three algorithms that carried out range compensation show
significantly higher probabilities than the others, and the proposed method is superior
throughout the variations in the considered N and K.
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Figure 7. Influence of array elements and pulses on detection probabilities of different methods.
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Figure 8 shows the PD versus the radar platform speed to evaluate the influence
of va on different methods, where the differences from Figure 3 are N = 10, K = 18,
and ϑ = −90◦, and va changes from va = 55 m/s to va = 135 m/s. From Figure 8, with
the increasing va, the rising trend of the detection probability can be observed for the
methods. Furthermore, the proposed method is always advantageous for different radar
circumstances including the varying va.
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Figure 8. Influence of platform speed on detection probabilities of different methods.

4.5. Test Errors of the Proposed Network

Figure 9 shows the test errors of the proposed network versus the number of samples,
where root mean square error (RMSE) and standard deviation (STD) with different numbers
Ns of array elements are evaluated. Its conditions are consistent with those of Figure 6.
Figure 9 indicates that with the increased samples, the evaluation of the proposed network
gets better and gradually tends to be stable. The proposed network is convergent; moreover,
it achieves a good performance in clutter suppression, range compensation, and further
target detection, as can be seen from Figure 1 to Figure 9.
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Figure 9. RMSE and STD versus the number of samples for the proposed network.
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4.6. Comparison of the Computation Time

In Figure 10, computation time is shown under the changing numbers of training
samples and array elements, where va = 130 m/s, vc = 105 m/s, ϑ = −90◦, and CNR = 65 dB.
Additionally, the sample number changes from L = 40 to L = 470, and in the meantime, N is
considered as N = 6, N = 10, N = 12, and N = 14. The typical range compensation ADC
method is served as a contrast. From Figure 10, the influence of the numbers of samples
and array elements on the computation time manifests the following trend: the smaller L
contributes to the closer computation time between the proposed method and the ADC
method. Additionally, the difference in their computation time becomes small with the
increased N, and the time of the proposed method is reasonable. Although the proposed
method costs more time, it provides significant advantages over the ADC method as
demonstrated in Figure 2 to Figure 8.
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Figure 10. Relationship between computation time and number of samples.

4.7. Results with Experimental Data

Experimental data are used to validate the performance advantages of the proposed
method. Different methods are applied to the real data, which are multi-channel airborne
radar measurements (MCARM) [39]. The real clutter environment of airborne radar is
reflected by the data containing various types of clutter such as ground, sea, ground-sea
transition, and urban areas. Errors related to array antennas unavoidably occur when col-
lecting data with airborne radar. Importantly, there is a yaw angle ϑ = −7.28◦. As a result,
the experimental data can effectively validate the clutter suppression performance of differ-
ent methods under the conditions of non-IID samples in non-side-looking airborne radar.

Figure 11 shows the comparison of IF in clutter suppression performance for pro-
cessing experimental data. The data are obtained from the range cells l = 250 to l = 350,
and they are located in a region with strong clutter. The specific parameters of the radar
platform can be found in [39]. Figure 11 indicates that all methods exhibit a decrease
in performance after applying the real experimental data. This is caused by the more
serious non-uniform clutter from the factors such as array element errors and parameter
estimation biases in the real environment. However, compared to the other methods,
the proposed method still exhibits a narrower IF notch, reducing the possibility of target
submersion in the broadened clutter spectrum. Therefore, the proposed method is effective
and advantageous when applied to experimental data.
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Figure 11. IF comparison of different methods with experimental data.

In order to visually verify the performance of the proposed method applied to experi-
mental data, Figure 12 displays a comparison of the normalized output power of different
clutter suppression methods. The range cells corresponding to the clutter to be processed
are from l = 388 to l = 438. A target is injected into the l = 425th range cell to visually
validate the clutter suppression results. The normalized Doppler frequency of the target is
−0.05, located in the main clutter region. In addition, the output power of the range cell
with the target is labeled. When comparing, all methods’ processes are applied on the same
clutter data.

In Figure 12a–c, it can be observed that only the proposed algorithm whose output
signal power is the most prominent, effectively detects the target, while the targets in the
other methods are almost submerged in clutter when SCR = −55 dB. Additionally, in the
same clutter environment, the left and the right sub-figures in Figure 12a correspond to
the scenarios with and without the target, respectively. This indicates that the proposed
algorithm does not cause the false alarm. Therefore, the proposed method can provide a
superior clutter suppression performance with the experimental data.

In Figure 12d–f, the output power of all the methods is improved in terms of the
target range cell with the increased SCR = −50 dB. Under the circumstances, the proposed
algorithm distinguishes the target from the clutter clearly, indicating its good performance
in target detection.

Figure 13 demonstrates the target detection probabilities of different methods for the
experimental data, with the parameters of the real clutter data being the same as Figure 12.
In the actual clutter environment, a random target is injected into the range cell l = 425 and
detected by different methods. By injecting the target randomly 300 times, the probability
of successfully detecting the target is evaluated. Additionally, PFA = 10−5 is the same for
all the methods. Figure 13 shows that the proposed method provides a higher detection
probability within a large SCR range, further verifying that it can be applied to real clutter
environments. The proposed algorithm achieves an effective range compensation and
better clutter suppression, thereby improving the performance of target detection.
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Figure 12. Normalized output power for different range cells. (a–c) Different methods with SCR =−55 dB.
(d–f) Different methods with SCR =−50 dB.
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Figure 13. Target detection performance of different methods with data of actual clutter environment.

5. Discussion

Discussion 1: The reasonable computation time of the proposed algorithm is primarily
due to the utilization of ELM theory when training the network for range compensation
and clutter suppression. That is, the weight matrix W0 and bias vector b0 are set randomly,
and the output weight matrix Υ0 can be directly obtained. Therefore, the computational
complexity of network training is significantly reduced, requiring only O[min(H2L, L2H)].
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Then, the proposed compensation matrix estimation and reconstruction further require an
O[H2L + 32(H2L + H2)] computation, mainly caused by the matrix multiplications from
Equations (26) and (34)–(42). Accordingly, considering the process of matrix inversion
involved in the designed objective output O[(NK)3], the computation burden of the pro-
posed algorithm is about O[(NK)3 + min(H2L, L2H) + 33H2L + 32H2]. With a reasonable
computation time, the proposed algorithm greatly improves the performance of radar
target detection.

Discussion 2: The following main reasons and novelties contribute to the performance
advantages of the proposed algorithm. Firstly, a reverse feedback iterative process driven
by the specifically designed objective outputs is proposed to estimate the compensation
matrix. A reweighted network with an unknown compensation matrix involved in training
and updating is designed. Secondly, the proposed algorithm maximally preserves the
information of complex values. The theoretical derivation processes of the compensation
matrix estimation and reconstruction in complex form are proposed in detail. Thirdly,
the proposed algorithm requires fewer additional parameter settings. Only the update step
size ξ and the scaling factor ε need to be set during training and reconstruction, and they
have little impact on the algorithm performance. Fourthly, the proposed algorithm is
adaptive, continuously updating the compensation matrix estimation to match the current
objective data condition.

Discussion 3: The main drawback of the proposed algorithm is that the calculation time
is slightly higher than that of the range compensation ADC method. Additionally, when
constructing the loss function and setting the initial range compensation matrix for network
training, it is still hoped to exploit some radar system parameters to further improve the
convergence and the iteration time. However, unlike most of the range compensation
methods, the proposed algorithm does not heavily rely on the system inertial parameters,
on account of the proposed adaptive and continuous updating of the compensation matrix
under the designs of the specific objective outputs and the data-driven conditions.

Discussion 4: The proposed algorithm mainly aims at the clutter amplitude model
of the Rayleigh distribution, which is generally used to describe meteorological clutter,
chaff interference, as well as ground clutter and sea clutter of low- and medium-resolution
radar systems with large incident angles. Apart from this distribution, there are other
clutter models such as K distribution, Weibull distribution, and Log-normal distribution.
The non-uniformity of clutter samples in these non-Gaussian models may be more serious,
which leads to a relative large decrease in the performance of the proposed method and the
traditional methods involving the CNCM estimation.

Specifically, the impact of other clutter models on the proposed method is that during
the process of the proposed initial network training, the design of the objective outputs
o1(l) and o3(l) mainly focuses on range compensation. It refers to the non-uniform situa-
tion caused by the non-side-looking array and does not aim at other non-uniform factors.
In addition, the design of the objective outputs o2(l) and o4(l) involves CNCM. However,
the estimation accuracy of this covariance matrix is degraded due to non-Gaussian models
such as K distribution. Therefore, they affect the training of the initial network of the
proposed algorithm, resulting in bias in the designed subsequent estimation of the un-
known range compensation matrix. Through pre-processing that improves the CNCM
estimation and through further designing specialized initial network training, future re-
lated research that specifically aims at other clutter models and other non-uniform factors
can be developed based on the proposed method.

6. Conclusions

In this paper, we propose a reweighted extreme learning machine-based clutter-
suppression and range-compensation method for non-side-looking airborne radar. In the
proposed algorithm, after designing the pre-processing, the special reweighted complex-
valued activation function, and two new objective outputs, the initial training of the
reweighted ELM-based network is constructed. Then, by proposing two other objective
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outputs, the new loss function, the objective data-driven reverse-feedback framework,
and the special processes of the complex structures and the theoretical derivations for
estimating the unknown compensation matrix, the samples are updated and compensated
for clutter suppression and target detection. The reasons for the reasonable computational
complexity and for the advantages of the proposed algorithm are analyzed, and the sim-
ulation results verify that the proposed algorithm provides superior clutter suppression
with effective range compensation. Moreover, the proposed algorithm achieves obviously
higher detection probabilities and better improvement factors.
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