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Abstract: Nearshore ship detection has significant applications in both the military and civilian
domains. Compared to synthetic aperture radar (SAR), polarimetric synthetic aperture radar (PolSAR)
provides richer information for analyzing the scattering mechanisms of ships and enables better
detection of ship targets. However, ships in nearshore areas tend to be highly concentrated, and ship
detection is often affected by adjacent strong scattering, resulting in false alarms or missed detections.
While the GP-PNF detector performs well in PolSAR ship detection, it cannot obtain satisfactory
results in these scenarios, and it also struggles in the presence of azimuthal ambiguity or strong
clutter interference. To address these challenges, we propose a nearshore ship detection method
named ECD-PNF by integrating superpixel-level GP-PNF and refined polarimetric decomposition.
Firstly, polarimetric superpixel segmentation and sea–land segmentation are performed to reduce
the influence of land on ship detection. To estimate the sea clutter more accurately, an automatic
censoring (AC) mechanism combined with superpixels is used to select the sea clutter superpixels.
By utilizing refined eight-component polarimetric decomposition to improve the scattering vector,
the physical interpretability of the detector is enhanced. Additionally, the expression of polarimetric
coherence is improved to enhance the target clutter ratio (TCR). Finally, this paper combines the third
eigenvalue of eigenvalue–eigenvector decomposition to reduce the impact of azimuthal ambiguity.
Three spaceborne PolSAR datasets from Radarsat-2 and GF-3 are adopted in the experiments for
comparison. The proposed ECD-PNF method achieves the highest figure of merit (FoM) value of
0.980, 1.000, and 1.000 for three datasets, validating the effectiveness of the proposed method.

Keywords: polarimetric synthetic aperture radar; nearshore ship detection; superpixel; GP-PNF;
refined polarimetric decomposition

1. Introduction

Ship detection, which is one of the significant applications of synthetic aperture radar
(SAR), plays a significant role in both military and civilian fields [1]. SAR has the advantage
of all-weather and all-day monitoring, while polarimetric SAR (PolSAR) systems could cap-
ture richer polarization information compared to single-polarization SAR systems [2]. With
the development of polarization theory, an increasing number of ship detection methods
have been proposed for PolSAR images [3–5].

The constant false alarm rate (CFAR) method has been a common approach for ship
detection for PolSAR images [6–9], which does not require extensive prior knowledge. By
modeling the sea clutter, CFAR methods obtain the threshold value based on the constant

Remote Sens. 2024, 16, 1095. https://doi.org/10.3390/rs16061095 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16061095
https://doi.org/10.3390/rs16061095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3282-3066
https://orcid.org/0000-0002-6908-1975
https://orcid.org/0000-0002-9990-9163
https://doi.org/10.3390/rs16061095
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16061095?type=check_update&version=1


Remote Sens. 2024, 16, 1095 2 of 22

false alarm rate. However, the effectiveness of the CFAR method relies on the accuracy
of clutter modeling. When the clutter estimation window contains targets or when the
parameters of the distribution model are inaccurately estimated, the detection results will
be unsatisfactory.

Many researchers have proposed ship detection methods based on the polarimetric
scattering intensity. Polarimetric power (SPAN) detectors [10], polarimetric whitening filter
(PWF) detectors [11], and power-maximization synthetic (PMS) detectors [12] primarily
differentiate between ships and sea clutter based on polarimetric scattering intensity. How-
ever, these methods rely on a simple combination of intensity information from different
polarization channels to detect the ship target. When the backscattering power of the
ship is weak or when the sea clutter power is strong, it’s difficult for these methods to
distinguish ships from sea clutter. In fact, spatial information is beneficial for PolSAR ship
detection [13], while the aforementioned methods mainly detect targets at the pixel level
and do not fully utilize spatial information. Huang et al. [14] designed an object detection
method based on saliency detection. They divided the image into N block regions and
calculated the inter-block distances to obtain local saliency and global saliency for detection.
Liu et al. [15] utilized pixel neighborhood information to construct a new neighborhood
polarimetric covariance matrix (NPCM). The performance of the PWF detector was im-
proved based on NPCM. Zhang et al. [16] improved the detection efficiency of PWF using
a superpixel neighborhood covariance matrix based on superpixel segmentation.

Ships typically have complex metallic structures that exhibit significant polarimet-
ric scattering characteristics that differ from the sea surface. Nunziata et al. proposed a
reflection symmetry (RS) detector by analyzing the physical characteristic differences be-
tween ships and sea clutter [17]. In addition, many detection methods have been proposed
based on the diverse polarimetric scattering mechanisms [18]. Polarimetric decomposition
methods are commonly used in target detection and land classification, as they provide a
physical model to explain the polarimetric scattering mechanisms of targets [19,20]. After
Cameron’s [21] proposal of a coherent target decomposition method, Ringrose [22] applied
the Cameron decomposition method to ship detection. However, this method fails to
effectively distinguish between sea clutter and ships when the incident angle of the radar
changes. Touzi et al. [23] utilized the Cloude-Pottier [24] decomposition to distinguish
between sea clutter and ship targets. A ship detection method was proposed by Guo
based on integrating eigenvalues–eigenvector decomposition and non-negative matrix
factorization [25]. Model-based polarization decomposition methods, such as Freeman-
Durdan decomposition [26] and Yamaguchi four-component [27] decomposition, can better
illustrate the inherent polarization scattering types. Based on Yamaguchi decomposition,
Sugimoto et al. [28] suppress the scattering contribution of sea clutter to highlight and
detect ship targets. Zhang et al. [29] analyzed the scattering characteristics of sea clutter
and ship targets based on Yamaguchi decomposition and then developed a novel detection
feature that enhances the target-clutter contrast ratio (TCR). With the development of more
refined polarimetric decomposition techniques, Pan et al. [30] constructed a new feature
called scattering contribution local contrast (SCLC) based on the eigenvalue–eigenvector
decomposition and an improved seven-component decomposition method to detect small
ships. Apart from the aforementioned methods, the geometrical perturbation-polarimetric
notch filter (GP-PNF) proposed by Marino can enhance the contrast between the sea
and ships based on polarimetric coherence [31,32]. GP-PNF builds a six-dimensional po-
larimetric complex space based on the polarimetric covariance matrix. The scattering
mechanism of sea clutter is simply assumed to be Bragg surface scattering, while the
scattering mechanism of ships is assumed to be distributed in a five-dimensional space
that is perpendicular to the sea clutter. By filtering out the surface scattering component
and enhancing other scattering components, ship targets can be detected effectively. In
fact, the distribution of polarimetric scattering characteristics in PolSAR images is complex.
To improve the performance and adaptability of the GP-PNF, many methods have been
proposed. After eigenvalue–eigenvector decomposition is carried out, the detector obtained
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by combining the third feature value with GP-PNF can mitigate the impact of azimuthal
ambiguity [33]. In addition, Liu et al. [34] optimized the construction of the polarimetric
vector space of GP-PNF based on Yamaguchi decomposition. However, these methods
do not consider the polarimetric scattering characteristics of the target in a more refined
manner, resulting in limited enhancement of ship-sea contrast under azimuthal ambiguity
and other interference.

In recent years, an increasing number of deep learning-based object detection methods
have been proposed, such as YOLO [35], R-CNN [36], SSD [37], etc. Fan et al. [38] improved
the modified faster region-based convolutional neural network (Faster R-CNN) to detect
ships in PolSAR images. Bai et al. [39] designed a lightweight ship detection network
(LSDNET), which was driven by GP-PNF. These models have advantages in detection
accuracy and efficiency compared to the existing detection models. However, these methods
are data-driven and require a massive amount of annotated data. Therefore, they may not
be appliable in some circumstances, such as limited available data.

The nearshore environment is typically populated with a large number of ships due to
docking and navigation activities. In fact, nearshore ships are typically densely distributed.
The detection of nearshore ships in PolSAR images is not only affected by sea clutter in-
terference but also by other ships and artificial targets’ sidelobe interference, which leads
to false alarms or missed detections. Therefore, improving the target clutter ratio (TCR)
and eliminating interference are key issues in nearshore ship detection. As a preprocessing
technique, superpixel segmentation can cluster regions with similar properties [40]. Com-
pared to pixel-level ship detection methods, superpixel-level ship detection methods better
utilize the relationships between pixels within the region and maintain the integrity of
the target shape. This paper begins by performing image segmentation for both sea–land
segmentation and superpixel segmentation, combined with an automatic censoring (AC)
mechanism [41]. Superpixel-level GP-PNF can better utilize spatial information, and AC
can help censor candidate clutter superpixels and estimate sea clutter more accurately,
contributing to improving the GP-PNF detector. In order to enhance the TCR, a model-
based refined eight-component decomposition is integrated with improved GP-PNF to
further characterize the local structural scattering of the target and elevate the performance
of the detector. Then, a novel detector named ECD-PNF is constructed by incorporating
the third eigenvalue feature obtained from the eigenvalues–eigenvector decomposition,
which can eliminate clutter and azimuthal ambiguity interference. Finally, the proposed
method is validated on GF-3 and Radarsat-2 satellite-borne fully polarimetric SAR data
and outperforms other comparative methods in terms of detection results.

This paper is structured as follows: Section 2 provides an introduction to polarimetric the-
ory, the GP-PNF detector, and the refined eight-component decomposition method. Section 3
describes the proposed improved GP-PNF method in detail. Section 4 presents experimental
data and analyzes the results. Sections 5 and 6 present the discussion and conclusions.

2. Polarimetric Theory
2.1. Basic Polarimetric Matrix

Full polarimetric data conclude both the amplitude and phase information of the targets,
and the Sinclair matrix [S] encompasses four combinations of transmission–reception, which
can adequately describe the polarimetric scattering characteristics of the targets [42]. In
Equation (1), H represents the horizontal polarimetric channel, while V represents the vertical
polarimetric channel.

[S] =
[

SHH SHV
SVH SVV

]
(1)

The total power of polarimetric scattering SPAN, can be represented as follows, where
Trace(·) represents the matrix trace operation.

SPAN = Trace
(
[S][S]∗T

)
= |SHH|2 + |SHV|2 + |SVH|2 + |SVV|2 (2)
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The matrix [S] can describe the scattering characteristics of deterministic targets with
stable scattering properties but cannot accurately describe the scattering characteristics
of complex and randomly distributed targets. Most targets are composed of distributed
objects in natural scenes, so the polarimetric covariance matrix [C] and the polarimetric
coherence matrix [T] are commonly used in the literature to describe the scattering
characteristics of targets.

[C] and [T] can be obtained from the second-order moments of S3DL and S3DP, sep-
arately, where S3DL and S3DP are 3-D lexicographic scattering vectors and Pauli vectors,
respectively. ⟨·⟩ represents multiview processing, and (·)H denotes the conjugate transpose.

S3DL =
[
SHH

√
2SHV SVV

]T
, [C] =

〈
S3DLS3DL

H
〉
=

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (3)

S3DP =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
, [T] =

〈
S3DPS3DP

H
〉
=


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (4)

2.2. Geometrical Perturbation-Polarimetric Notch Filter (GP-PNF)

The GP-PNF and its subsequent iterations were proposed by Armando et al. [31,32]. The
detector first involves perturbing the target of interest with slight disturbances. Then, through
calculating the polarimetric coherence between the perturbed and reference targets’ scattering
mechanisms, GP-PNF utilizes the polarimetric coherence as a feature to enhance targets
or suppress background interference. GP-PNF can effectively characterize the polarimetric
scattering properties of distributed targets, and the TCR can also be enhanced.

In GP-PNF, the scattering characteristics vector of the targets is described as:

t = Trace([C]Ψ3) = [t1, t2, t3, t4, t5, t6]
T

=
[〈

|k1|2
〉

,
〈
|k2|2

〉
,
〈
|k3|2

〉
,
〈

k∗1
Tk2

〉
,
〈

k∗1
Tk3

〉
,
〈

k∗2
Tk3

〉]T (5)

In Equation (5), t is a six-dimensional vector, Ψ3 is a 3 × 3 matrix complete basis based
on Hermitian space, and ki (i = 1, 2, 3) represents the three elements in S3DL.

The polarimetric coherence of the target and perturbed target γn can then be expressed
as (6) in [31].

γn = 1√
1 + a2

b2
P1

P2 + P3 + P4 + P5 + P6

= 1√
1 + RedR Psea

Ptar

(6)

where P1 = Psea represents the power of the sea clutter, P2 + P3 + P4 + P5 + P6 = Ptar

represents the power of the ship targets. a2

b2 = RedR which is a constant representing
the reduction ratio. When the detected pixels correspond to ship pixels, the value of
polarization coherence tends to 1.

2.3. Refined Polarimetric Decomposition

The polarimetric coherence matrix contains rich polarization information and is com-
monly used to describe the polarimetric scattering characteristics of distributed targets.
However, the physical meanings of the nine elements in the coherence matrix are not
very clear. Polarimetric decomposition methods based on physical models decompose the
polarimetric coherence matrix into a combination of interpretable polarization scattering
mechanisms. Thus, model-based decomposition (MBD) can better explain the polarization
scattering characteristics of targets. With the continuous development of polarimetric
theory, polarimetric decomposition reveals more and finer scattering components, which
results in stronger physical interpretability [19,43,44].
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Some existing polarimetric decomposition methods often rely on certain assumptions
and lead to the loss of some polarization information. Quan et al. [45] improved the rotated
dihedral scattering model (RDSM) to avoid the confusion between the rotated dihedral
scattering mechanism and the volume scattering mechanism based on the seven-component
decomposition method. The improved eight-component decomposition method can make
better use of polarization information and accurately characterize the physical scattering
mechanisms of targets.

Combining the RDSM and the compound scattering models, the final eight-component
decomposition (F8D) scattering model is given as follows:

⟨[T]⟩ = fS[T]S + fD[T]D + fH [T]H + fV [T]V + fR[T]R + fOD[T]OD + fOQW [T]OQW + fMD[T]MD (7)

Thereinto, fS, fD, fH, fV, fR, fOD, fOQW, fMD represent surface, double-bounce, helix,
volume, rotated dihedral,±45◦ oriented dipole,±45◦ oriented quarter-wave reflector, and mixed
dipole scattering coefficients, respectively. [T]S, [T]D, [T]H , [T]T , [T]R, [T]OD, [T]OQW , [T]MD
represent the above scattering models’ scattering matrix. For details on the determination
of the scattering coefficients of each model and the calculation of the scattering model
power, please refer to the specific literature [45].

3. Methods

This paper proposes a nearshore ship detection method by integrating superpixel-
level GP-PNF and refined polarimetric decomposition. The proposed method can be
divided into three parts, as follows: (1) Firstly, the image is preprocessed by sea–land
segmentation and superpixel segmentation methods. (2) The superpixel-level GP-PNF is
then proposed by incorporating the AC mechanism. Furthermore, the scattering vectors in
GP-PNF are reconstructed based on refined eight-component decomposition. The third
feature of eigenvalues–eigenvector decomposition is also combined with the GP-PNF to
eliminate clutter and azimuth ambiguity interference. (3) Morphological processing is
finally performed to obtain the ship detection results. Figure 1 shows the flowchart of the
newly proposed ECD-PNF detector.
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3.1. Preprocessing

In order to reduce the influence of land and man-made targets’ scattering on ship detec-
tion, sea–land segmentation is first applied based on morphological methods. Specifically,
we remove the land-connected regions through erosion and dilation operations.

Since the spatial information in PolSAR images is not well utilized in pixel-level ship
detection methods, the detector can be easily affected by strong sea clutter or artifacts,
resulting in false alarms or missed detections. In this paper, the spatial information formed
by superpixels is applied to improve the detection results. Superpixels refer to a group of
pixels with similar characteristics; therefore, they are helpful to alleviate the effect of speckle
noise during feature extraction and subsequent procedures. Superpixel segmentation
methods were initially proposed for optical images. The simple linear iterative clustering
(SLIC) method, which is a simple yet effective segmentation approach, clusters pixels based
on Euclidean distance and CIELAB color distance. The procedure of the basic SLIC method
initializes the cluster centers first, and then clusters the pixels in a local region by the
k-means method. However, as to PolSAR images, the coherent speckle noise can affect
the performance of the original method. Therefore, a gradient calculation method with
a normalized covariance matrix is employed in this paper [46]. The method is improved
over the traditional CFAR detector and employs a Gaussian filter to replace the rectangular
filter. This method is less affected by speckle noise in the PolSAR image during gradient
calculation and can more accurately get the location of the minimum gradient. After getting
the gradient map and initializing the cluster centers, we replace the Euclidean distance
in SLIC with the Wishart distance to enhance the segmentation performance of SLIC in
PolSAR images. Finally, we get the segmentation results by postprocessing.

dwishart(Ci, Cj) =
1
2
× (Trace(Ci

−1Cj) + Trace(Cj
−1Ci))− q (8)

where Ci and Cj are the estimated center covariance matrices of two regions i and j, and

Ci = (1/Ni)∑
Ni
n=1 Cn, Cj =

(
1/Nj

)
∑

Nj
n=1 Cn, Ni and Nj represent the pixel numbers of i and

j, respectively, Cn represents the corresponding covariance matrices of the nth pixel. q is
the dimension of the covariance matrix.

3.2. ECD-PNF Detector

GP-PNF can enhance the TCR and obtain satisfactory results in general scenarios.
However, the detection performance of GP-PNF is affected when ships are densely dis-
tributed. To overcome this problem, this paper proposes several improvements to GP-PNF,
and the details are presented in the flowing subsections.

3.2.1. Candidate Sea Clutter Superpixel Selection with AC Mechanism

A testing window and a training window are set in the classic GP-PNF, and the sea
clutter is estimated using pixels within the training window. GP-PNF slides the testing
window and training window across the image to obtain the polarimetric coherence values
γn for each pixel. Although this method is computationally efficient, the sea clutter estima-
tion is inaccurate when the training window contains target pixels. Thus, it’s necessary to
select clutter pixels more flexibly.

After polarimetric superpixel segmentation, pixels with similar characteristics and
adjacent spatial coordinates are clustered into the common superpixel. To address the
issue of inaccurate sea clutter estimation in GP-PNF, this paper utilizes the AC mechanism
to censor candidate target superpixels spcandidate−tar and candidate clutter superpixels
spcandidate−sea. In [41], the AC mechanism classifies the pixels in SAR images into target
pixels and clutter pixels based on their grayscale values. In this paper, the superpixels are
classified into candidate target superpixels and candidate clutter superpixels with SPAN
as a feature value. The specific procedure is shown in the upper part of Figure 2.
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Firstly, according to the average SPAN value of each superpixel, the histogram can
be obtained. In the sea clutter area, the SPAN value is low, and the proportion of targets
is small, so the targets are mainly distributed in the tail of the histogram. According to
the histogram, the candidate target superpixels and candidate clutter superpixels can be
screened by the threshold, which is determined automatically. If we set the total SPAN
level of the PolSAR image as L, the total number of pixels will be N, and the proportion of
histogram of each level SPAN will be pi = ni/N, where ni is the number of pixels of each
level SPAN, i = 1, 2, 3, . . . , L. If we let the threshold be Ts, the proportion of clutter be φ,
φ ∈ [0, 1], then Ts can be adaptively obtained according to Formula (9).

Ts

∑
i

pi = 1 − φ (9)

By comparing the SPAN value of each superpixel with Ts, spcandidate−tar and spcandidate−sea
are roughly determined. An index vector is generated by assigning index of 1 to spcandidate−tar
and index of 0 to spcandidate−sea. In order to ensure that the candidate target superpixels are
not missed, the value of φ can be increased, while also ensuring that the filtered candidate
clutter superpixels do not contain the candidate target superpixels.

As shown in the lower part of Figure 2, the calculation of sea clutter scattering power
Psea_clutter is based on the spcandidate−sea and spcandidate−tar, respectively. The polarimetric
coherence is calculated based on superpixels as the basic unit, and the superpixels within
the second-order neighborhood of the current superpixel are selected for clutter estimation.
When the labels of the superpixels within the neighborhood are sea clutter labels, Psea_clutter
can be described as (10), where N represents the total number of clutter superpixels within
the neighborhood, i = 1, 2, . . . , N, n represents the total number of pixels within the i-th
clutter superpixel, j = 1, 2, . . . , n. Superpixels within the neighborhood that are labeled as
targets do not participate in the clutter estimation.

Psea_clutter =
1
N

N

∑
i=1

PS(i), PS(i) =
1
n

n

∑
j=1

PS(j) (10)

3.2.2. Constructing Scattering Vectors Based on Refined Eight-Component Decomposition

In GP-PNF, it is assumed that sea clutter scattering is composed of Bragg surface
scattering, which corresponds to the first element of the partial target scattering vector t. The
scattering components of ship targets correspond to the remaining five elements of t. This
assumption did not analyze the concrete scattering components of ships or sea clutter, thus
lacking strong physical interpretability. Refined model-based polarimetric decomposition
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methods can typically decompose the coherent matrix of targets into several components
with clear physical meanings. To make the most of the polarimetric decomposition in
ship detection, the decomposition results can be integrated into GP-PNF by modifying the
form of scattering vectors. Quan et al. analyzed the scattering characteristics of ships and
explained the physical concepts behind different scattering components [45]. Therefore,
the eight-component decomposition is applied in this paper.

After polarimetric eight-component decomposition, the scattering power of the eight
components can be obtained. According to the power of different scattering components,
we get a new 8-D target scattering vector te as:

te =
[
PS, PD, PH , PV , PR, POD, POQW , PMD

]T (11)

As shown in Figure 3, we utilize the eight-component decomposition method to an-
alyze the scattering power components of different targets. The ROI region is extracted
from the GF-3 and Radarsat-2 spaceborne PolSAR datasets. Figure 3a represents the energy
map of the eight-component decomposition results for a ship. Figure 3b–d represent the
scattering power proportions of different ship targets, Figure 3e represents the scatter-
ing power proportions of strong sidelobe scattering, Figure 3f represents the scattering
power composition of azimuthal ambiguity, and Figure 3g represents the scattering power
composition of sea clutter. Combining the energy map of the scattering components with
the sector diagram of scattering power proportions, it can be observed that the refined
eight-component decomposition can provide a detailed description of the target’s scattering
mechanisms. From the energy map of the scattering components in Figure 3a, it can be seen
that the double-bounce scattering energy is distributed almost throughout the entire hull.
Additionally, from the sector diagram of ships’ scattering power proportions in Figure 3b–d,
it can be observed that the double-bounce scattering energy PD is the main component of
the vessels’ scattering energy. The remaining scattering energy proportions of ship targets
change since there are variations in radar incident angle, structure, etc. The scattering
energy composition of sidelobe scattering in ships resembles that of real targets. Azimuthal
ambiguity and sea clutter are mainly composed of surface scattering. By comparison, it is
assumed that the energy of sea clutter is concentrated in the first dimension of te, i.e., the
surface scattering energy. While the energy of ship targets is distributed in the other seven
dimensions of te. Following a similar derivation process to GP-PNF, an improved GP-PNF
detector is derived as (12):

γp = 1√
1 + RedR

Psea_clutter
Ptar

= 1√
1 + RedR PS

PD + PH + PV + PR + POD + POQW + PMD

(12)

In PolSAR images, the SPAN value of ships is typically larger than that of the
sea. Furthermore, through analyzing the scattering energy distribution of ships, it has
been observed that the majority of the ship’s scattering energy is attributed to double-
bounce scattering. Therefore, in order to enhance the TCR, this paper further improves
the detector, as shown in Equation (13). From a mathematical principle perspective,

1
SPAN2 × PS

PD
2 + PH + PV + PR + POD + POQW + PMD

is a monotonically increasing function, and

both SPAN2 and PD
2 are in the denominator. As their values increase, the value of the

detector γp tends to approach 1. Since the double-bounce scattering energy and total
polarization power of ships are relatively large compared to clutter interference, γp can
further enhance the polarimetric coherence of targets and suppress sea clutter, resulting in
improved detection performance.



Remote Sens. 2024, 16, 1095 9 of 22

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 24 

eight-component decomposition can provide a detailed description of the target’s scatter-

ing mechanisms. From the energy map of the scattering components in Figure 3a, it can 

be seen that the double-bounce scattering energy is distributed almost throughout the en-

tire hull. Additionally, from the sector diagram of ships’ scattering power proportions in 

Figure 3b–d, it can be observed that the double-bounce scattering energy DP is the main 

component of the vessels’ scattering energy. The remaining scattering energy proportions 

of ship targets change since there are variations in radar incident angle, structure, etc. The 

scattering energy composition of sidelobe scattering in ships resembles that of real targets. 

Azimuthal ambiguity and sea clutter are mainly composed of surface scattering. By com-

parison, it is assumed that the energy of sea clutter is concentrated in the first dimension 

of et , i.e., the surface scattering energy. While the energy of ship targets is distributed in 

the other seven dimensions of et . Following a similar derivation process to GP-PNF, an 

improved GP-PNF detector is derived as (12): 

1

1

1

1

p

sea_clutter

tar

S

D H V R OD OQW MD

γ =
P

+ RedR
P

=
P

+ RedR
P + P + P + P + P + P + P

(12) 

Paulipseudo color image
SP DP HPVP RP ODP OQWP MDP

(a) 

(b) (c) 

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 24 
 

 

 
 

(d) (e) 

  

(f) (g) 

Figure 3. The scattering analysis. (a) Energy map of the eight-component decomposition results for 

the ship. (b–d) The scattering energy proportions of different ship targets. (e) The scattering energy 

proportions of strong sidelobe scattering. (f) The scattering energy composition of azimuthal ambi-

guity. (g) The scattering energy composition of sea clutter. 

In PolSAR images, the SPAN  value of ships is typically larger than that of the sea. 

Furthermore, through analyzing the scattering energy distribution of ships, it has been 

observed that the majority of the ship’s scattering energy is attributed to double-bounce 

scattering. Therefore, in order to enhance the TCR, this paper further improves the detec-

tor, as shown in Equation (13). From a mathematical principle perspective, 

S

2 2
D H V R OD OQW MD

P1

SPAN P + P + P + P + P + P + P
  is a monotonically increasing function, and 

both 2SPAN  and 2
DP  are in the denominator. As their values increase, the value of the 

detector pγ  tends to approach 1. Since the double-bounce scattering energy and total po-

larization power of ships are relatively large compared to clutter interference, pγ  can fur-

ther enhance the polarimetric coherence of targets and suppress sea clutter, resulting in 

improved detection performance. 

1

1
1

p

S
2 2

D H V R OD OQW MD

γ
P

RedR
SPAN P + P + P + P + P + P + P

=

+  

 
(13) 

Figure 3. The scattering analysis. (a) Energy map of the eight-component decomposition results
for the ship. (b–d) The scattering energy proportions of different ship targets. (e) The scattering
energy proportions of strong sidelobe scattering. (f) The scattering energy composition of azimuthal
ambiguity. (g) The scattering energy composition of sea clutter.
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γp =
1√

1 + RedR × 1
SPAN2 × PS

PD
2 + PH + PV + PR + POD + POQW + PMD

(13)

3.2.3. Combining the Third Eigenvalue to Improve the Detector

The ship detection capability of the modified GP-PNF can be enhanced through
the AC mechanism and eight-component decomposition. Unfortunately, we note that
the sidelobe scattering of ships is also mainly composed of double-bounce scattering
power, and some azimuthal ambiguities are both with double-bounce scattering power,
so they are also amplified in γp. As mentioned earlier, the third eigenvalue λ3 obtained
through eigenvalues–eigenvector decomposition can effectively suppress noise and other
interference, and it can distinguish ships from sea clutter. Therefore, this paper combines
γp and λ3 to obtain the final detector γECD.

γECD = γp × λ3

= λ3√
1 + RedR× 1

SPAN2 ×
PS

PD
2 + PH + PV + PR + POD + POQW + PMD

> T (14)

After ship detection using γECD, some small false alarm areas will appear in the
PolSAR image. In this paper, morphological processing methods are used to remove the
false alarm and generate the final detection results.

4. Experimental Results

This paper validates the performance of the proposed ECD-PNF detector using space-
borne PolSAR datasets from GF-3 and Radarsat-2. To assess the effectiveness of the pro-
posed method, this paper compares ECD-PNF with GP-PNF, a ZT-PNF detector proposed
by Zhang et al. [33], as well as the YAMA-PNF four-component decomposition-based
GP-PNF detector [34] and the SCLC PolSAR ship detector proposed by Pan et al. [30].

4.1. Data Description

This paper selects three spaceborne PolSAR datasets from Radarsat-2 and GF-3. All
the datasets contain both land and sea areas, with a high concentration of ship distribution.
Table 1 provides detailed information about the sensor, imaging area, acquisition date, data
size, resolution, and ship number for each dataset.

Table 1. Experimental data information.

Sensor Imaging Area Acquisition Date Size
(Range × Azimuth)

Resolution
(Range × Azimuth) Ship Number

Radarsat-2 Guangzhou 31 May 2019 515 pixels × 379 pixels 8 m × 8 m 50
GF-3 Singapore 27 May 2023 2002 pixels × 2842 pixels 8 m × 8 m 129
GF-3 Pearl River 5 August 2017 1008 pixels × 924 pixels 8 m × 8 m 37

Pauli pseudo-color images and ground-truth images of three regions are shown in
Figure 4. Figure 4(a1–a3) displays the Pauli pseudo-color images, while Figure 4(b1–b3)
represents the ground-truth images for their respective regions. The ground-truth images
were generated based on expert knowledge, where white pixels represent ship pixels, black
pixels represent sea clutter, and the land areas are also excluded in the image.
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4.2. Result Comparison

The figure of merit (FoM), detection rate Pd, and TCR are used as evaluation metrics,
as shown in Equations (15)–(17). In Equations (15) and (16), TP represents the number
of correctly detected targets, FN represents the number of missed detections, and FP
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represents the number of false alarms in the scene. Et and Es denote the values of the
adopted detector for target and clutter, respectively.

Pd =
TP

TP + FN
(15)

FoM =
TP

TP + FN + FP
(16)

TCR = 10log10

(
Et

Es

)
(17)

This paper utilizes the OTSU thresholding method to obtain binary detection results
for the GP-PNF, YAMA-PNF, ZT-PNF, and ECD-PNF methods. The threshold value for
the SCLC method was obtained based on [30]. To minimize false alarms in the detection
process, we used erosion and dilation processing to eliminate internal hollow areas of ships
and obtain connected regions in the image as ship targets. Then, fewer than 15, 30, and 10
ship target pixels of the detection results are deleted in the Guangzhou area, Singapore area,
and Pearl River area according to the number of minimum ship target pixels, respectively.
The binary maps of the experimental results for different methods are shown in Figures 5–7.
False alarms are marked by the yellow rectangles, and missed detections are marked by the
red rectangles. Table 2 presents the comparative detection results of different methods on
different datasets.
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In the PolSAR image of the Guangzhou area, the distribution of ships is relatively
dense, and there are many strong scattering points in the image besides the ships. The
GP-PNF method cannot distinguish between sea clutter and targets well, resulting in twelve
false alarms being detected. By comparison, the SCLC method missed one target with an
FoM of 0.942 and the YAMA-PNF method detected three false alarms with an FoM of 0.943.
Both the ZT-PNF method and the ECD-PNF method detect one false alarm target.

In the PolSAR image of the Singapore area, the distribution of ships is denser, and
the scale of ships varies greatly. There are also many strong scattering points in the image
that do not belong to the targets, which can interfere with ship detection. As shown in
Figure 6a,b, both the SCLC method and the GP-PNF method are not good at distinguishing
strong scattering points of sea clutter from targets, and they also detect some strong
scattering pixels around the ship as targets when the scattering of the ship targets is strong.
As shown in Figure 6c,d, the YAMA-PNF and the ZT-PNF methods generate fewer false
alarm detections with an FoM of 0.985 and 0.977, respectively. After Post-processing, the
ECD-PNF method does not detect false alarms or miss targets with an FoM of 1.000. The
proposed method reaches the highest among all the methods, as shown in Figure 6e.
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Table 2. Quantitative result comparison of different methods on different datasets.

Area Method TP FN FP Pd FoM

Guangzhou

SCLC 49 1 2 0.980 0.942

GP-PNF 50 0 12 1.000 0.806

YAMA-PNF 50 0 3 0.980 0.943

ZT-PNF 50 0 1 1.000 0.980

ECD-PNF 50 0 1 1.000 0.980

Singapore

SCLC 129 0 13 1.000 0.908

GP-PNF 129 0 13 1.000 0.908

YAMA-PNF 129 0 2 1.000 0.985

ZT-PNF 129 0 3 1.000 0.977

ECD-PNF 129 0 0 1.000 1.000

Pearl River

SCLC 36 1 3 0.973 0.900

GP-PNF 36 1 19 0.973 0.643

YAMA-PNF 37 0 4 1.000 0.902

ZT-PNF 37 0 1 1.000 0.974

ECD-PNF 37 0 0 1.000 1.000

In the PolSAR image of the Pearl River area, there is strong sea clutter and azimuth
ambiguity in some regions, and the scattering energy of targets is relatively low, which
could lead to false alarms and missed detections. As shown in the detection results of
different methods, the SCLC method detected three false alarms targets and missed a target.
The GP-PNF method detected a large number of false alarms, and it can be observed that
these false alarms were mainly detected in regions with strong azimuthal ambiguity. The
YAMA-PNF method also has a poor ability to remove azimuthal ambiguity and detected
four false alarms. The ZT-PNF method can effectively reduce the reference of the azimuth
ambiguity, and the result has an FoM of 0.974. By comparison, the ECD-PNF performed
the best among all the methods, with an FoM of 1.000.

We validated the efficacy of our proposed method in enhancing the TCR by comparing
the feature maps obtained by different methods. It should be noted that the features of
the SCLC method were not compared with other features. Taking the PolSAR data of the
Singapore area as an example, Figure 8 shows the corresponding detection feature maps
obtained by the SCLC method. It can be observed that although the SCLC method can
significantly enhance the contrast between ships and sea clutter, the sidelobe scattering
and partial scattering of targets are very high. When ships are densely distributed, it
can severely affect the detection results. Therefore, the features of the SCLC method
were not presented, and the TCR values were not compared with those of other methods.
Figures 9–11 show the feature maps obtained by different detectors in various ROIs, which
are extracted from Guangzhou, Singapore, and the Pearl River area, respectively. It can be
seen that the feature values obtained by the GP-PNF detector cannot effectively suppress
sea clutter and azimuth ambiguity. Compared to GP-PNF, the YAMA-PNF and ZT-PNF
detectors perform better; however, their feature values still perform poorly when azimuth
ambiguity is strong. In comparison to the other methods, the proposed features in this
paper exhibit the best performance, and the feature values of the ships are significantly
higher than the surrounding clutter even under strong azimuth ambiguity.
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In this paper, we selected twelve ship targets within the blue rectangles in Figure 4(a1–a3)
to compute the TCR. Table 3 shows the mean TCR values of Ship 1 to Ship 12 obtained by
different detectors for different areas. Figure 12 shows the TCR comparison map from Ship 1
to Ship 12 for different detectors and areas. The radial radius represents the dB value. The red
color represents the ECD-PNF detector, the yellow color represents the ZT-PNF detector, the
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green color represents the GP-PNF detector, and the blue color represents the YAMA-PNF
detector. It can be observed that the ECD-PNF detector enhances the TCR of the targets more
effectively compared to the other methods.

Table 3. Mean TCR values of Ship 1–Ship 12 for different areas and detectors (dB).

Area
Method

GP-PNF YAMA-PNF ZT-PNF ECD-PNF

Guangzhou 19.56 22.17 35.27 44.54

Singapore 36.97 47.27 50.67 66.86

Pearl River 33.33 42.87 50.98 60.39
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To further demonstrate the effectiveness of our proposed method, Figure 13 illustrates
the pixel-level detection results after post-processing in terms of the ROC curve for different
datasets. The PFA (false alarm probability) and PD (detection rate) within the ROC curve
are calculated by the ratio of falsely detected pixels or correctly detected pixels to ground-
truth pixels, as shown in Equation (18). Nc is the number of false alarm pixels, Nt is the
number of correctly detected pixels, and Ngt is the number of ground-truth pixels. From
the results of the ROC curves, it can be observed that our proposed methods outperform
the other methods in terms of pixel-level detection results in all three datasets.

PFA =
Nc

Ngt
, PD =

Nt

Ngt
(18)
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5. Discussion

By analyzing several sets of comparative experiments, we found that the ECD-PNF
detector proposed in this paper can achieve the best performance. The SCLC method can
effectively enhance the TCR, but it also enhances the sidelobe interference of the target
and the scattering energy of some sea clutter. That is the reason why SCLC may increase
false alarms during ship detection. The traditional GP-PNF method cannot enhance TCR
and suppress interference well, and it was the least effective method in the experiments.
ZT-PNF integrates the third eigenvalue with GP-PNF to remove azimuth ambiguity, YAMA-
PNF uses the feature of four component polarimetric decomposition and reconstructs
the expression of polarimetric coherence. Both methods can effectively highlight ship
targets, but they do not perform well in suppressing the interference of strong scattering
points around the target and in the sea clutter region. The ECD-PNF detector effectively
suppresses interference while enhancing TCR, so it obtains fewer false alarms and more
correct detections simultaneously. In general, the ECD-PNF detector proposed in this
paper exhibits the best detection effect compared with other detectors. However, it should
be noted that the proposed method still suffers from false alarms when detecting small
targets or under high-sea-state conditions. Further analysis of the polarimetric scattering
mechanism of ships is needed to construct more effective polarimetric features.

6. Conclusions

A novel nearshore ship detection method named ECD-PNF for PolSAR images is
proposed by integrating superpixel-level GP-PNF and refined polarimetric decomposition.
As part of the preprocessing, polarimetric superpixel segmentation is performed to better
utilize the polarimetric and spatial information, and sea–land segmentation is performed to
reduce the influence of land on ship detection. To estimate the sea clutter more accurately,
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an automatic censoring mechanism combined with superpixels is used to select the clutter
and target superpixels. By integrating refined eight-component decomposition to better
utilize the polarimetric information of the target and improve the target vector space,
the physical interpretability of the detector is enhanced. Additionally, the expression of
polarimetric coherence is modified to enhance the TCR. Finally, this paper combines the
third eigenvalue to reduce the impact of azimuthal ambiguity, which contributes to further
enhancing the TCR. Comparison studies with three kinds of spaceborne PolSAR datasets
from Radarsat-2 and GF-3 clearly demonstrate the superiority of the proposed method. The
FoM value reaches 0.980, 1.000, and 1.000, respectively. Through comparative experiments,
it can be verified that the method proposed in this paper can effectively suppress azimuthal
ambiguity and other interferences, enhance TCR in dense ship detection near the coast,
and perform well in both pixel-level and target-level detection results. In future works, we
will further analyze the polarimetric characteristics of ships and sea clutter, focusing on the
detection of small ship targets under strong clutter interference. Additionally, we observed
in our experiments that when ships are inshore, their scattering characteristics resemble
those of man-made targets on land. Therefore, we will also consider the application of fine
polarimetric scattering characteristics in shore-based scenarios.
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