
Citation: Li, Y.; Zhao, H.; Huang, R.;

Zhang, G.; Zhou, H.; Han, C.; Bai, L.

Laser Backscattering Analytical

Model of Doppler Power Spectra

about Convex Quadric Bodies of

Revolution during Precession. Remote

Sens. 2024, 16, 1104. https://doi.org/

10.3390/rs16061104

Academic Editor: Pablo Rodríguez-

Gonzálvez

Received: 6 December 2023

Revised: 16 March 2024

Accepted: 16 March 2024

Published: 21 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Laser Backscattering Analytical Model of Doppler Power Spectra
about Convex Quadric Bodies of Revolution during Precession
Yanhui Li 1,*, Hua Zhao 2, Ruochen Huang 1, Geng Zhang 1, Hangtian Zhou 1, Chenglin Han 1 and Lu Bai 1

1 School of Physics, Xidian University, Xi’an 710071, China; 22201215079@stu.xidian.edu.cn (R.H.);
gengzhang@xidian.edu.cn (G.Z.); 20051212121@stu.xidian.edu.cn (H.Z.);
1605122068@stu.xidian.edu.cn (C.H.); blu@xidian.edu.cn (L.B.)

2 Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China; zhaohcq@163.com
* Correspondence: yhlee@mail.xidian.edu.cn

Abstract: In the realm of ballistic target analysis, micro-motion attributes, such as warhead precession,
nutation, and decoy oscillations, play a pivotal role. This paper addresses these critical aspects by
introducing an advanced analytical model for assessing the Doppler power spectra of convex quadric
revolution bodies during precession. Our model is instrumental in calculating the Doppler shifts
pertinent to both precession and swing cones. Additionally, it extends to delineate the Doppler power
spectra for configurations involving cones and sphere–cone combinations. A key aspect of our study is
the exploration of the effects exerted by geometric parameters and observation angles on the Doppler
spectra, offering a comparative perspective of various micro-motion forms. The simulations distinctly
demonstrate how different micro-motion patterns of a cone influence the Doppler power spectra
and underscore the significance of geometric parameters and observational angles in shaping these
spectra. This research not only contributes to enhancing LIDAR target identification methodologies
but also lays a groundwork for future explorations into complex micro-motions like nutation.

Keywords: LIDAR; doppler; backscattering; micro-motion; precession

1. Introduction

LIDAR technology plays an increasingly significant role in the field of environmen-
tal remote sensing. Its distinctive advantages, including a short wavelength, excellent
beam collimation, and high brightness, have found extensive application in the military,
aerospace, and remote sensing detection. LIDAR systems have the capability to perform
target ranging and orientation based on laser scattering characteristics. Moreover, they
can recognize target shape and posture by analyzing parameters such as position, radial
velocity, micro-movement characteristics, and Doppler power spectra [1,2]. Simultaneously,
radar technology’s Doppler techniques offer robust anti-interference capabilities in me-
teorological observations, significantly enhancing data collection accuracy, repeatability,
and error reduction. Consequently, Doppler radar technology finds extensive application
in meteorological observations and military domains. Doppler radar in meteorological
observations typically employs fixed-frequency pulse waves for scanning. This allows
for target detection even when the return frequency of the target differs from that of the
transmitted wave. This technology is routinely employed for detecting atmospheric phe-
nomena, enabling the monitoring of relative frequency changes in targets. It achieves this
by tracking the time of pulse transmission and reception to continuously monitor target
distance, thereby efficiently obtaining valuable data.

G. Pearson deployed a pulsed Doppler LIDAR in the tropical rain forest of Borneo
to remotely monitor vertical and horizontal transport, aerosol distributions, and clouds
in the lower levels of the atmosphere [3]. Pavlos Kollias utilized radar Doppler spectra
observations to investigate liquid clouds that harbor drizzle droplets, typically occurring
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within specific atmospheric contexts characterized by elevated humidity levels, low cloud
base temperatures, and enhanced vertical wind shear conditions [4].

Victor C. Chen used X-band radar to detect the triangle scatterers with vibration
in 2000, and successfully obtained the micro-Doppler frequency shift in radar echoes
through time–frequency transformation, then introduced the concept of the micro-Doppler
effect into the microwave radar system for the first time. The research field of micro-
Doppler feature extraction of a micro-moving target based on a microwave radar signal
was developed. Later, Victor C. Chen used radar to detect pedestrians and conducted
in-depth analysis and discussion on radar echo signals, which further demonstrated the
huge application potential of the micro-Doppler effect in radar signal processing [5,6].
Yura and Bankman investigated the coherent and incoherent scattering of the target and
conducted range Doppler imaging on the rotating cone to identify the micro-motion of the
target [7]. Youmans estimated the Doppler centroid and Doppler width and proposed a
preliminary model of a simple “reflective” cylinder [8]. Bankman [9] presented an analytical
model of spectra in backscatter from the cone and cylinders rotating around their axes,
which has the singular value problem. Gong YJ et al. proposed an analytical model
of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of
revolution (whose lateral surface is a quadric) rotating around axes [10]. In exploring the
primary sources of turbulent mixing within the atmospheric boundary layer, Manninen
et al. proposed a method using Doppler LIDAR data, which can detect the presence of
turbulence [11]. This discovery provided an important perspective for understanding the
dynamics of the atmospheric boundary layer. Similarly, Peng et al. introduced a Doppler
LIDAR-based pedestrian detection and tracking scheme suitable for urban scenes. This
scheme can simultaneously record the position and velocity of the target [12], which is
of significant importance for traffic safety and surveillance in urban environments. Both
studies showcase the potential applications of Doppler LIDAR technology in the fields of
atmospheric science and urban safety, offering valuable technical references and prospects
for this research.

The radar echoes of micro-motion targets reveal their intricate details, including
structural, electromagnetic scattering, and motion characteristics. For this reason, the
identification and detection of targets in space, air, ground, and sea, including ships, is of
paramount importance [10,13–15]. In 2008, Victor C. Chen used the method of moments to
simulate the precession echo data of the cone cylinder target, and analyzed the characteris-
tics of micro-Doppler components corresponding to the spin and cone components as well
as the micro-Doppler components corresponding to each scattering center of the cone [16].
Han Xun et al. proposed a method to distinguish spin, precession, and nutation forms
by extracting features from the time–frequency distribution of the target echo [17]. Wang
et al. [18] proposed a novel method for extracting precession parameters using coherent
LIDAR based on a Doppler frequency profile (DFP) of dual-view observation, to the best of
our knowledge. In 2018, Zhang Qun et al. [19] published a review of studies on the micro-
Doppler effect, which summarized the micro-doppler model modeling, micro-Doppler
feature extraction, micro-Doppler target imaging, and radar classification and recognition
technology based on micro-Doppler features, and pointed out the future development
direction of research on micro-Doppler feature extraction methods.

In the aforementioned study on micro-moving targets, Gong et al. [10] rigorously
established the correlation between the Doppler shift of rotating targets and their coordi-
nates within the laser band. The micro-motion is also an important form of motion of the
target and has a nonnegligible influence on the Doppler power spectrum. By analyzing
the Doppler power spectrum, it is also possible to determine the motion state of the ob-
ject. Building upon their findings, this paper proposes research on micro-motions such as
precession and swing, which have the potential to advance micro-motion detection, target
recognition, and ground-based LIDAR detection.
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2. Model of Space Precession Target

The target’s precession involves spinning around its axis of symmetry while also
rotating around a specific axis in space. Translational flight is not taken into consideration
in this particular model.

The convex quadric body of revolution, illuminated by one laser plane wave of

wavelength λ whose incidence direction is the z-direction, spins around its central axis
⇀

OT

with angular velocity ω while rotating around the precession axis
⇀

OP with angular velocity

ωP (see Figure 1). The precession angle α represents the angle between
⇀

OT and
⇀

OP. The

angle between the line of sight (LOS) and
⇀

OP is θ. The observation angle γ is the angle

between the LOS and
⇀

OT. The axis
⇀

OT and
⇀

OP are both on the yoz plane.

⇀
OT = (0, sin γ, cos γ)
⇀

OP = (0, sin θ, cos θ)
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The Doppler shift of a precession cone is due to spin and rotation.

Rotating around
⇀

OP: For each point r(x, y, z) on the lateral surface of the convex

quadric body of revolution, the vector of angular velocity can be expressed as
⇀
Ωp = ωp ·

⇀
OP,

and its linear velocity
⇀
v P is given by:

⇀
v p =

⇀
Ωp ×

⇀
r

= ωp · (0, sin θ, cos θ)× (x, y, z)
= ωp · (z sin θ − y cos θ, x cos θ,−x sin θ)

(1)

Spinning around
⇀

OT: The coordinates of
⇀

OT will change due to the spin, and the
rotation matrix M can be given by:

M =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

cos(ωp · t) − sin(ωp · t) 0
sin(ωp · t) cos(ωp · t) 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ
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The coordinates of
⇀

OT can be written as
⇀

OT′, which is a function of time.

⇀

OT′ = M ·
⇀

OT

=

 sin(ωp · t) sin(θ − γ)
sin γ(cos(ωp · t) cos2 θ + sin2 θ) + cos γ sin θ cos θ(1 − cos(ωp · t))
cos γ sin θ cos θ(1 − cos(ωp · t)) + cos γ(cos(ωp · t) sin2 θ + cos2 θ)

 (2)

Let
⇀

OT′ = (a, b, c), where:a
b
c

 =

 sin(ωp · t) sin(θ − γ)
sin γ(cos(ωp · t) cos2 θ + sin2 θ) + cos γ sin θ cos θ(1 − cos(ωp · t))
cos γ sin θ cos θ(1 − cos(ωp · t)) + cos γ(cos(ωp · t) sin2 θ + cos2 θ)

,

For each point r(x, y, z) on the lateral surface of the convex quadric body of revolution,

the vector of angular velocity can be expressed as
⇀
Ωs = ω ·

⇀

OT′, its linear velocity
⇀
v s is

given by:
⇀
v s =

⇀
Ωs ×

→
r

= ω · (a, b, c)× (x, y, z)
= ω · (bz − cy, cx − az, ay − bx)

(3)

So, the linear velocity of micro-motion of the cone can be measured by
⇀
v :

⇀
v =

⇀
v p +

⇀
v s (4)

The direction of incidence of the laser can be expressed as
⇀
e = (0, 0, 1) and the Doppler

shift at each point on the surface of the cone in the backscattering direction is as follows:

∆ f = − 2(
⇀
v ·⇀e )
λ

=
2ωpx sin θ

λ + 2ω(bx−ay)
λ

(5)

If γ = 0◦, the equation of the lateral surface of the convex quadric body of revolution
in the coordinate observation system is

x2 + y2 = Az2 + 2Bz + C, z0 ≤ z ≤ z0 + h (6)

where h is the height of the convex quadrilateral of revolution. If γ ̸= 0◦, the observation
angle γ provides a clockwise rotation about the x-axis, and Equation (6) is transformed
as follows:

x2 + (y cos γ − z sin γ)2 = A(y sin γ + z cos γ)2 + B(y sin γ + z cos γ) + C (7)

According to the LIDAR equation

P =
Gr Ar

4πr2
t R2

Pt
σ

4π
(8)

where P is the received signal power, Pt is the transmitter power, σ is the effective target-
scattering cross section, Ar is the clear aperture of the detector, Gr is the gain function, and
rt, R are the distances from the target to the transmitter and receiver, respectively. The
above situation applies when the laser beam is larger than the effective receiving area of
the target object.

Let the surface element be dA, with zenith and azimuth angles of θi and φi in the
incident direction, and zenith and azimuth angles of θs and φs in the scattering direction.
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The backscattering power at each small section on the surface of the target can be
written as

dP = K fr(β) cos2 β
dxdy
|cos β| (9)

where K = PtGr Ar
4πr2

t R2 , dxdy is the area of each small section on the surface of the target. fr(β) is

the bidirectional reflectance distribution function (BRDF), which depends on the material
properties of the rough convex quadric body of revolution, and β is the angle between the
surface normal at that point and the opposite direction of the incidence direction of the
laser. From Equation (7), the normal unit vector

⇀
n at any point of the lateral surface can be

obtained. The cosine of the angle between
⇀
n and −z is cos β, which is expressed as:

cos β =
sin γ(y cos γ − z sin γ) + cos γ(Ay sin γ + Az cos γ + B)√

x2 + (y cos γ − z sin γ)2 + (Ay sin γ + Az cos γ + B)2
(10)

The variable z in Equation (10) can be expressed as a function of x and y from
Equation (7). When the surface material is diffusely reflecting (Lambertian), the surface
reflectance can be described by fr(β) = ρ/π, where ρ is the hemispherical reflectance, the
value KL= K f r(β) is normalized to unity. Equation (9) is transformed as follows:

P(x, y) = KL

∫
z∈C

cos βdxdy (11)

where the integral domain C for a convex quadric body of revolution can be summarized as:

C :
cos β > 0

z0 ≤ y sin γ + z cos γ ≤ z0 + h

}
(12)

From Equations (5) and (11), both P(x, y) and ∆ f are expressed as a function of x
and y, and each small section (x, y) on the surface of the target can calculate received
signal power P(x, y) and Doppler shift ∆ f . Thus, a plot can be drawn with ∆ f as the
horizontal coordinate and P(x, y) as the vertical coordinate; the resulting image is the laser
backscattering Doppler spectrum subsequent modeling, and simulation calculations are
also implemented based on this.

3. Simulations and Discussion
3.1. Precession Cone and Sphere–Cone Combination

For a cone, if A = tan2 δa, B = 0, C = 0, the equation of the lateral surface of the
convex quadric body of revolution is transformed as follows:

x2 + (y cos γ − z sin γ)2 = tan2 δa(y sin γ + z cos γ)2 (13)

where δa is the half-cone angle of the cone.
In a sphere–cone combination, the spherical and conical segments are joined to create

a continuous slope on the surface.

A
B
C

 =



−1
r
0


 tan2 δb

r(sec δb − tan δb) tan δb
r2(sec δb − tan δb)

2


, 0 ≤ y sin γ + z cos γ < r(1 − sin δb)

, r(1 − sin δb) ≤ y sin γ + z cos γ ≤ hb

(14)
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The equation of the lateral surface of the convex quadric body of revolution is transformed
as follows:

x2 + (y cos γ − z sin γ)2 =
−(y sin γ + z cos γ)2 + 2r(y sin γ + z cos γ) , 0 ≤ y sin γ + z cos γ < r(1 − sin δb)

(tan δb(y sin γ + z cos γ) + r sec δb − r tan δb)
2 , r(1 − sin δb) ≤ y sin γ + z cos γ ≤ h

(15)

where r, δb, hb is the radius of the spherical segment, the half-cone angle of the conical
segment, and the length. The base radius of the conical segment of the sphere–cone
combination is rb, where r = rb cos δb−hb sin δb

1−sin δb
(see Figure 2). We set simulation parameters

for simulated computing spectra (see Table 1).
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Table 1. Simulation Parameters.

Parameters Value

λ 1 µm

KL 1

ω 1 rad/s

ωp 0.5π rad/s

α 3◦

ra 0.5 m

rb 0.2 m

ha 2 m

hb 1 m

δa 14.04◦

δb 8◦
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Figure 3 is a schematic of the precession cone from position 1 to position 2, whose
Doppler-normalized power spectrum is shown in Figure 4a. The normalized power is 10−3.
With the increase in time t, both the Doppler shift and the normalized power increase due
to the increase in the observation angle γ. Setting a reference line (dotted line) where the
Doppler shift is equal to 0, we can find that the curves deviate to the left side of the dotted
line except for at Position 1 and Position 2. Figure 4b shows the Doppler normalized power
spectra from Position 2 to Position 1. Over time t, both the Doppler shift and the normalized
power decrease due to the reduction in the observation angle γ. The curves deviate to the
right side of the dotted line except for Position 1 and Position 2. Corresponding to the
Doppler shift equation (Equation (4)), the Doppler shift is a function of x only at positions
1 and 2; at the other positions, the Doppler shift is a function of x and y, which is reflected
in the fact that the spectral lines will be skewed to the left and right of the dashed line.
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Figure 5 illustrates that the Doppler power spectra for the combination of a sphere
and a cone are dissimilar to those of the cone at lower frequencies, but comparable at
higher frequencies. The simulated spectra of the sphere–cone combination enable the
identification of composite features of the sphere and cone. Moreover, the normalized
Doppler power spectra for the sphere–cone and cone during precession exhibit identical
simulation outcomes.

The Doppler normalized power spectra of 0–4 s in Figures 4 and 5 have been expanded
to 0–16 s using a step size of ∆t = 0.1 s. The Doppler power spectra profiles for the
precession cone and sphere–cone combination across four precession periods are illustrated
in Figure 6. The upper blue curve illustrates the normalized power at a Doppler shift of
zero. On the right, the red curve shows the Doppler power spectra of the cone during
t = 4 s. In Figure 6, the Doppler power spectra profiles provide insight into the changes in
Doppler frequency shift and normalized power across four precession periods, enabling a
better understanding of target echo information during precession.
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3.2. The Influence of Geometric Parameters on Doppler Spectra

Figure 7 shows the Doppler power spectra from 0 to 16 s in the precession process
with a different radius of the cone. The blue curve on the top represents the normalized
power when the Doppler shift equals 0. The red curve on the right represents the Doppler
power spectra of the cone when t = 4s. We found that the geometric parameters of the
cone affect the Doppler power spectra.
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As the radius of the cone decreases, the Doppler shift decreases. This result is the same
as the Doppler shift formula Equation (5) we analyzed.

The change in radius affects the area of the target irradiated surface. The larger the
radius is, the larger the surface irradiated area is, and the larger the normalized power
value of the obtained image is.

Figure 8 shows the Doppler power spectra from 0 to 16 s in the precession process
with different heights of the cone. The blue curve on the top represents the normalized
power when the Doppler shift equals 0. The red curve on the right represents the Doppler
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power spectra of the cone when t = 4s. We found that the geometric parameters of the
cone affect the Doppler power spectra.
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Figure 8. The Doppler power spectra profile for the precession cone (ra = 0.1 m, ha =(a) 0.2 m,
(b) 0.4 m, (c) 1 m, (d) 2 m) within 0~16 s.

When the radius remains constant, there is no change in the Doppler shift width of
the obtained Doppler spectra. Similarly, altering the height does not affect the Doppler
shift width.

As the height of the cone in Figure 7a–d increases, the normalized power value
increases, which is because the irradiated area of the target surface increases as the
height increases.

When studying the change in geometric parameters of the sphere–cone combination,
the radius of the sphere at the blunt head is given by:

r =
rb cos δb − hb sin δb

1 − sin δb

The radii of the spheres of Figure 9a–d are 0.0684, 0.0645, 0.1395, and 0.4135. It can be
analyzed from the aforementioned figures that:
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Figure 9. The Doppler power spectra profile for the precession sphere–cone combination within
0~16 s.

(1) Figure 9a,c depict the Doppler power spectra profile of the sphere–cone combina-
tion with an 8◦ and 4◦ cone half-angle, respectively, and the sphere radius of 0.0684 and
0.1395. An enlarged spherical radius yields a more extensive area exposed to low frequen-
cies, which, in turn, results in an increase in normalized power. The Doppler shift width
remains unchanged as the base radius remains constant.

(2) Figure 9b,c display the Doppler power spectra of the sphere–cone combination at a
height of 2 m and 1 m for a sphere radius of 0.0645 and 0.1395, respectively. As the base
radius remains constant, there is no alteration in the Doppler shift width. It can be inferred
that the Doppler shift width remains the same, while the power at the center of the low
frequency increases.

(3) Figure 9a,d show Doppler power spectra profiles for a sphere–cone combination
with base radii of 0.2 m and 0.5 m, respectively, and a sphere radius of 0.0684 and 0.4135.
The change in base radius affects the spherical radius, resulting in differences in the spectra
in terms of both power at low frequency and Doppler shift width. An increased base radius
widens the spectral lines.
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3.3. Precession Cone and Swing Cone

Swing and precession are common forms of micro-motion for spatial targets, charac-
terized by periodic changes in the observation angle; however, their paths of micro-motion
diverge. In order to differentiate the Doppler power spectra for various micro-motion
forms, we analyzed the swing cone and compared it with the precession cone in this model.
In Figure 10, Figure 10a illustrates the concept of precession, depicted as a cone executing a
rotational movement around a central axis. Figure 10b demonstrates the principle of swing,
where the cone undergoes motion around its apex, confined to a single plane.
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Figure 10. Schematic diagrams of precession (a) and swing (b).

The convex quadric body of revolution spins around its central axis
⇀

OT with angular

velocity ω while
⇀

OT swings in the yoz plane. Swing angle ϕ:

ϕ = ϕ1 sin(ωn · t + ψ1) + ϕ2 (16)

where ϕ1 is the amplitude of swing angle, ωn = 2π
Tn

(Tn is the swing period), ψ1 is the initial
swing phase angle, and ϕ2 is the initial swing angle. The axis of symmetry of the cone can
be given by:

⇀
OT′′ = (0, sin(θ − α + ϕ), cos(θ − α + ϕ)) (17)

Spinning around
⇀

OT′′ : For each point r(x, y, z) on the lateral surface, the vector of

angular velocity can be expressed as
⇀
Ωspin = ω · (0, sin(θ − α + ϕ), cos(θ − α + ϕ)), while

its linear velocity
⇀
v spin is given by:

⇀
v spin =

⇀
Ωspin ×

→
r

= ω · (0, sin(θ − α + ϕ), cos(θ − α + ϕ))× (x, y, z)
= ω · (z sin(θ − α + ϕ)− y cos(θ − α + ϕ), x cos(θ − α + ϕ),−x sin(θ − α + ϕ))

(18)
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When the target swings, the vector of angular velocity can be expressed as
⇀
Ωswing = dϕ

dt · (1, 0, 0), and its linear velocity
⇀
v swing is given by:

⇀
v swing =

⇀
Ωswing ×

→
r

= dϕ
dt · (1, 0, 0)× (x, y, z)

= ωnϕ1 cos(ωn · t + ψ1) · (0,−z, y)

(19)

So, the linear velocity of micro-motion of the cone can be measured by
⇀
v :

⇀
v =

⇀
v swing +

⇀
v spin (20)

The incidence direction of the laser can be expressed as
⇀
e = (0, 0, 1), the Doppler shift

for any point on the surface of the cone, if the direction of backscattering is as follows:

∆ f = − 2(
⇀
v ·⇀e )
λ

= 2ωx sin(θ−α+ϕ)
λ − 2ωnϕ1 cos(ωn ·t+ψ1)y

λ

(21)

Simulation parameters for the swing are presented in Table 2, where the swing angle is
denoted by 0 ≤ ϕ ≤ 6◦. The remaining parameters hold identical values to those in Table 1.

Table 2. Simulation Parameters of swing.

Parameters Value

Tn 4 s

ϕ1 3◦

Ψ1 −0.5π rad/s

ϕ2 3◦

The observation angle in the swing can be written as follows:

γ = θ − α + ϕ (22)

The range of angles for observing the two micro-motion forms can be expressed as

θ − 3◦ ≤ γ ≤ θ + 3◦. (23)

Figure 11 illustrates that precession and swing correspond only at Position 1 and
Position 2 with regards to the observation angle γ (refer to Figure 10). The varying forms
of micro-motion result in a dissimilar route between the two positions.

Figure 12 shows the Doppler normalized power spectra for the swing cone. From
Figures 4 and 12, we can clearly find:

At Positions 1 and 2, the value of normalized power for the precession cone and swing
cone are the maximum when the Doppler shift is equal to 0. From Equations (5) and (21),
the Doppler shift ∆ f is only a function of x when t = 0, 2, 4 . . . s, and the curves are
symmetrical about the dotted line. When t ̸= 0, 2, 4 . . . s, the Doppler shift ∆ f is a function
of x and y, and the curves deviate left or right side of the dotted line.

With the same range of variation in γ, the Doppler shift of the precession cone is greater
than that of the swing cone. However, their normalized power sizes are almost equal.

Figure 13 shows the Doppler power spectra from 0 to 16 s in the swing process and
precession process with the variation range of γ increased. For precession and swing, the
range of γ varying from 2 ∼ 8◦ to 57 ∼ 63◦ produces the red curves with increasing width
and height. From the blue curves, multiple factors can be observed.
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Figure 12. The Doppler normalized power spectra for the swing cone (a) position 1 and (b) position 2.

For the identical range of variation in γ, the blue curves show distinct tendencies in
precession and swing, with greater prominence at small angles.

For the swing, the minimum is indicated by the blue curves when t = 1, 3, 5, 7, 9, 11, 13, 15s
is at its maximum and t = 2, 6, 10, 14s is at its minimum (Position 2). For precession, if
γ = 2 ∼ 8◦, 7 ∼ 13◦, the blue curves are the minimum when t = 0, 4, 8, 12, 16s (Position 1),
and it is the maximum when t = 2, 6, 10, 14s (Position 2). With the increase in the observation
angle γ, the minimum value occurs somewhere on the path between Positions 1 and 2. When
γ = 57 ∼ 63◦, it is the minimum when t = 1, 3, 5, 7, 9, 11, 13, 15s.

For the identical range of variation in γ, the normalized power of precession and
swing display nearly identical magnitudes. However, the minimum of the blue curves
in precession is greater than in swing. This outcome is consistent with the deviation
magnitude of the curves presented in Figures 4 and 12.

Figure 14 illustrates the Doppler power spectra of the sphere–cone configuration
during both the swing and precession processes, with a variation range of γ, recorded
between 0 and 16 s. The sphere–cone combination and cone target exhibit comparable
simulated outcomes, except for the blue curves during precession. The potential reasons
for this outcome are that:
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(1) The spectral difference at low frequencies between the cone and sphere–cone
combination is being examined.

(2) The deflection of the curve in Figure 6 while undergoing precession is lower than
that seen in Figure 12.

This demonstrates the effectiveness of our analytical model for complex targets and
its potential to differentiate between target shape and micro-movement.
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4. Conclusions

This paper presents an analytical model for rotating convex tetrahedra to simulate
two special cases, namely, the combination of a cone and a sphere–cone. Based on this
model, the Doppler power spectra for oscillating conical objects, oscillating sphere–cone
combinations, forward-scattering conical objects, and forward-scattering sphere–cone
combinations are analyzed. In simulations, we observed that geometric parameters only
affect the magnitude of the received signal power and the Doppler frequency shift, while
the temporal trends in the spectra remain unchanged. Changes in target profile affect the
Doppler spectra, but do not affect the trend of Doppler spectra during the approach, and
individual spectra can reflect target profile information. When other parameters are held
constant, the Doppler shift broadens and the normalized power increases when the angle of
view is increased. The variation in the base radius affects the size of the targetable surface
area, which in turn influences the magnitude of the echo power. Specifically, a larger radius
results in a larger illuminable surface area, leading to higher normalized power values
in the obtained images. However, this does not affect the overall trend in the precession
spectrum. Different micro-motion forms, such as forward tilt and oscillation, exhibit nearly
identical received signal power within the same range of observation angles. However, the
differences in Doppler frequency shifts result in distinct Doppler power spectra. This paper
solely analyzes the Doppler power spectra for various targets and micro-motion forms.
In practical applications, factors such as target surface roughness, atmospheric scattering,
absorption, and turbulence effects on laser beams should also be considered.
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