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Abstract: Synthetic aperture radar (SAR) ship detection and classification has gained unprecedented
attention due to its important role in maritime transportation. Many deep learning-based detectors
and classifiers have been successfully applied and achieved great progress. However, ships in SAR
images present discrete and multi-centric features, and their scattering characteristics and edge
information are sensitive to variations in target attitude angles (TAAs). These factors pose challenges
for existing methods to obtain satisfactory results. To address these challenges, a novel target attitude
angle-guided network (TAG-Net) is proposed in this article. The core idea of TAG-Net is to leverage
TAA information as guidance and use an adaptive feature-level fusion strategy to dynamically learn
more representative features that can handle the target imaging diversity caused by TAA. This is
achieved through a TAA-aware feature modulation (TAFM) module. It uses the TAA information
and foreground information as prior knowledge and establishes the relationship between the ship
scattering characteristics and TAA information. This enables a reduction in the intra-class variability
and highlights ship targets. Additionally, considering the different requirements of the detection
and classification tasks for the scattering information, we propose a layer-wise attention-based task
decoupling detection head (LATD). Unlike general deep learning methods that use shared features
for both detection and classification tasks, LATD extracts multi-level features and uses layer attention
to achieve feature decoupling and select the most suitable features for each task. Finally, we introduce
a novel salient-enhanced feature balance module (SFB) to provide richer semantic information and
capture the global context to highlight ships in complex scenes, effectively reducing the impact of
background noise. A large-scale ship detection dataset (LSSDD+) is used to verify the effectiveness of
TAG-Net, and our method achieves state-of-the-art performance.

Keywords: deep learning; ship detection and classification; task decoupling; synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) is a remote sensing image sensor that can operate
in various weather conditions and at any time of the day. Its widespread application
has led to exceptional performance in various domains, including target detection [1,2],
disaster monitoring [3,4], and resource exploration [5,6]. The rapid advancements of SAR
satellite technology have enabled easy access to a vast amount of high-resolution large-scale
SAR image data. It provides richer and more detailed information, which facilitates the
fine interpretation of SAR images. One of the most important applications of SAR image
interpretation is ship detection and classification [7,8], which is essential for maritime traffic
control and fishery management.
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Several traditional methods for ship detection [9–12] and classification [13–15] in SAR
images have been proposed. The detection methods aim to locate the ship targets in SAR
images. A common and representative detection method is the constant false alarm rate
(CFAR) [16], which models the background clutter statistically to obtain a threshold and
compares it with the pixel values to extract the targets. As for classification, they mainly use
features extracted from slices to determine the target category. Template matching [17] is
one of the most effective classification methods, which compares the target samples with the
pre-defined templates and assigns the target to the most similar category. These traditional
methods rely on prior knowledge and manual data analysis to locate and identify the
targets, and they can perform well in simple scenes. However, large-scale SAR images often
contain complex inshore scenes, where ships are affected by strong scattering interference
from artificial structures and many irrelevant targets that look like ships. Therefore, it is
challenging to manually design features that distinguish them from the clutter and false
targets. Moreover, the traditional methods are time-consuming, which limits their efficiency
for large-scale SAR images.

CNN-based methods can automatically extract representative features without manual
data analysis, which makes them widely used in SAR ship detection and classification.
For the SAR ship detection task, Zhu et al. [18] design an ICM that fuses the spatial
information from multi-level features to enhance the model’s sensitivity to size information.
Tang et al. [19] use a pooling structure and an adaptive weight feature fusion strategy to
improve the difference between a ship and its surroundings. Sun et al. [20] redesign the
positive sample regions and introduce a blurry area to enhance the semantic information
for regression. Due to its powerful feature extraction and generalization capabilities, deep
learning has also been utilized for the task of SAR ship classification. Shang et al. [21]
present an MHSA to capture the relevance of features over long distances for the extraction
of global information, effectively avoiding class confusion. Guan et al. [22] utilize a PCSA
module to assign weights to multi-level features, emphasizing information that is more
valuable and informative for the ship target. This module can overcome the challenge of
small inter-class differences and improve the accuracy of small-scale ship classification.

Although the above methods have achieved some effects in SAR ship detection or
slice classification tasks, they also face some challenges that limit their performance. First,
due to the unique imaging mechanism of SAR, ships present various scattering charac-
teristics at different target attitude angles (TAAs), as depicted in Figure 1. This causes
high intra-class variance and limited inter-class discrimination, which can easily lead to
category confusion and hinders the accurate classification of SAR ships. Second, ships
in SAR images exhibit discrete and multi-centric characteristics, which lead to discontin-
uous edge information. The edge information is also sensitive to the variation in TAA,
posing difficulties in accurately regressing ship locations. Third, the presence of various
background noise and diverse ship target scales makes the task more complicated. This
makes it difficult for conventional feature fusion networks and detection heads, which are
designed for natural scenes, to perform well in the complex near-shore SAR ship detection
and classification task.

To address the above issues, a novel target attitude angle-guided network (TAG-Net)
is designed to achieve arbitrarily oriented SAR ship detection and classification in complex
scenes. TAG-Net’s core idea is to add TAA information and foreground information as
prior knowledge and employ an adaptive feature-level fusion strategy to guide the learning
of ship foreground information at different TAAs, reducing the intra-class differences while
highlighting the ship’s edge information. In addition, TAG-Net fuses multi-scale features
in a dynamic fashion to balance spatial and semantic information, and it introduces a
scattering information selection mechanism in the detection head to select the most suitable
features for each task, making the model more robust to complex scenes.
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Figure 1. The imaging results of three different types of ships in SAR images and their corresponding
target attitude angles. From left to right, they are a container ship, bulk carrier, and oil tanker.
The target attitude angle is defined as the deflection angle of the target relative to the horizontal
direction, where the horizontal direction is 0° and the counterclockwise rotation ranges from 0°
to 180°.

The design modules of TAG-Net consist of a TAA-aware feature modulation module
(TAFM) that guides the detector to learn foreground information at different TAAs, a layer-
wise attention-based task decoupling detection head (LATD) that adaptively selects suitable
scattering information for different tasks, and a salient-enhanced feature balance module
(SFB) that performs multi-feature fusion and enhances the ship saliency. First, we propose
a TAFM that uses TAA information as guidance and establishes the relationship between
the ship scattering characteristics and TAA information, effectively reducing the intra-
class variance and improving the inter-class separability. It also guides the detector to
further learn the ship foreground information, which can improve the accuracy in locating
ships under various imaging conditions. Second, considering the different requirements
of classification and regression tasks for scattering information, we design an LATD that
extracts multi-level features and uses layer attention to obtain the suitable scattering
information for different tasks. Finally, to improve the performance for multi-scale ships
and highlight ships in complex scenes, we propose an SFB module. It adopts a multi-
scale feature fusion strategy to adaptively select the spatial and semantic information that
matches different scale ships. Moreover, it explores the inter-channel connections to extract
the global context, enhancing the model’s anti-interference ability in complex scenes.
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Our main contributions are as follows.

• To address the challenges of detecting and classifying targets with diverse imaging
variations at different TAAs, we propose a TAFM module. It uses TAA information
and foreground information as guidance and applies an adaptive feature-level fusion
strategy to dynamically learn more representative features. This module effectively
reduces intra-class variations, increases inter-class distinctions, and improves the
accuracy in locating ships under various imaging conditions.

• Considering the different requirements of detection and classification tasks for scat-
tering information, an LATD is designed, which extracts multi-level features through
stacked convolutional layers and uses layer attention to adaptively select the most
suitable features for each task, thereby improving the overall accuracy.

• The SFB module is introduced to adopt an adaptive dynamic fusion method to balance
the multi-size features, providing high-resolution and semantically rich features for
multi-scale ships. Moreover, it highlights the ship targets by extracting the global
context through exploring inter-channel connections, effectively mitigating the impact
of background interference.

To demonstrate the effectiveness of TAG-Net, we conduct extensive experiments and
our method achieves satisfactory results compared to current competitive methods. This
paper is structured as follows: Section 2 reviews related work, Section 3 describes our
proposed method in detail, Section 4 introduces the LSSDD+ dataset and presents the
results and analysis of our experiments on it, and Section 5 concludes the paper.

2. Related Work
2.1. Traditional Ship Detection and Classification Method in SAR Images

In the 1980s, the Lincoln Laboratory pioneered research on SAR automatic target
recognition (ATR) [17]. They divided the SAR ATR process into three stages: detection,
discrimination, and classification. This three-stage processing flow, initially developed
for ground target detection and identification, made significant progress and became the
standard workflow for SAR ATR systems. Later, researchers extended this framework to
SAR ship detection and classification.

However, SAR ship ATR faces some challenges in dealing with background noise and
interference, especially in inland areas. Therefore, it is common to employ preprocessing
steps, including coherent speckle suppression and land–sea segmentation, to enhance the
performance of the subsequent three stages.

Land–sea segmentation plays a vital role in the preprocessing stage as it generates a
land mask, which allows the detector to concentrate solely on the sea surface. Various schol-
ars have proposed different methods to perform land–sea segmentation before applying the
three-stage processing flow. To adapt to diverse imaging conditions, Mariví et al. [23] pro-
pose a wavelet-based edge detection algorithm for automated coastline extraction. Similarly,
Baselice et al. [24] introduce a threshold segmentation method, which utilizes the corre-
lations among neighboring pixels to extract coastlines. These methods effectively reduce
the interference from inland regions and improve the efficiency of subsequent detection
and classification processes. However, they are susceptible to interference from complex
background noise, which hinders their effectiveness in highly turbulent or challenging
sea conditions.

Ship detection is a crucial aspect of the SAR ATR system. Traditional methods for SAR
ship detection involve detecting regions from the image that potentially contain ship targets
and then discriminating these targets from the candidate regions to reduce false alarms
effectively. The constant false alarm rate (CFAR) [16] is the most commonly used and
representative method. It applies a sliding window approach to classify pixels into target
and background pixels. It primarily models and analyzes the statistical characteristics
of sea clutter to obtain a discriminant threshold, and then compares the threshold with
the pixel values to extract targets. Several improvement methods have been proposed
based on CFAR. GO-CFAR [25] utilizes two independent windows to estimate the noise
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power, effectively reducing false alarms in clutter transition regions. Ao et al. [26] propose
a multi-scale CFAR method that filters pixels in three different scales, leveraging both
global and local information to improve the recall rate while maintaining high detection
efficiency. Furthermore, Leng et al. [27] use a 2-D Ostu method to extract ARI feature
groups to compensate for the CFAR loss, improving the detection capability for densely
distributed ships in inshore scenes.

The traditional SAR ship classification stage consists of extracting features from de-
tected ship slices and using a classifier to determine the category. Template matching is a
representative method that compares the ship samples with the template library samples
for each category to determine the category. Wang et al. [14] use the auto-correlation repeat
cycle and scattering intensity to evaluate the geometric characteristics of ships, thereby
obtaining ship categories. To better capture the scattering features of ships and address
the issue of feature redundancy, Chen et al. [28] introduce an RCS intensity encoding
and two-stage feature selection method. This method encodes the scattering intensity of
ships in segments and analyzes the stability, discriminability, and correlation of features
to eliminate redundant features and enhance the ship classification performance. Since
template-based methods have poor generalization abilities, some model-based methods
have been proposed. Knapskog et al. [13] first construct a comprehensive 3D model of
a ship using ship photos captured from various viewpoints. Then, they apply threshold
and morphological operations to extract the reference contour data of the target from the
input image slices. Finally, they compare the similarity between the reference contour data
and the corresponding data obtained from the 3D model to identify the target category.
However, this method heavily relies on ship sample photos captured from various angles,
which poses significant modeling challenges and reduces the stability.

Although traditional SAR target detection and classification methods have demon-
strated satisfactory performance in simple scenes, they heavily rely on manual data analysis,
which restricts their adaptability and generalizability when applied to large-scale and com-
plex scenes. Additionally, the multi-stage processing pipeline is time-consuming and
struggles to meet the efficiency requirements of practical applications.

2.2. Deep Learning-Based Ship Detection and Classification Methods in SAR Images

Due to their remarkable feature extraction capabilities, CNN-based methods have been
extensively applied in the field of object detection and classification, leading to significant
breakthroughs [29–31]. The current CNN-based methods can be divided into two categories:
two-stage detectors and single-stage detectors. Two-stage detectors, such as Faster R-
CNN [32], R-FCN [33], and Cascade R-CNN [34], first extract candidate regions from the
original image and subsequently utilize the network to refine the bounding boxes and
obtain category information. Unlike two-stage detectors, single-stage detectors eliminate
the step of generating candidate regions. This makes them computationally efficient and
has caused them to attract a lot of attention. For instance, FCOS [35] directly performs
regression on each position of the feature map to obtain the position and category of the
object. CornerNet [36] abandons the concept of anchor boxes and detects the keypoints
of the target, which are then paired to form the bounding boxes. Currently, single-stage
methods have achieved comparable accuracy with remarkable speed compared to two-
stage methods.

The traditional SAR ATR process heavily relies on manually designed features, which
often leads to poor feature stability. In contrast, deep learning methods can effectively
achieve automatic feature extraction, which allows for the better handling of complex
scenes. However, directly applying mainstream CNN methods to SAR images leads to
challenges in achieving the desired performance due to the significant differences in the
imaging mechanisms between SAR images and natural scenes. Therefore, a large number
of scholars have refined and developed the mainstream CNN-based methods specifically
for SAR ship detection and classification tasks.
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In recent years, SAR ship detection methods have made significant advancements,
transitioning from CFAR algorithms to CNN-based methods [37]. To overcome the chal-
lenges posed by strong winds and waves, Wang et al. [38] utilize a dual backbone network
based on the Haar wavelet transform, which effectively extracts comprehensive and de-
tailed texture information from ship targets. Additionally, they introduce a feature fusion
block that emphasizes spatial information, which helps to highlight ship targets in complex
scenes. However, detecting multi-scale ships, particularly small-scale ships, remains a
challenging task in SAR ship detection. To address this, Fu et al. [39] develop an ABP
module that enhances the semantic information of small-scale ships and boosts the overall
performance. In addition, the scene imbalance limits the performance of the detector.
Zhang et al. [40] propose an unsupervised BSLM module for scene feature learning and
sample augmentation, which can effectively avoid overfitting caused by excessive attention
to offshore scenes.

Benefitting from its powerful feature extraction and representation capabilities, deep
learning has also been introduced into the SAR ship classification task, gaining widespread
attention [41]. Hu et al. [42] employ triplet CNNs to extract more distinctive features,
with the aim of reducing the similarity between ships of the same class for enhanced
classification accuracy at medium resolutions. Wang et al. [43] explore the relationships
among principal features to generate adaptive weights, enhancing the salient features
and enlarging the feature differences between different categories, thereby improving the
separability of scale-similar targets. To mitigate the impact of cross-range sidelobes on the
classification performance, Zhu et al. [44] leverage visual saliency models to extract ship
body information, effectively eliminating sidelobe interference and resulting in improved
classification performance.

The above methods have shown good performance in SAR ship detection and clas-
sification. However, these methods do not consider that the scattering characteristics of
ships are sensitive to the variations in TAAs. Therefore, they have difficulty in capturing
the representative features under different imaging conditions, which poses challenges for
the detection and classification tasks.

3. Proposed Method

To address the above issues, a novel target attitude angle-guided network (TAG-Net) is
designed to mitigate the impact of the diversity of SAR ship target imaging on the detection
and classification tasks. Specifically, TAG-Net utilizes a feature-level learning strategy to
add TAA information as prior knowledge, guide the detection network to learn the ship
foreground features at different TAAs, and obtain more discriminative features. Moreover,
it employs an adaptive task decoupling strategy and the dynamic fusion of multi-scale
features to improve its robustness to complex scenes.

3.1. Overall Scheme of the Proposed Method

TAG-Net is designed based on the CenterNet [45] detection framework and its overall
architecture is illustrated in Figure 2. It has four main components: the backbone for feature
extraction, the improved FPN equipped with an SFB module for multi-feature fusion
and ship saliency enhancement, the TAFM to guide the detector to learn the foreground
information at different TAAs, and the LATD to adaptively select the suitable scattering
information for each task.
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Figure 2. The overview of TAG-Net.

In the feature extraction and fusion stage, we adopt ResNet50 [46] and FPN [47] to
build an encoder–decoder structure. Specifically, we feed the input image into ResNet50 and
use the outputs of the last four stacked downsampling convolution modules (P0, P1, P2, P3)
as the inputs of FPN. Since the accuracy of ship center point prediction is very important
for methods based on the CenterNet framework, we choose the largest feature map Q2
produced by FPN, which has rich spatial information, for the subsequent detection and
classification tasks. However, the low-level feature map Q2 lacks adequate semantic infor-
mation, leading to insufficient saliency for smaller ships in complex scenes and increased
susceptibility to interference from background noise. To balance the semantic and spatial
information of features at different scales, we design an SFB module, which employs an
adaptive dynamic fusion method to generate high-resolution and semantically rich fea-
tures suitable for diverse ship scales. Moreover, the SFB module is used to explore the
inter-channel relationships to highlight ships and mitigate the impact of imaging noise.

Between the feature extraction stage and the detection head, we design a TAFM to
mitigate the adverse effects caused by the scattering information and edge information of
ships, which are sensitive to the variations in TAAs. It adopts a feature-level information
fusion strategy that uses TAA and foreground information as guidance, to dynamically
learn more representative features while enhancing the ship saliency. This effectively avoids
category confusion and improves the localization accuracy.

To meet the different requirements of the detection and classification tasks for the
scattering information, we design an LATD. It uses multi-level convolutional layers to
generate features with different scales of effective receptive fields, and it adopts a layer
attention mechanism that selects the most suitable scattering information for each task,
thereby enhancing the model’s overall performance.

The detection head of TAG-Net consists of three parallel branches, each with a 3 × 3
convolutional layer and a 1× 1 convolutional layer. The three branches generate a heatmap,
an offset map, and a size map. The heatmap H ∈ R(H/s)×(W/s)×C indicates the ship classes
and the center point positions of each ship category. The offset map O ∈ R(H/s)×(W/s)×2

is used to refine the center point positions. The size map S ∈ R(H/s)×(W/s)×4 represents
the size information, which is expressed by two mutually perpendicular vectors (d1, d2).
Specifically, the heatmap H and offset map O are used to determine the class and center
point location C of the ship target, and the two vectors (d1, d2) ∈ R4 at the corresponding
location on the size map S are used to determine the boundaries of the oriented bounding
boxes, as shown in Figure 3.
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C

Figure 3. Representation of the oriented bounding box.

3.2. TAA-Aware Feature Modulation Module (TAFM)

Compared with natural scenes, ships of the same type in SAR images show greater
intra-class diversity, mainly because the scattering characteristics of ships are sensitive to
the variations in TAAs, as shown in Figure 1. This can easily cause class confusion and
reduce the accuracy of SAR ship classification. Moreover, ships in SAR images exhibit
discrete and multi-centric features, and their edge information is also sensitive to the TAA,
which poses a challenge for the precise localization of ships. To tackle these challenges, we
propose a TAFM module. It uses TAA information as guidance and adopts a feature-level
information fusion strategy to establish the relationship between the TAA information and ship
scattering characteristics. This effectively reduces the intra-class variance and enhances the
inter-class separability, improving the classification performance. At the same time, it highlights
the edge information of ships through a pixel-level classification task, improving the model’s
localization accuracy in complex scenes. The structure of the TAFM consists of two components:
the TAA prediction branch and the TAA-guided feature fusion block (TAGF).

(1) TAA Prediction Branch
The TAA prediction branch introduces a pixel-level classification task, which uses

the beneficial TAA information and foreground information to direct the model to learn
the scattering characteristics of ships at different TAAs. This can highlight the more
discriminative and representative information within features for the ship and enhance
the ship saliency in complex scenes to overcome the challenges brought by the target
imaging diversity.

Figure 4 illustrates the architecture of the TAA prediction branch, which aims to learn
the ship discriminative information at different TAAs. The input feature is denoted as
F ∈ R(H/s)×(W/s)×256. To obtain more refined features from F, we apply three consecutive
3 × 3 convolutional layers to produce F′ ∈ R(H/s)×(W/s)×256. Then, a 1 × 1 convolutional
layer is used to predict the TAA map from F′. We adopt a novel strategy to construct the
ground truth of the TAA map, as shown in Figure 5, which fuses the TAA information
with the foreground information. Specifically, the pixel values outside the ship region are
set to 0, indicating the background. Conversely, within the ship region, the pixel values
are assigned the corresponding TAA values. The TAA is denoted as the angle between
the ship and the horizontal axis, ranging from 0° to 180° in a counterclockwise direction.
The expert-annotated ship-oriented bounding box information is used to automatically
generate both the TAA information and the corresponding foreground information for
the TAA map. This process eliminates the necessity for additional annotations, enabling
end-to-end training. This supervised classification task of the TAA prediction branch
enables the detector to learn the scattering information of ships at different TAAs, which is
crucial for the subsequent classification tasks. Moreover, the foreground information in the
TAA map enhances the ability of the convolutional layers to accurately capture the ship
contours, enabling high-precision localization in complex scenes.
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Figure 5. (a) Ground truth bounding box. (b) Ground truth of TAA map.

(2) TAA-Guided Feature Fusion Block (TAGF)
To enhance the original features with the valuable TAA information and foreground

information from the TAA-enhanced feature F′, inspired by [48], we design the TAGF block.
The TAGF block uses F′ to generate modulation parameters and applies spatial affine
transformation to adaptively modulate the input feature to achieve feature-level fusion.

Specifically, we take F′ as the input of the TAGF block, which generates modulation
parameters for affine transformations through two branches. Each branch consists of two
1 × 1 convolutional layers that facilitate information exchange across different channels.
The generation of the modulation parameters is denoted as M(Υ) = (α, β). M(·) is the
mapping function, α is the scale parameter for modulation, and β is the shift parameter for
smoothing, which can be calculated as follows:

α = conv1×1
(
conv1×1

(
F′)) (1)

β = conv1×1
(
conv1×1

(
F′)) (2)

where conv1×1 is a 1 × 1 convolution.
After obtaining the modulation parameters, the feature modulation process is as follows:

TAGF( F|α, β) = (1 + α)⊗ F + β (3)

where ⊗ denotes element-wise matrix multiplication, and F represents the input feature.
By modulating the original features through this affine transformation, the TAGF block
adaptively integrates TAA information and foreground information as semantic guidance,
enabling detectors to better identify the scattering characteristics of ships.
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The TAFM module performs an extra pixel-level classification task and uses an adap-
tive feature-level fusion strategy to incorporate TAA information and corresponding fore-
ground information into the original features. This reduces intra-class variations and makes
the ships more salient. As a result, the model can adapt to different imaging conditions
and improve the detection and classification accuracy.

3.3. Layer-Wise Attention-Based Task Decoupling Detection Head (LATD)

Presently, mainstream deep learning-based joint detection and classification meth-
ods commonly employ shared features for both tasks. However, these methods ignore
the different needs for scattering characteristics required by each task, leading to feature
conflicts that negatively impact the accuracy of both tasks. Specifically, the ship regres-
sion task relies on edge scattering features, which can offer useful information about the
ship’s position, scale, and orientation. Therefore, the feature fed to the regression branch
should have high spatial location sensitivity to achieve precise positioning. In contrast,
the classification task requires features that are stable against spatial variations and can
capture scattering characteristics that reflect the structures of ships. The features fed to
the classification branch should highlight the distribution of the dihedral and trihedral
angles on ships, revealing details about the ship’s superstructure to aid in identifying
the ship’s type. Consequently, when using a shared feature for these two tasks, feature
conflicts often occur during parameter optimization, making it difficult to obtain optimal
performance for both tasks. To obtain task-specific scattering information and avoid feature
conflicts, we propose a novel detection head called the LATD. The LATD is designed to
dynamically select appropriate scattering information from multi-level features for each
specific task. The overall structure of the LATD, illustrated in Figure 6, consists of two
stages: the multi-level feature extraction stage and the layer-wise attention-based feature
selection stage.

GAP

Fc

Fc

Sigmoid

Sigmoid

Classification

Branch

Regression

Branch

GAP

3 × 3

Dilated Conv 3 × 3

Conv

CAT

weight 

weightCAT

FC

GAP : Global Average Pooling

Concatenate

Fully Connected Layer

Multi-level Feature Extraction 

1 × 1 

Conv

1 × 1 

Conv

:

:

Figure 6. Structure of the LATD.

(1) Multi-Level Feature Extraction stage: In this stage, we use stacked convolutional
layers to extract multi-level features with different scales of effective receptive fields,
which provide selectable ship scattering characteristics for each task. The multi-level
feature extraction stage consists of a contextual extractor and a multi-level feature extractor.
The contextual extractor uses a 3 × 3 dilated convolution with a stride of 3, offering a
broader receptive field. This enables the model to acquire more semantic information and
better comprehend the original features. Given the input feature U ∈ R(H/s)×(W/s)×256,
the output produced by the contextual extractor is denoted as U1. Then, the multi-level
feature extractor uses a series of 3 × 3 convolutional layers on U1 to produce features
with different scales of effective receptive fields, which are denoted as Uk (k = 2, ..., 6).
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Each convolutional layer helps to capture various spatial information and different ship
scattering characteristics, thus satisfying the specific needs of different tasks. The whole
process of the multi-level feature extraction stage can be expressed as follows:

Uk =

{
δ(Dilconv3×3(U)), k = 1
δ(conv3×3(Uk−1)), k > 1

, ∀k = {1, 2, ..., 6} (4)

where Dilconv3×3 represents the contextual extractor composed of a dilated convolutional
layer, while conv3×3 represents the multi-scale feature extractor consisting of stacked 3 × 3
convolutional layers, and δ represents the ReLU operation.

(2) Layer-Wise Attention-Based Feature Selection Stage: Since detection and classi-
fication tasks have different focuses on the scattering information of ships, they usually
require different levels of spatial or semantic information. Therefore, we design a layer-wise
attention-based feature selection stage, which aims to dynamically and adaptively select
the most relevant features for each task, improving the performance of ship detection
and classification. Inspired by the selection kernel mechanism [49], we employ a layer
attention mechanism to achieve task decoupling and enhance the overall performance.
In this stage, the extracted multi-level features are first concatenated to form a fused feature,
Utotal ∈ R(H/s)×(W/s)×(256×6). To capture global information from Utotal , we utilize spatial-
wise global average pooling, leading to the generation of a global information feature,
uglobal.

The global information feature uglobal is then used to generate two sets of layer at-
tention weights: weight µ ∈ R6 for the classification branch and weight τ ∈ R6 for the
regression branch. These weights serve as adaptive feature-level selection weights, al-
lowing the model to focus on different-level features that are relevant to each task. This
task-driven feature selection method effectively combines features of varying levels based
on their relevance to each task, ensuring that the extracted scattering information aligns
with the requirements of each task. Specifically, we use a layer-wise attention mechanism,
guided by a variant of a multi-layer perceptron, to compute the feature selection weight
weighttask for each task. The calculation of weighttask is defined as follows:

weighttask = σ
(

fc2

(
δ
(

fc1

(
uglobal

))))
(5)

where fc1 and fc2 represent two fully connected layers. The first one performs feature
dimension reduction, while the second one is responsible for generating the corresponding
feature selection weights. σ denotes the sigmoid operation.

Once the feature selection weights are obtained, we can generate task-specific features
for classification and regression tasks as follows:

Utask = conv1×1(weighttask ⊗ Uk), ∀k = {1, 2, ..., 6} (6)

where Utask
k ∈ R(H/s)×(W/s)×256 denotes the task-specific features generated for each task,

and ⊗ represents the element-wise multiplication.
This task decoupling method utilizes the layer-wise attention mechanism to selectively

extract features that are highly relevant for ship detection and classification tasks. Hence, the
LATD effectively enhances the accuracy of ship detection and classification in complex scenes.

3.4. Salient-Enhanced Feature Balance Module (SFB)

Ships exhibit a diverse range of sizes, and different scales of ships require different
levels of spatial and semantic information. We use ResNet to extract multi-scale features
in the feature extraction stage. High-level feature maps have a larger receptive field and
provide more rich semantic information, making them more suitable for detecting large-
scale ships. However, due to the lack of sufficient spatial information, they fail to locate
the edges of ships precisely. Conversely, low-level feature maps offer more detailed spatial
information, enabling more accurate localization for small-scale ships. However, these
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maps may lack sufficient semantic information, resulting in ships being less prominent in
complex scenes and susceptible to interference from background noise and strong scattering
from surrounding structures. Therefore, the imbalance of semantic and spatial information
of features poses great difficulties in both detecting and classifying ships.

To fully leverage the benefits of both low- and high-level features, we introduce the
SFB module. It adopts an adaptive dynamic fusion strategy to balance multi-scale features,
providing suitable spatial and semantic information for different scales of ships. Moreover,
it strengthens the connections between different channels to capture the global context,
thereby enhancing the saliency of ships and effectively suppressing background noise.
The SFB module comprises two stages: the contextual feature balance stage (CFB) and the
saliency feature attention stage (SFA).

(1) Contextual Feature Balance Stage (CFB): The CFB stage aims to fuse multi-level
features to balance the spatial and semantic information, which enhances the overall
performance for ships of various sizes. As shown in Figure 7, the multi-scale features
extracted from the last four convolutional blocks of ResNet (denoted as P0, P1, P2, and P3)
are used as the inputs for the CFB stage. To preserve the high spatial resolution, P1, P2, and
P3 are first upsampled to the same size as P0. Then, 3 × 3 convolutional layers are applied
to refine each feature map, and a residual connection is added to retain the original feature
information. The refined features are denoted as P′

0, P′
1, P′

2, and P′
3.

1x1

Sigmoid

UP
3x3

UP

1x1x256

CAT

3x3

3x3

3x3

3x3

Secord
Stage

AvgPool

Shared MLP

UP

1x1x4

First Stage:Contextual Feature Balance Stage (CFB)

Secord Stage:Saliency Feature Attention Stage (SFA)

CAT :  Concatenate

3x3   :  3x3 convolutional layer

1x1   :  1x1 convolutional layer

UP    :  Up sampling

g

G

Figure 7. Structure of the SFB.

Next, we adopt a dynamic selection mechanism that chooses features from differ-
ent scales to match the varying semantic and spatial information needs of ship targets
with different sizes. The scale feature highlighting weights for each level are denoted as
gi(i = 0, 1, 2, 3). These weights are obtained by concatenating P′

i (i = 0, 1, 2, 3) as the input
and applying 3 × 3 and 1 × 1 convolutional layers to generate the corresponding weights.
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Then, a sigmoid function is used to normalize the gi to the range of (0, 1). After ob-
taining the scale feature highlighting weights, we multiply them with P′

i (i = 0, 1, 2, 3) to
balance the spatial and semantic information of the multi-scale features. Finally, the gen-
erated features are added to P0 to preserve the spatial information. The final features are
generated as follows:

Q =
3

∑
i=0

gi · P′
i+P0 (7)

where Q ∈ R(H/s)×(W/s)×256 is the generated fused feature, which can provide rich seman-
tic information and high-resolution detail information for ships at different scales.

(2) Saliency Feature Attention Balance Stage (SFA): In the SFA stage, SE blocks [50]
are used to capture the inter-channel correlations and obtain the global context, which
improves the saliency of ships and reduces the impact of the background noise. The fused
feature Q generated by the CFB stage is taken as the input of this stage, and an average
pooling operation is performed along the channel dimension to obtain the global context
Qgc ∈ R1×1×256. Next, a two-layer fully connected network and a sigmoid function are
used to obtain the global context map G ∈ R1×1×256, which highlights ships and reduces
the impact of imaging noise.

Qgc = AvgPool(Q) =
1

H/s × W/s

H/s

∑
i=1

W/s

∑
j=1

Q(i, j) (8)

G = σ
(
W1δ

(
W2

(
Qgc

)))
(9)

where AvgPool(Q) denotes the average pooling operation, and W1 ∈ R256×6 and W2 ∈
R6×256 are the weights of the fully connected layers.

Finally, the generated global context map G is utilized to modulate the channel weights:

Q f inal = G ⊗ Q (10)

where Q f inal ∈ R(H/s)×(W/s)×256 denotes the output feature of the SFA stage and ⊗ repre-
sents the element-wise multiplication.

The SFB module adaptively selects features from different scales to meet the diverse
semantic and spatial information requirements of various sizes of ships. It also enhances
the global perception capability in the feature fusion process, which extracts rich contex-
tual information and explores the inter-channel connections to highlight the ships and
reduce the impact of imaging noise. This can significantly enhance the accuracy of the
following detection and classification tasks. Moreover, we maintain the original structure
of FPN to guarantee the information flow across different levels and preserve more original
feature details.

3.5. Loss Function

The loss function of TAG-Net can be divided into four parts:

LTAG−Net=Lheat+Lo f f+Lsize+λLTAA (11)

where Lheat, Lo f f , Lsize, and LTAA represent the heatmap loss, the offset loss, the size loss,
and the TAA loss, respectively. λ is a balance parameter that controls the contribution of
the TAA loss.

To mitigate the effect of the imbalance between positive and negative samples on the
performance, we employ the focal loss [51] to optimize Lheat:

Lheat = − 1
N ∑

xyc

{
(1 − Hxyc)α · log(Hxyc), if Ĥxyc = 1
(1 − Ĥxyc)β · Hα

xyc · log(1 − Hxyc), otherwise (12)
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where Hxyc denotes the heatmap generated by the center position of class c ships. Assuming
that the center point coordinates of a ship of class c in the original image are (x, y), its
position after downsampling on the feature map is

(
ux
s , uy

s

)
. Following CenterNet [45],

a two-dimensional non-normalized Gaussian function, Hxyc = exp
(
− (x−ux)

2+(y−uy)
2

2σ2

)
, is

used to assign the target values of each pixel of the ship on the heatmap, where σ represents
a scale-adaptive radius and N is the number of ships.

To overcome the precision error of ship localization caused by the downsampling
process, we use the smooth L1 loss to optimize Lo f f :

Lo f f =
1
N

N

∑
k=1

smoothL1(oi − ôi) (13)

where ôi denotes the offset for ship i—specifically, ôi =
(

ux
s −

⌊ ux
s
⌋
, uy

s −
⌊

uy
s

⌋)
—and oi is

the predicted offset.
We utilize the smooth L1 loss to optimize the size parameter Lsize:

Lsize =
1
N

N

∑
k=1

smoothL1(si − ŝi) (14)

where ŝi denotes the size information for ship i, and si is the predicted size information.
Additionally, we employ the smooth L1 loss to guide the generation of the TAA map,

and LTAA is formulated as follows:

LTAA =
1
N ∑

x,y
smoothL1

(
txy − t̂xy

)
(15)

where t̂xy is the ground truth value and txy is the predicted value at the location (x, y) on
the TAA map.

4. Experiments and Results

In this section, we present comprehensive experiments on the LSSDD+ dataset to
demonstrate the effectiveness of TAG-Net. We start by introducing the dataset, the experi-
mental settings, and the evaluation metrics. Then, we measure the overall performance and
present a detailed analysis of each module that we designed. Finally, we compare TAG-Net
with selected CNN-based methods based on the accuracy and model parameters, and we
investigate its practical applicability on large-scale images.

The LSSDD+ dataset consists of 116 single-polarization large-scale SAR images ac-
quired by the Gaofen-3 satellite, with a resolution of 1 m. The dataset covers 16 port scenes
captured at different times and includes a total of 4683 ship samples spanning 11 categories.
Figure 8 shows the distribution of instances for each category. The dataset includes 5 types
of civil ships, namely a bulk carrier (BC), container ship (CS), oil tanker (OT), work boat
(WB), and research vessel (RV), and 6 types of other ships, which are labeled as “T0” to
“T5”. The slices of civil ships are shown in Figure 9. For training and validation, a subset
of 94 images is randomly selected, while the remaining 22 are considered as the test set.
For the training set, each large image is randomly cropped into three different sizes. Subse-
quently, slices containing ship targets are resized to 608 × 608 pixels, resulting in a total of
12,061 slices. For the test set, a sliding window approach is employed to crop the original
images into 1024 × 1024 pixels with a 512-pixel overlap.
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Figure 8. Number of instances per category in LSSDD+.

4.1. Dataset and Settings

The LSSDD+ provides rich fine-grained categories and different sizes of ships, and it
includes ship targets under various imaging conditions. This makes it similar to the real-
world application scenario and thus provides a reliable way to evaluate the performance of
the detector in practical applications.

(a) Bulk Carrier (b) Container Ship (c) Oil Tanker

(d) Work Boat (e) Research Vessel

Figure 9. Example images of civil ships in LSSDD+.

In our experiment, we initialize ResNet50 with pre-trained weights from ImageNet.
The Adam optimizer is used with an initial learning rate of 0.000125, decreased by a factor
of 10 at 70 epochs. The experiment is run on a P100 GPU for 100 epochs with a batch size of
8. During testing, each slice is fed into the model and NMS [52] is used to merge the results
for large-scale images. All metrics are computed based on these merged results.
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4.2. Evaluation Metrics

To measure the model’s performance on the ship detection and classification task,
we use the mAP to reflect the model’s overall performance on all categories of ships.
For each category of ship targets, we calculate the precision, using different confidence
scores, for each recall value R = {0, 0.01, . . . , 1}. The AP is the mean of the precision values
under different recall rates.

Precision =
NTP

NTP + NFP
(16)

Recall =
NTP

NTP + NFN
(17)

where NTP, NFP, NFN are the total numbers of true positives, false positives, and false
negatives, respectively.

AP =
1

101 ∑
r∈R

Precision|(Recall = r) (18)

After obtaining the AP for each category, the mAP can be obtained as follows:

mAP =
1

Nc

Nc

∑
i

APi (19)

where Nc is the number of categories, and APi represents the AP of the i-th category.

4.3. Ablation Studies

To evaluate the impact of each component and the overall performance of TAG-Net,
we conduct a series of ablation studies on the LSSDD+. For a fair comparison, we keep the
same settings in all experiments. We use CenterNet as the baseline, and then gradually
add the three modules that we designed to the baseline network. Table 1 shows that each
module improves the performance, and the final model achieves a 5.99% increase in mAP.
This indicates that our method enhances the model’s ability to detect and classify ships,
resulting in more accurate ship localization and category predictions.

Table 1. Impact of each component of TAG-Net.

TAFM Module LATD SFB Module mAP Params (M)

✕ ✕ ✕ 0.6792 28.40
✓ ✕ ✕ 0.7179 30.77
✕ ✓ ✕ 0.7207 32.83
✕ ✕ ✓ 0.7079 30.18
✓ ✓ ✕ 0.7296 34.93
✓ ✓ ✓ 0.7391 36.71

(1) Effect of TAA-Aware Feature Modulation module (TAFM): The TAFM module
utilizes ship TAA information and foreground information as guidance and employs an
adaptive feature-level information fusion strategy to guide the model to learn the scattering
and edge information of the ship at different TAAs. Table 2 shows that the TAFM module
increases the mAP by 3.87% and improves nine categories. Notably, the improvement
of five ship categories exceeds 2%. This indicates that the TAFM effectively improves
the detection and classification performance by integrating the TAA information and
foreground information into the features.

Table 2. Effectiveness of TAFM.

Models BC CS OT WS RV T0 T1 T2 T3 T4 T5 mAP

Baseline 0.6651 0.5313 0.7941 0.4937 0.5318 0.6948 0.7617 0.8161 0.8335 0.5738 0.8875 0.6792
TAFM 0.6464 0.5479 0.7994 0.5110 0.5573 0.8136 0.7651 0.8474 0.8878 0.6746 0.8459 0.7179
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To investigate the impact of the prior knowledge (TAA information and foreground
information) introduced in the TAFM module on the performance, we remove the relevant
supervision information while maintaining the same network structure for an ablation
experiment. Table 3 shows that this additional supervision information is quite beneficial
for the detection and classification task, and it improves the mAP by 2.87%. This indicates
that by adding prior knowledge to the TAA prediction branch, the model can learn the
ship’s scattering information at different TAAs, which enhances the detector’s performance
in complex scenes.

Table 3. Ablation studies of prior knowledge (TAA information and foreground information).

Supervised Unsupervised mAP

✕ ✕ 0.6792
✕ ✓ 0.6892
✓ ✕ 0.7179

To investigate how different modulation fusion strategies affect the performance of the
TAA-guided feature fusion block, we conduct comparative experiments on four different
combinations of shift and scale modulation, ⊕ and ⊗, which represent shift and scale mod-
ulation, respectively. Table 4 shows that the mAP of all four fusion strategies is enhanced
after incorporating prior knowledge (TAA information and foreground information), which
also implies that the modulation strategy influences the information fusion. The first two
rows of Table 4 show that using only scale modulation or shift modulation is not enough to
fully leverage the prior knowledge. The joint effect of the two modulation methods can
fuse the valuable information with the original features more effectively. The best result
is obtained by performing scale modulation followed by shift modulation. This might
be because scale modulation enables shift modulation to refine the details and use the
TAA information and foreground information more efficiently. Therefore, we adopt scale
modulation followed by shift modulation in this block.

Table 4. Ablation studies of different modulation fusion strategies.

First Step Second Step mAP

⊕ ⊕ 0.7053
⊗ ⊗ 0.7080
⊗ ⊕ 0.7179
⊕ ⊗ 0.7123

In the TAFM module, we use the TAA loss to guide the generation of the TAA map. We
examine how different loss functions and the parameter λ affect the results through ablation
experiments. From Tables 5 and 6, we can see that the optimal detection performance is
achieved when using the smooth L1 loss and λ is set to 0.5.

Table 5. Ablation studies of different loss functions.

Loss mAP

L1 Loss 0.7113
Smooth L1 Loss 0.7179

Table 6. Ablation studies of parameter λ.

λ 0.3 0.5 0.7 1 2

mAP 0.7076 0.7179 0.7120 0.7153 0.7106

(2) Effect of Layer-Wise Attention-Based Task Decoupling Detection Head (LATD):
The LATD generates multi-scale feature information by stacking convolutional layers. Then,
it adaptively selects features suitable for each task based on the layer attention mechanism.
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Table 7 demonstrates that the LATD enhances the mAP by 4.1% and boosts the performance
in nine categories. Notably, six of these categories exhibit an improvement of over 2%. This
shows that adopting the LATD improves the overall performance, which may be attributed
to its ability to select the most suitable scattering information for different tasks.

Table 7. Effectiveness of LATD.

Models BC CS OT WS RV T0 T1 T2 T3 T4 T5 mAP

Baseline 0.6651 0.5313 0.7941 0.4937 0.5318 0.6948 0.7617 0.8161 0.8335 0.5738 0.8875 0.6792
LATD 0.6931 0.5497 0.7788 0.5010 0.5987 0.7859 0.7682 0.8632 0.9039 0.6333 0.8519 0.7207

Figure 10 presents some visualized detection results that further demonstrate the effec-
tiveness of the LATD. As shown in Figure 10b, the baseline methods fail to capture the edge
information of ships in complex scenes accurately, and they suffer from missed detection or
incorrect category classification. This may be because the baseline method directly uses
the same features to generate detection and classification results, without considering the
different scattering information required for the two tasks, resulting in poor performance
in both the classification and regression tasks. As shown in Figure 10c, the LATD uses a
layer attention mechanism to dynamically select the scattering information that is suitable
for different tasks, effectively improving the overall performance of both tasks and better
adapting to complex scenes.

(f)

(i)

BC

BC
BC

WB

WB

(c)

OT

(e)

(h)

BC
BC

WB

RV

(b)

OT

(d)

(g)

WB

WB

(a)

OT

BC

BC

BC

Figure 10. Visual comparison of detection results without and with LATD. The bounding boxes
show the detected objects, with different colors indicating different categories: the yellow circles, blue
circles, and red circles denote the objects with inaccurate localization, category errors, and missing ships,
respectively. (a,d,g) Ground truth, (b,e,h) baseline without LATD, (c,f,i) baseline with LATD.
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In the LATD, stacked convolutional layers are utilized to extract multi-level features
with different receptive fields, where the first layer is a dilated convolutional layer, followed
by stacked regular convolutional layers. Table 8 shows that the detection head with dilated
convolution achieves higher mAP, which demonstrates the improved performance in detec-
tion and classification. The dilated convolution enables the stacked convolutional layers to
provide larger effective receptive fields and capture more rich semantic information, which
enhances the performance in locating and classifying ships.

Table 8. Ablation studies of the dilated convolutional layer of the LATD.

Dilated Convolutional Layer mAP

✕ 0.7091
✓ 0.7207

(3) Effect of Salient-Enhanced Feature Balance Module (SFB): The SFB module dy-
namically balances the features of different levels to adapt to different scales of targets,
while extracting global context information to highlight ships in complex scenes. The SFB
module consists of a CFB stage that fuses multi-level features and an SFA stage that cap-
tures the global context. As shown in Tables 9 and 10, the CFB stage and the SFA stage
improve the mAP by 2.37% and 1.28%, respectively, and the performance achieves a greater
improvement when the two stages work together.

Table 9. Effectiveness of SFB.

Models BC CS OT WS RV T0 T1 T2 T3 T4 T5 mAP

Baseline 0.6651 0.5313 0.7941 0.4937 0.5318 0.6948 0.7617 0.8161 0.8335 0.5738 0.8875 0.6792
SFB 0.6361 0.6043 0.7861 0.4907 0.5691 0.7762 0.7498 0.8362 0.8321 0.6844 0.8216 0.7079

Table 10. Ablation studies of SFB module.

CFB Stage SFA Stage mAP

✕ ✕ 0.6792
✓ ✕ 0.7029
✕ ✓ 0.6920
✓ ✓ 0.7079

To perform a visual comparison, we visualize the output feature maps of the FPN
with and without the SFB module. As Figure 11b shows, the detector struggles to locate
the ship targets due to imaging noise and irrelevant facilities with similar visual attributes,
leading to errors in localization and classification. In contrast, after adding the SFB module,
the introduced global context and the selected multi-scale feature information make the
ships in Figure 11c more prominent. In addition, the activation values of the near-shore
irrelevant objects and the background noise are significantly reduced. This suggests that the
SFB module can highlight ships effectively, while improving the model’s anti-interference
ability in complex scenes. These improvements may result from the following two factors.
First, the SFB offers more suitable semantic and spatial information for ships of various
scales, which enhances the separability of the ships and the background. Second, it explores
the inter-channel connections and extracts the context information that highlights the ship
targets, while effectively reducing the impact of imaging noise.
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(c)(b)(a)

(f)(e)(d)

Figure 11. Visualization of feature maps extracted by different methods. The orange boxes indicate
the positions of ships. (a,d) the positions of the ships, (b,e) baseline without SFB, (c,f) baseline
with SFB.

4.4. Comparison with CNN-Based Methods

To further verify the effectiveness of TAG-Net, we compare it with some advanced
CNN-based methods on the LSSDD+. We choose eight methods, including the Oriented
R-CNN [53], ROI Trans [54], Gliding Vertex [55], Rotated Faster RCNN [32], S2A-Net [56],
Oriented CenterNet [45], Rotated ATSS [57], and Rotated FCOS [35], which cover the
single-stage and two-stage mainstream CNN-based methods that use OBB representation
for deep learning applications in object detection and classification. Table 11 illustrates
that by leveraging TAA information and selecting features suitable for each task, TAG-Net
outperforms other methods in SAR ship detection and classification, achieving mAP of
73.91%. Additionally, we compare the model parameters (Params) of different methods.
TAG-Net not only exhibits superior detection and classification capabilities, but also has
higher efficiency than the second-best method, the Oriented R-CNN. Compared with
the oriented CenterNet, which has the fewest parameters, TAG-Net has slightly more
parameters but it performs much better. This means that TAG-Net achieves a better balance
between model complexity and performance.

Table 11. Comparison with different methods on the LSSDD+.

Method Framework mAP Params (M)

Oriented R-CNN [53] Two-Stages 0.7146 41.37
ROI Trans [54] Two-Stages 0.6972 55.13

Gliding Vertex [55] Two-Stages 0.5911 41.14
Rotated Faster RCNN [32] Two-Stages 0.6553 41.14

S2A-Net [56] Single-Stage 0.6722 38.60
Oriented CenterNet (Baseline) [45] Single-Stage 0.6792 28.40

Rotated ATSS [57] Single-Stage 0.6978 36.03
Rotated FCOS [35] Single-Stage 0.6510 31.92

TAG-Net (Ours) Single-Stage 0.7391 36.71
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Figure 12 compares the detection results of the Rotated FCOS, Rotated ATSS, ROI
Trans, Oriented R-CNN, and TAG-Net. As Figure 12 illustrates, TAG-Net surpasses other
methods in both detection and classification tasks in complex near-shore and off-shore
multi-target scenes. Other methods struggle to achieve high accuracy in both tasks, possibly
because of the use of shared features for multi-task learning. This can result in feature
conflicts and lead to category confusion or false alarms. TAG-Net can adaptively select
the appropriate scattering information for different tasks and thus enhance the overall
performance. Moreover, TAG-Net can better capture the accurate foreground information
of ships at different TAAs, which not only enables precise localization but also prevents
category confusion.

Figure 12. Detection results of different methods on LSSDD+. The bounding boxes show the detected
objects, with different colors indicating different categories: the yellow circles, blue circles, and red
circles denote the objects with inaccurate localization, category errors, and missing ships, respectively.
(a,g) Ground truth, (b,h) Rotated FCOS, (c,i) Rotated ATSS, (d,j) ROI Trans, (e,k) Oriented R-CNN,
(f,l) TAG-Net.
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To further validate the practical applicability of TAG-Net, we carried out comparative
experiments on large-scale images and analyzed the detection results. Since the Oriented
R-CNN exhibited the second-best performance, we selected our proposed method and the
Oriented R-CNN for experimentation on large-scale SAR images. As depicted in Figure 13,
our method outperformed the Oriented R-CNN with superior performance. TAG-Net can
better capture the ship boundaries and make correct category judgments. At the same time,
it can successfully differentiate near-shore similar objects from ship targets, indicating that
TAG-Net has stronger robustness in complex scenes.

Figure 13. Detection results in large-scale SAR images. The bounding boxes show the detected
objects, with different colors indicating different categories: the yellow circles, blue circles, and red
circles denote the objects with inaccurate localization, category errors, and missing ships, respectively.
(a) Oriented R-CNN, (b) TAG-Net.

5. Discussion

In the previous section, a series of ablation studies show the effectiveness of the TAFM
module, LATD, and SFB module designed in TAG-Net, and their performance is further
improved when they work together. We also compare TAG-Net with other CNN-based
methods and show that it achieves a value of 73.91% in mAP, outperforming other com-
petitive detectors in terms of performance, while using only 88% of the model parameters
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of the second-best method, achieving a better balance between model complexity and
performance. Additionally, its superior performance on large-scale SAR images further
demonstrates its effectiveness in practical applications.

In future research, we will take into account more factors related to SAR imaging to
guide the network to extract the distinctive features of the target under different imaging
conditions. Furthermore, we will explore the combination of the edge detection method
and the TAFM module, to achieve applications in unlabeled data, thus broadening its
potential use cases.

6. Conclusions

In this paper, we propose a novel and unified framework named TAG-Net to achieve
arbitrarily oriented SAR ship detection and classification in large-scale and complex scenes.
TAG-Net introduces TAA information and applies an adaptive feature-level fusion strategy
to relate ship scattering characteristics to TAA information, improving the ship localization
and classification accuracy under different imaging conditions. It consists of three core mod-
ules: the TAFM to learn the foreground information at different TAAs, the LATD to select
the most suitable scattering information for each task, and the SFB module for multi-feature
fusion and ship saliency enhancement. To alleviate the impact of SAR target imaging vari-
ability, the TAFM adopts a feature modulation strategy to jointly learn the TAA information
and foreground information in a dynamic manner, which reduces the intra-class differences
and enhances the inter-class separability. Meanwhile, the pixel-level classification task
added by the TAFM guides the detector to learn the contour information of the ships,
effectively mitigating the negative effects caused by the discrete and multi-center imag-
ing of SAR targets. In addition, considering the different requirements of detection and
classification tasks for scattering information, the LATD is designed to extract multi-level
features and uses layer attention to adaptively select the most suitable features for each task,
thereby improving the overall performance. Furthermore, the SFB module is introduced
to balance multi-scale features to provide more rich semantic information and improve
the accuracy of localization and classification. Meanwhile, it explores the inter-channel
connections to obtain the global context, enhancing the saliency of ships and reducing the
negative effects of imaging noise. Compared with other advanced methods, our proposed
method achieves a value of 73.91% in mAP, outperforming other competitive detectors in
terms of performance while using only 88% of the model parameters of the second-best
method, achieving a better trade-off between model complexity and performance.
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