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Abstract: In the realm of Earth observation and remote sensing data analysis, the advancement of
hyperspectral imaging (HSI) classification technology is of paramount importance. Nevertheless, the
intricate nature of hyperspectral data, coupled with the scarcity of labeled data, presents significant
challenges in this domain. To mitigate these issues, we introduce a self-supervised learning algorithm
predicated on a spectral transformer for HSI classification under conditions of limited labeled data,
with the objective of enhancing the efficacy of HSI classification. The S3L algorithm operates in two
distinct phases: pretraining and fine-tuning. During the pretraining phase, the algorithm learns the
spatial representation of HSI from unlabeled data, utilizing a masking mechanism and a spectral
transformer, thereby augmenting the sequence dependence of spectral features. Subsequently, in
the fine-tuning phase, labeled data is employed to refine the pretrained weights, thereby improving
the precision of HSI classification. Within the comprehensive encoder–decoder framework, we
propose a novel spectral transformer module specifically engineered to synergize spatial feature
extraction with spectral domain analysis. This innovative module adeptly navigates the complex
interplay among various spectral bands, capturing both global and sequential spectral dependencies.
Uniquely, it incorporates a gated recurrent unit (GRU) layer within the encoder to enhance its ability
to process spectral sequences. Our experimental evaluations across several public datasets reveal
that our proposed method, distinguished by its spectral transformer, achieves superior classification
performance, particularly in scenarios with limited labeled samples, outperforming existing state-of-
the-art approaches.

Keywords: hyperspectral image classification; self-supervised learning; spectral transformer; encoder–
decoder architecture; limited labeled data

1. Introduction

Hyperspectral imaging (HSI), a pioneering remote sensing technology, has proven its
distinct benefits across various domains in recent years. This technology surpasses tradi-
tional imaging by offering richer, more detailed data for precise object identification and
analysis. It achieves this by capturing continuous spectral information ranging from visible
light to near-infrared bands. The evolution of HSI has not only revolutionized traditional
Earth observation and environmental monitoring but also demonstrated its exceptional
application value in urban planning, disaster management, and agriculture [1–4]. However,
the intricate and high-dimensional nature of hyperspectral data poses significant challenges
to effective data analysis and processing. This complexity necessitates ongoing research to
discover more efficient data processing and analysis methods.

In the initial stages, traditional methods such as support vector machines (SVMs) [5,6],
random forests (RFs) [7], k-NN [8], and PCA [9] were commonly employed for hyperspec-
tral image classification. Among these, the SVM model, despite its compactness, struggled
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with identifying an appropriate nonlinear kernel function. RF, by integrating multiple
decision trees, exhibited superior generalization capabilities but demanded substantial
computational resources. While k-NN offered flexibility by adjusting the k value to suit dif-
ferent problems, it often underperformed with category-imbalanced datasets. PCA, based
on linear assumptions, found it challenging to handle nonlinear data structures. Further-
more, these traditional methods typically relied on manually designed features and lacked
the capacity to extract deep features, rendering them often ineffective for hyperspectral
image classification tasks.

In recent years, the swift advancement of deep learning technology has significantly
propelled hyperspectral image classification technology. The goal is to harness the capabili-
ties of sophisticated neural network architectures for more robust and efficient classification.
Early deep learning methods, such as stacked autoencoders (SAEs) and deep belief net-
works (DBNs) [10], set the groundwork by emphasizing feature extraction through fully
connected layers. However, these methods’ reliance on fully connected layers led to a large
number of network parameters and necessitated diverse training data.

To mitigate these issues, the convolutional neural network (CNN) [11] was introduced
into HSI classification. Qing et al. [12] proposed a multiscale residual convolutional neural
network model, MRA-NET, for hyperspectral image classification, focusing on efficient
channel attention network fusion. Bhatti et al. [13] introduced the local similarity projection
Gabor filter (LSPGF) algorithm for hyperspectral image classification, combining dimen-
sionality reduction via local similarity projection and 2D Gabor filtering with CNN-based
feature extraction. Several researchers have employed 3D CNNs for hyperspectral image
classification tasks. Yue et al. [14] proposed an HSI classification method based on adap-
tive spatial pyramid constraint (ASPC), which leverages the global spatial neighborhood
information of labeled samples to enhance the model’s generalization ability in scenarios
with limited training data. Zhu et al. [15] integrated global convolutional long short-term
memory and a global joint attention mechanism to address the challenge of insufficient
and imbalanced sample data, introducing the SSDGL framework for HSI classification.
Despite their success, these methods still grapple with the challenge that CNNs are local
and translation-invariant, potentially failing to capture long-range dependencies in hyper-
spectral data. The self-attention mechanism, a key feature of the transformer architecture,
allows the model to dynamically weigh and integrate information from the entire input
spectrum [16]. The transformer model’s self-attention mechanism enables it to capture
long-range dependencies in the data, and transformers are permutation-invariant, making
them more suitable for processing unordered feature sets [17]. Sun et al. [18] proposed
a spectral–spatial feature tag transformer (SSFTT) method for HSI classification, which
captures spectral–spatial features and high-level semantic features, outperforming several
state-of-the-art methods. Yang et al. [19] proposed a hyperspectral image transformer (HiT)
classification network that embeds convolution operations into the transformer structure to
capture subtle spectral differences and convey local spatial context information.

Despite substantial advancements in HSI classification using deep learning, these
methods continue to face challenges. End-to-end supervised learning often necessitates
a large number of labeled samples to optimize deep models. To mitigate these issues,
strategies such as lightweight modeling [20], active learning [21], and self-supervised
pretraining modeling (SSL) have been introduced. These methods aim to enhance general-
ization capabilities and utilize unlabeled raw data, which are more readily available than
labeled samples. In this paper, we introduce a spectral transformer-based self-supervised
learning algorithm (S3L) for HSI classification when labeled data are scarce. The goal is to
optimize the performance of hyperspectral image classification. This method comprises
two stages: pretraining and fine-tuning. In the pretraining stage, a mask mechanism is
employed to learn the spatial representation of HSI, and the spectral features are modeled
through the spectral transformer module. In the fine-tuning stage, labeled data are used to
optimize pretraining weights and enhance classification accuracy. Experimental results on
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multiple public datasets demonstrate that the proposed method achieves state-of-the-art
performance.

The main contributions are summarized as follows:
1. We propose a unique spectral transformer structure specifically designed to capture

and model the complex relationships between different spectral bands in hyperspectral
images. This structure enhances the model’s sensitivity to spectral information, allowing it
to more accurately capture subtle changes in HSI data.

2. We adopt a pretraining and fine-tuning strategy, using a mask mechanism and a
spectral transformer to learn the spatial representation of HSI from unlabeled data. This
approach enhances the sequence dependence of spectral features and learns robust spatial
representation of the hyperspectral image by introducing a mask mechanism.

3. Experimental results on multiple public datasets demonstrate that the proposed
S3L outperforms other methods, achieving state-of-the-art performance.

In the subsequent sections, we delve into the specifics of the proposed S3L. Section 2
reviews previous work. Section 3 provides a detailed introduction to the S3L. In Section 4,
we carry out comparative and ablation experiments and analyze the results to further
validate the effectiveness of the proposed S3L. Finally, Section 5 offers a comprehensive
summary of the entire text.

2. Related Work
2.1. Hyperspectral Image Classification

HSI classification serves as a foundational pillar for applications of HSI, finding exten-
sive utility across various domains including agriculture, forestry, urban planning, military
defense, and environmental surveillance. The realm of hyperspectral image classification
algorithms bifurcates into two primary categories: conventional methodologies and those
predicated on deep learning techniques.

(1) Traditional methods: HSI classification has predominantly concentrated on extract-
ing spectral features. Tang et al. [22] introduced two manifold-based sparse representation
algorithms aimed at addressing the instability issues of ℓ1-based sparse representation. By
integrating local structure and smoothness properties into the sparse representation, they
significantly enhanced classification performance. Gu et al. [23] developed a novel frame-
work, multistructural element nonlinear multikernel learning (MultiSE-NMKL), which
merges spectral and spatial features. This approach generates extended morphological
profiles (EMPs) using multistructural elements to encapsulate spatial–spectral informa-
tion. Furthermore, it employs nonlinear multikernel learning (NMKL) to derive optimal
combination kernels from predefined linear basis kernels, thereby boosting classification
accuracy. Samaniego et al. [24] outlined a general strategy to identify the Euclidean metric
in a low-dimensional space that minimizes the variance for a specific class label. This
method primarily addresses challenges in remote sensing, pattern recognition, and statis-
tics by improving classification accuracy through ensemble prediction, tackling the issue
of nonlinear relationships in object classification. Ren et al. [25] proposed an innovative
classification technique that enhances HSI classification by integrating random forests with
label constraints. This method leverages spectral and spatial information through principal
component analysis and morphological profiling. By incorporating spatial continuity label
constraints into a random forest classifier, it achieves superior accuracy over traditional
random forest and support vector machine (SVM) methods.

Banki et al. [26] introduced a wavelet-based kernel function for SVMs, termed the
wavelet kernel, to advance HSI classification. This kernel demonstrates its effectiveness in
comparison with traditional Gaussian and polynomial kernels in remote sensing applica-
tions. Hsu et al. [27] presented a classification method that utilizes a learning dictionary to
amalgamate spectral and spatial information into a joint sparse representation, addressing
the challenge of dimensionality reduction in HSI analysis. Melgani et al. [6] conducted a
thorough evaluation of SVMs for hyperspectral remote sensing image classification. They
compared the SVMs’ efficiency and effectiveness against traditional feature reduction tech-
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niques and other nonparametric classifiers. Additionally, they explored various multiclass
strategies to overcome the challenges of applying binary SVMs to multiclass problems
in hyperspectral data analysis. Zhang et al. [7] introduced a cascaded random forest
(CRF) method that enhances the random forest algorithm by integrating a hierarchical
random subspace method for feature selection with boosting. This combination, along
with a novel out-of-bag error method for updating sample weights, aims to improve clas-
sification performance without risking overfitting. Heras et al. [28] advocated for the
use of extreme learning machines (ELMs) in classifying hyperspectral images for land
cover classification. They introduced two ELM-based techniques to integrate spectral and
spatial information, which not only improved classification accuracy and efficiency but also
reduced execution time compared to similar technologies. Li et al. [29] proposed the robust
sparse representation-based classification (RSRC) method and its extension, the joint RSRC
(JRSRC), to overcome the limitations of traditional SRC methods. By effectively handling
outliers in HSI classification, these methods demonstrated improved performance over
existing techniques, including orthogonal matching pursuit and other popular classifiers.

(2) Deep Learning: Deep learning-based algorithms for hyperspectral image clas-
sification can be broadly categorized into three main approaches: convolutional neural
network (CNN)-based methods (encompassing both 2D and 3D architectures), attention
mechanism-based methods, and those leveraging transformer architectures. Lu et al. [30]
proposed an evolutionary block-based CNN (EB-CNN), which employs a genetic algorithm
to automatically determine the optimal CNN architecture for hyperspectral image classifi-
cation. Zhou et al. [31] introduced multiscale convolutional gradient features (MCGFs),
refined through pseudo-Siamese networks, to capture finer common features and overcome
the limitations of traditional handcrafted features and deep learning methods requiring
extensive training. Cai et al. [32] introduced the transformer network (TRN) into the field
of automatic modulation classification, highlighting its ability to fuse global information of
sample sequences to improve classification accuracy, especially in low signal-to-noise ratios.
TRN outperforms other deep models and traditional methods in terms of classification
accuracy. Hong et al. [33] developed a general multimodal deep learning (MDL) framework
that combines data fusion and network architecture strategies to extend from pixel-level
classification to spatial information modeling using CNNs. Wu et al. [34] proposed a
deep learning-based framework, CCR-Net, which utilizes convolutional neural networks
and a novel cross-channel reconstruction module to classify multimodal remote sensing
data. Yu et al. [35] proposed an image-based global learning framework of a dual-channel
convolutional network (DCCN) that optimizes the utilization of global and multiscale
information for HSI classification. Qing et al. [36] introduced a 3D self-attention multiscale
feature fusion network (3DSA-MFN) for HSI classification, incorporating 3D multihead
self-attention to capture interactive features over long distances and effectively fuse spatial
and spectral features. Zhong et al. [37] introduced a spectral space transform network
(SSTN), with spatial attention and spectral correlation modules, and a factorized architec-
ture search (FAS) framework for hyperspectral image classification. Peng et al. [38] used
a dual-branch structure to capture fine-grained spatial information and extract spectral
features, proposing a CASST method for hyperspectral image classification, which achieved
better accuracy than the existing transformer classification model. Qing et al. [39] utilized
spectral attention and self-attention mechanisms to extract spectral–spatial features and
proposed an end-to-end transformer model, SAT Net, for hyperspectral image classification.

2.2. Self-Supervised Learning

Deep learning methodologies predominantly rely on data-driven approaches, ne-
cessitating extensive efforts in data collection and annotation—a process that is both
time-consuming and resource-intensive. Self-supervised learning [40] emerges as a potent
solution, capable of extracting visual features from vast quantities of unlabeled images or
videos, thereby significantly reducing the dependency on labeled datasets for deep learn-
ing applications. Within the realm of self-supervision theory, Teng et al. [41] introduced
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an innovative approach that leverages data from downstream tasks to refine unlabeled
data, enhancing self-supervised learning. This method primarily addresses the challenges
arising when the conditional independence (CI) condition is not met, which otherwise
leads to a marked increase in sample complexity for downstream tasks. Bansal et al. [42]
established a novel upper bound to gauge the generalization gap of classifiers, while Huang
et al. [43] developed a technique to mathematically evaluate data augmentation through
the introduction of a specific metric. This metric provides an upper limit on the error rate
for downstream classification tasks, offering a theoretical framework to comprehend the
impact of contrastive learning on the generalization capabilities within self-supervised
learning.

In the domain of image representation learning, Pandey et al. [44] unveiled a cutting-
edge semisupervised method for 2D medical image segmentation. This method employs
contrastive learning (CL) on image patches to capture local feature representations, coupled
with a novel consistency regularization (CR) strategy. This combination effectively ad-
dresses the issue of confirmation bias and fosters improved feature-space clustering. Park
et al. [45] introduced an innovative model, RUC, designed to tackle the challenges of mis-
prediction and overconfidence frequently encountered in unsupervised image clustering
techniques. RUC’s innovation lies in its use of pseudolabels from existing image clustering
models as a noisy dataset, which may include misclassified samples. Through a retraining
process, RUC aims to rectify misaligned knowledge, thus alleviating the overconfidence
issue in predictions. In the realm of video representation learning, Jenni et al. [46] intro-
duced an innovative self-supervised approach for learning video representations attuned to
changes in motion dynamics. This method trains a neural network to differentiate between
video sequences and their temporally transformed counterparts, eliminating the need for
manual labeling. Han et al. [47] developed a vision-centric self-supervised technique for
video representation learning that enhances information–noise contrastive estimation (In-
foNCE) training. This enhancement is achieved through two key innovations: the inclusion
of semantic class positive samples to boost performance and the introduction of a novel
self-supervised cotraining strategy. This strategy leverages the complementary information
from different visual perspectives (RGB flow and optical flow) to generate positive samples
from one view based on another. In the domain of 3D feature learning, Xie et al. [48] put
forward an unsupervised pretraining methodology for 3D point cloud comprehension,
diverging from the traditional focus on advanced scene understanding tasks. This method
employs unsupervised pretraining on a vast dataset of 3D scenes, utilizing a unified archi-
tecture, source datasets, and contrastive losses to achieve performance that outstrips recent
state-of-the-art results in segmentation and detection tasks across six diverse indoor and
outdoor, real and synthetic datasets. The notable enhancement in performance underscores
the adaptability of the learned representations across different domains.

3. Methodology

In order to achieve efficient classification performance with limited HSI annotation
data, we propose a self-supervised learning algorithm, S3L (spectral–spatial self-learning),
which deeply processes spectral features. The design of S3L is inspired by current state-of-
the-art techniques in self-supervised learning, particularly their effectiveness in processing
high-dimensional feature spaces. The overall architecture of this algorithm is shown in
Figure 1. At the core of S3L is its unique spectral transformer architecture, specifically
designed to parse and learn from the complexity and high dimensionality of HSI data. The
introduction of the spectral transformer structure aims to enhance the model’s sensitivity
to spectral information and capture subtle changes in HSI data more accurately. The S3L
algorithm is divided into two main stages: pretraining and fine-tuning. In the pretraining
stage, we adopt an innovative approach that does not rely on labeled data but introduces a
mask mechanism to learn a robust spatial representation of hyperspectral images. The goal
of this stage is to enable the model to autonomously learn and understand the intrinsic
structure and characteristics of HSI data without explicit label guidance. Concurrently, the
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introduction of the spectral transformer enables the model to conduct in-depth modeling
of spectral features in HSI data, capturing richer and more detailed information. To
further enhance the model’s sequential dependence on spectral features, we innovatively
couple the gated recurrent unit (GRU) module with the transformer’s encoder module.
This coupling not only improves the model’s ability to process time series data but also
enhances its ability to understand and represent spectral features. In this way, S3L can
handle spatiotemporal dynamic changes in HSI data more effectively, providing more
accurate classification performance.

Encoder

Gate 

Recurrent Unit

 

Decode

 

cls_token

  

pos_embed

 

D
e
c
o
d
er e

m
b
ed

in
g

R
a
n
d

o
m

 m
a
sk

in
g

p
o

s_
e
m

b
e
d

Rec lossCls loss

R
a
n
d
o
m

 m
a
sk

in
g

P
a
tch

 e
m

b
ed

in
g

 
+

Gate 

Recurrent Unit

 

 

 

pos_embed

 

R
a
n
d
o
m

 m
a
sk

in
g

P
a
tch

 e
m

b
ed

in
g

C
lass h

ead

 

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

L
ay

e
rN

o
rm

L
in

e
a
r &

 c
h
u
n
k

Input

q1

k1

q2

k2

v1

v2

softmax× 

softmax× 

attention 

score 1

attention 

score 2

pos_emb

+  

+  

mask

mask

× 

× 

+  × output

L
in

e
a
r &

 c
h
u
n
k

cls_token
Spectrum 

transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Spectrum transformer

Pre-training

Fine-tuning

×
 

rt zt

in
it

ia
l 

st
at

e

σ σ 

1- 

tanh

+

C

C

×
 

×
 

×
 

Gate Recurrent Unit

u
n

p
a
tc

h
ify

L
in

ea
r

L
ay

e
rN

o
rm

C
o

n
v

p
a
tc

h
ify

weights

S3L

Figure 1. Architecture of the S3L algorithm for enhanced hyperspectral image classification with
limited annotations. The figure illustrates the two-phase self-supervised learning approach, incorpo-
rating a spectral transformer and GRU for robust feature extraction during pretraining, followed by
fine-tuning with labeled data to refine classification accuracy.

Throughout the pretraining process, we continually optimize and adjust the model’s
parameters through a comprehensive optimization strategy, encompassing both classifica-
tion and reconstruction functions. This strategy ensures that the model can glean as much
effective information as possible during the pretraining phase, laying a solid foundation
for the subsequent fine-tuning phase. Upon entering the fine-tuning phase, we introduce
limited labeled data to further refine and optimize the model weights obtained during the
pretraining phase. The goal of this stage is to enable the model to adapt more accurately
to specific classification tasks and further enhance the accuracy of hyperspectral image
classification. Through the robust feature representation obtained in the pretraining stage
coupled with the fine adjustments in the fine-tuning stage, S3L can significantly improve
the overall performance of classification tasks.

In the following section, we first delve into the details of the spectral transformer
module in S3L, explaining its design concept and working mechanism. We then explore
the pretraining and fine-tuning process of S3L and how these two stages interact with and
complement each other to advance the hyperspectral image classification task.

3.1. Spectrum Transformer

Masked image modeling in self-supervised learning methods is a transformative tech-
nology, particularly crucial in HSI classification. Existing masking methods primarily focus
on modeling spatial features, often overlooking the importance of spectral features. To
address this, we propose a unique spectral transformer structure specifically designed to
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capture and model the complex relationships between different spectral bands in hyper-
spectral images, as depicted in Figure 2.
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Figure 2. Spectral transformer structure for enhanced hyperspectral image classification: a focus on
spectral feature modeling and sequential dependency capturing in self-supervised learning.

Specifically, for the input hyperspectral feature matrix, we first normalize it to eliminate
scale differences between different bands. Next, we perform carefully designed partitioning
and splicing operations on the spectral features. This not only preserves the integrity of
the spatial features but also significantly enhances the model’s ability to capture spectral
sequential feature dependencies when processing input shifts by introducing changes in
spectral dimensions. We further linearly map the normalized feature vectors to recalibrate
the spectral dimensions, a step that critically influences the model’s ability to understand
and process spectral data.

By further dividing, we obtain two components, v and gate, which play a central role
in the model. Additionally, the feature vector generates query and key through another
linear mapping, two components crucial in the transformer architecture. We further divide
them, resulting in different linear components (such as q1, q2, k1, and k2), and through
multiple position shifts, we enable the model to more deeply understand and model the
complex interactions between spectral features. For k2, we adopt an innovative random
masking strategy. By setting the value of the mask part to zero, the model can ignore certain
noncritical parts and focus on more important information. We also introduce rotational
position encoding to enhance the model’s understanding of sequential relationships in
hyperspectral sequence data. Next, the input data are padded to fit the needs of the trans-
former model and facilitate parallel processing of spectral features. This step enables the
model to efficiently capture different granularity levels in the spectral data. Simultaneously,
the mask is also padded accordingly to ensure its consistency with the input data length.
The core of the transformer model lies in its attention mechanism. We obtain the final
similarity matrix by calculating the similarity between query and key and adjusting it using
the relative position deviation. These attention weights are then applied to the feature
variables V, producing the output matrix att2. For k1 and q1, we adopt a similar approach
to obtain the feature output att1. By weighting information at different locations, the model
is able to obtain a more accurate and richer data representation. Finally, by weighted
combination of att1 and att2, we obtain the final feature output. This approach enables the
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model to effectively handle complex relationships between adjacent pixels and spectral
features, further enhancing the performance of S3L. The entire implementation process of
the spectral transformer demonstrates in detail how to effectively improve the accuracy
of hyperspectral image classification through carefully designed structures and strategies.
The detailed execution process is shown in Algorithm 1.

Algorithm 1 Spectrum transformer

1: Input: Hyperspectral feature matrix x
2: Output: Processed feature matrix
3: Normalize x to obtain normed_x
4: if sel f .shi f t_tokens is true then
5: Split and concatenate normed_x to introduce spectral dimension variations
6: end if
7: Apply linear mapping to normed_x, split into v and gate
8: Generate query and key from normed_x, split into q1, q2, k1, and k2
9: if mask exists then

10: Apply masking to k2, setting masked values to 0
11: Apply rotary position encoding to q1, q2, k1, k2 to enhance sequence understanding
12: end if
13: Pad input data for suitable reorganization and chunking
14: Apply the same padding to the mask to match the input data length
15: Compute similarity sim between queries and keys with relative position bias
16: Apply attention mechanism to v to produce output matrices att1 and att2
17: Weight and combine att1 and att2 to obtain the final feature output
18: Enhance performance by processing relationships between adjacent pixels and spectral

features
19: return Final feature output

3.2. Self-Supervised Pretraining

During the pretraining phase, our goal is to extract robust spatial and spectral features
from hyperspectral images using a self-supervised learning approach, which does not
require labeled data. We achieve this by implementing a masking mechanism that randomly
occludes parts of the input hyperspectral images, creating an information bottleneck. This
compels the model to predict the occluded region’s content based solely on the surrounding
unoccluded context, thereby enhancing the model’s understanding of spatial and spectral
dependencies in the data. The entire procedure is delineated in Algorithm 2.

Drawing inspiration from the work of Sun et al. [49], a variety of dimensionality
reduction techniques were explored, including linear discriminant analysis (LDA), indepen-
dent component analysis (ICA), local linear embedding (LLE), and principal component
analysis (PCA). LDA is designed to enhance the separation between classes, yet it may
falter with hyperspectral data where class distinctions are subtle. ICA aims to identify
independent components, a challenge in hyperspectral imagery due to the often-correlated
spectral signatures of materials. LLE prioritizes preserving the local structure of data,
potentially overlooking broader trends. Conversely, PCA focuses on capturing components
with significant variance, effectively mitigating noise by discarding low-variance elements.
This attribute of PCA not only addresses the noise issue prevalent in hyperspectral imagery
but also adeptly manages the sparsity associated with high-dimensional data spaces. To
effectively handle noise and redundant information in hyperspectral images, we employ
the principal component analysis (PCA) algorithm for data preprocessing. PCA linearly
transforms the original hyperspectral data I ∈ RH×W×C into a new coordinate system,
the basis of which is the data’s principal component direction. The PCA-processed data
are denoted as Ip ∈ RH×W×L, where L signifies the number of spectral channels post-
dimensionality reduction. We then use a sliding window of size s × s to divide Ip into
N small blocks of size s × s × L. Each small block is represented as P ∈ Rs×s×L, where
N = (H − s + 1)(W − s + 1).
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Algorithm 2 Pretraining process for hyperspectral image classification

1: Initialize model parameters θ.
2: for each training epoch epoch = 1, 2, . . . , E do
3: for each batch (X, Y) in the training set do
4: Generate a masked version of the input Xmasked.
5: Transfer Xmasked to the computation device (e.g., GPU).
6: Compute the reconstruction loss Lrec.
7: if labelled data is available then
8: Compute the classification loss Lcls.
9: end if

10: Calculate the total loss L = αLcls + βLrec.
11: Update the model parameters θ to minimize L.
12: end for
13: Update the learning rate.
14: end for
15: Save the model state.

For these small patches P, we apply random mask operations and add positional
encoding. The processed data are then passed through the encoder and decoder, which
are composed of spectral transformers in sequence. In the encoder’s penultimate layer,
we incorporate a GRU network structure to capture the sequential dependence of spectral
features while maintaining the capture of global dependencies. This is necessary as our
proposed spectral transformer performs multiple splits and calibrations when handling
spectral dimensions, which may overlook the spectral continuity between adjacent pixels.

To optimize the entire pretraining process, we use two loss functions: classification
loss (Cls loss) and reconstruction loss (Rec loss). The classification loss aims to preserve
the model’s discriminative ability during pretraining, even when faced with incomplete
spectral information. This is achieved by making accurate class predictions on unoccluded
parts of the image, thereby enhancing the model’s ability to infer global information from
partial data. The classification loss is expressed as

Cls = −
N

∑
i=1

yi log(pi) (1)

where yi is the true class label and pi is the class probability predicted by the model.
The reconstruction loss is designed to aid the model in learning the complex structure

of hyperspectral images, deeply exploring spatial–spectral features by reconstructing the
mask area, and identifying subtle spectral differences of different ground objects. This
enables comprehensive characterization of hyperspectral images, capturing more spatial
and spectral details. The reconstruction loss is expressed as mean square error (MSE):

Rec =
1
N

N

∑
i=1

(Ii − Îi)
2 (2)

where Ii is the pixel value of the original image and Îi is the pixel value of the reconstructed
image.

3.3. Fine-Tuning

Following the initial deep learning and feature extraction in the pretraining phase, the
model undergoes further refinement to enhance its performance in specific classification
tasks. Fine-tuning primarily involves adjusting the pretrained weights using labeled data
to align the learned features more accurately with the dataset’s specific categories. The
network structure during the fine-tuning phase largely mirrors the pretrained model. The
key distinction is the exclusive use of the encoder, omitting the decoder. The encoder
employs the spectrum transformer to amalgamate and process spectral data, ensuring that
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the spatial and spectral features align with the labeled data. This method preserves the
original spatial and spectral representation during refinement, enhancing its consistency
with the labeled data.

A classification head is incorporated during the fine-tuning process, positioned at the
model’s end. This component transforms the rich spectral–spatial features into category
probability distributions. It is optimized to map learned representations to specific cat-
egories effectively, thereby minimizing classification errors. The classification head also
strikes a balance between the generalized representation acquired during pretraining and
the detailed information necessary for precise classification, ensuring the model’s final out-
put accurately predicts hyperspectral image class labels. It is important to note that a lower
learning rate is maintained throughout the fine-tuning process. This strategy preserves
the general features acquired during pretraining while facilitating necessary model ad-
justments for new classification tasks. Consequently, the fine-tuning process can optimize
the model and make necessary adjustments while retaining its robust feature extraction
capabilities, thereby enhancing the model’s performance in specific tasks. In summary, the
fine-tuning phase is a refinement and enhancement of the pretraining phase. It fine-tunes
the learned features and adjusts the network structure to better suit specific classification
tasks. This process not only boosts the model’s accuracy but also ensures its comprehensive
understanding and effective processing of hyperspectral images. Through fine-tuning, our
model exhibits superior performance across a range of complex classification scenarios.

4. Datasets and Experimental Setting

This section commences with an introduction to three publicly accessible datasets,
followed by a quantitative and qualitative comparative analysis with other sophisticated
methods. Subsequently, we perform a series of ablation experiments to evaluate and
highlight the efficacy of each component within the S3L framework.

4.1. Datasets

Our research utilizes four renowned hyperspectral image datasets, Indian Pines (IN),
University of Pavia (UP), Salinas (SA), and Houston 2013, to assess the performance of our
proposed method. These datasets, widely recognized in the hyperspectral image processing
domain, offer hyperspectral images with diverse characteristics, facilitating a thorough
evaluation of our method’s effectiveness and generalizability. Table 1 summarizes the basic
information of the four datasets. Tables 2 and 3 illustrate the training and test samples.

Indian Pines: The Indian Pines dataset, captured by the Airborne Visible/Infrared
Imaging Spectroradiometer (AVIRIS) in 1992, represents a 145 × 145 pixel region in north-
west Indiana’s Indian Pines area. It comprises 21,025 samples, initially with 224 spectral
bands in the 0.4 to 2.5 µm range. However, due to water absorption and noise, 24 bands
were discarded, leaving 200 usable bands. The spatial resolution is 20 m. The dataset,
known for its diverse class representation, includes 16 different classes with a total of
10,249 labeled samples, primarily consisting of agricultural land and natural perennial
vegetation.

Table 1. Summary of hyperspectral image datasets.

IN UP SA Houston

Region or country Indiana, USA Pavia, Italy California, USA Texas, USA
Sensor type AVIRIS ROSIS AVIRIS ITRES CASI

Number of bands 200 103 204 144
Wavelength (µm) 0.4–2.5 0.43–0.86 0.4–2.5 0.38–1.05
Spatial resolution 20 m 1.3 m 3.7 m 2.5 m

Image size 145 × 145 610 × 340 512 × 217 349 × 1905
Number of labeled samples 10,249 42,776 54,129 15,429

Number of classes 16 9 16 15
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Table 2. The number of training and testing samples across the University of Pavia, Indian Pines, and
Salinas datasets).

Indian Pines Salinas University of Pavia

Class Land Cover Type Training Testing Land Cover Type Training Testing Land Cover Type Training Testing
1 Alfalfa 20 46 Weeds-1 20 2009 Asphalt 20 6631
2 Corn-notill 20 1428 Weeds-2 20 3726 Meadows 20 18,649
3 Corn-mintill 20 830 Fallow 20 1976 Gravel 20 2099
4 Corn 20 237 Fallow-plow 20 1394 Trees 20 3064
5 Grass-past 20 483 Fallow-sm 20 2678 Metal sheets 20 1345
6 Grass-trees 20 730 Stubble 20 3959 Bare Soil 20 5029
7 Grass-pas-m 20 28 Celery 20 3579 Bitumen 20 1330
8 Hay-windr 20 478 Grapes 20 11,271 Bricks 20 3682
9 Oats 20 20 Soil 20 6203 Shadows 20 947

10 Soybean-n 20 972 Corn 20 3278
11 Soybean-m 20 2455 Lettuce-4wk 20 1068
12 Soybean-c 20 593 Lettuce-5wk 20 1927
13 Wheat 20 205 Lettuce-6wk 20 916
14 Woods 20 1265 Lettuce-7wk 20 1070
15 Buildings 20 386 Vineyard-unt 20 7268
16 Stone 20 93 Vineyard-t 20 1807

Total 320 10,249 Total 320 54,129 Total 180 42,776

Table 3. The number of labeled training samples and testing samples of the Houston 2013 dataset.

Land Cover Type Training Testing
1 Healthy Grass 20 1251
2 Stressed Grass 20 1254
3 Synthetic Grass 20 697
4 Trees 20 1244
5 Soil 20 1242
6 Water 20 325
7 Residential 20 1268
8 Commercial 20 1244
9 Road 20 1252
10 Highway 20 1227
11 Railway 20 1235
12 Parking Lot 1 20 1233
13 Parking Lot 2 20 469
14 Tennis Court 20 428
15 Running Track 20 660

Total 300 15,029

Salinas: The Salinas dataset, collected by the AVIRIS sensor in California’s Salinas
Valley, is characterized by a high spatial resolution of 3.7 m per pixel. The original dataset
includes 224 bands with a spectral range from 400 to 2500 nm. After excluding 20 bands
due to water absorption, 204 bands were retained for analysis. The dataset, covering an
area of 512 × 217 pixels or a total of 111,104 samples, includes 16 different categories with
54,129 labeled samples, featuring diverse landscapes such as vegetable plots, bare soil,
and vineyards.

University of Pavia: The University of Pavia dataset, also known as PaviaU, was
collected by the ROSIS-03 sensor in the urban area of Pavia, Northern Italy. It boasts a high
geometric resolution of 1.3 m, consisting of 610 × 340 pixels, with a total of 207,400 samples.
Initially, 115 frequency bands were included, 12 of which were discarded due to noise,
leaving 103 frequency bands for our experiments. The dataset features urban landscapes
with nine categories and 42,776 labeled samples, including various urban surfaces such as
asphalt, bricks, grass, and trees.
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Houston 2013: The Houston 2013 dataset, captured using CASI-1500 sensors, en-
compasses the University of Houston campus and adjacent regions. It comprises 349 by
1905 pixels, featuring a comprehensive collection of 144 spectral bands. These bands span a
spectral range from 380 nm to 1050 nm, with each pixel representing a spatial resolution of
2.5 m. The dataset is categorized into 15 distinct classes, encompassing various natural and
human-made surfaces such as grass, trees, soil, and water, among others. It includes a total
of 15,029 labeled pixels, facilitating detailed analysis and classification tasks.

4.2. Implementation Details

We employed the PyTorch 1.13.1 library to construct an experimental framework for
hyperspectral image classification. The system used for this experiment was equipped with
an NVIDIA GPU 4090 (Santa Clara, CA, USA), boasting 24 GB of memory, and operated
within a Python 3.8 environment. In the experiment, we configured 20 training samples
per category, set the window sizes to 27, and established a batch size of 512. We ran the
model for 300 epochs with a learning rate of 1 × 10−3. Regarding the mask settings, we
maintained a mask ratio of 0.8 and an MLP ratio of 2.0, and we assigned 128 to the number
of hidden channels. The dimensions of both the model’s encoder and decoder were set to
128. However, they differed in complexity: the encoder consisted of two layers, while the
decoder was more intricate with six layers. Each layer contained eight‘ attention heads. We
set the temperature to 1.0 and the hierarchical loss rate to 0.005. The model was trained
using the Adam optimizer. To minimize the effects of random sampling, we conducted the
experiment multiple times, each time with different initial training samples.

4.3. Comparative Analysis

To assess the efficacy of our proposed method, we juxtapose it with eight distinct
methods: HybridSN [50], 3DAES [51], SSFTT [18], FDSSC [52], DCFSL [53], CLB [54], and
DBDA [55]. HybridSN [50] is a spectral–spatial 3D-CNN supplemented with a spatial
2D-CNN. This method jointly extracts spatial–spectral features from a multitude of spectral
bands and further learns a spatial representation at a more abstract level. 3DAES [51]
is a semisupervised Siamese network that incorporates an autoencoder module and a
Siamese network. This network explores information in large volumes of unlabeled data
and rectifies it with a limited set of labeled samples. SSFTT [18] captures spectral–spatial
features and high-level semantic features using a spectral–spatial feature extraction module
and a transformer encoder module. FDSSC [52] is an end-to-end fast dense spectral–spatial
convolution framework. It employs different convolution kernel sizes to extract spectral
and spatial features, respectively, and utilizes a densely connected structure for deep
learning of features. DCFSL [53] employs a conditional adversarial domain adaptation
strategy to address the few-shot learning and domain adaptation problems within a unified
framework. CLB [54] is an unsupervised framework that leverages contrastive learning
methods and transformer models for hyperspectral image classification. DBDA [55] is a
dual-branch dual-attention mechanism network that captures a vast number of spectral
and spatial features contained in HSI. It uses channel attention blocks and spatial attention
blocks to refine and optimize the extracted feature maps.

4.3.1. Quantitative Analysis

Table 4 displays the quantitative experimental results of various methods on the IN
dataset. The proposed method consistently outperforms other techniques across various
indicators. Specifically, S3L achieves an OA of 93.45%, which is 1.8% higher than the closest
competitor, DBDA, and significantly surpasses traditional methods such as HybridSN.
In the AA domain, the proposed method again leads with 92.2%, slightly higher than
SSFTT’s 91.68%. This underscores the balanced performance of the proposed method
across different categories. SSFTT can achieve higher classification performance with
limited labeled samples. For instance, the OA of the SSFTT method is improved by
9.58% over the HybridSN method and 3.83% over the 3DAES method. The addition of
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methods like CLB and DBDA, which utilize contrastive learning and attention mechanisms,
respectively, are beneficial for handling classification boundary issues. As shown in the
per-class accuracy results, our proposed method can handle boundary information better,
achieving 100% accuracy for Classes 6, 9, and 14.

Table 5 showcases the experimental results on the SA dataset. The OA, AA, and Kappa
values of the proposed S3L are 94.87%, 94.31%, and 92.46, respectively, which surpass the
corresponding values of other methods. 3DAES and SSFTT also achieved competitive
results, with OA values of 92.13% and 93.01%, AA values of 92.47% and 94.26%,and Kappa
values of 92.68 and 92.34, respectively. The proposed S3L obtains additional semantic
information by processing spectral and spatial data, effectively capturing and utilizing
spectral and spatial features in hyperspectral images.

Table 4. Comparative analysis of quantitative classification outcomes using various algorithms on
the IN dataset. The best performing results are shown in bold.

Class No. HybridSN DCFSL 3DAES SSFTT FDSSC CLB DBDA Proposed

1 91.87 ± 3.2 95.26 ± 2.3 95.50 ± 0.9 100.00 ± 0.0 91.38 ± 5.8 94.59 ± 2.7 88.95 ± 6.1 88.47 ± 5.5
2 58.38 ± 5.4 58.86 ± 7.6 88.79 ± 1.4 87.54 ± 8.3 91.32 ± 6.7 88.59 ± 7.2 93.34 ± 2.1 94.82 ± 0.7
3 82.77 ± 6.3 66.92 ± 9.1 70.78 ± 4.8 86.22 ± 7.4 89.60 ± 8.6 77.12 ± 3.5 96.97 ± 2.2 95.27 ± 0.8
4 77.38 ± 8.7 84.61 ± 5.3 77.82 ± 6.2 98.94 ± 0.6 81.78 ± 7.9 85.33 ± 4.4 33.22 ± 9.4 84.13 ± 8.1
5 94.41 ± 4.5 77.91 ± 8.8 85.31 ± 3.6 92.08 ± 5.1 98.20 ± 0.9 46.25 ± 8.9 95.15 ± 1.8 96.70 ± 3.3
6 70.61 ± 7.1 87.45 ± 4.1 54.11 ± 9.5 97.11 ± 2.0 96.22 ± 3.1 65.89 ± 9.3 91.86 ± 1.1 100.00 ± 0.0
7 93.89 ± 2.6 97.83 ± 0.6 100.00 ± 0.0 100.00 ± 0.0 98.75 ± 0.8 100.00 ± 0.0 98.68 ± 0.6 94.40 ± 5.6
8 80.55 ± 6.4 89.50 ± 3.7 61.06 ± 8.6 99.07 ± 0.6 97.58 ± 0.5 34.30 ± 8.2 72.00 ± 6.9 93.16 ± 4.3
9 98.27 ± 1.2 97.02 ± 0.7 96.49 ± 1.2 100.00 ± 0.0 98.70 ± 1.3 89.82 ± 7.8 100.00 ± 0.0 100.00 ± 0.0

10 91.11 ± 0.9 69.07 ± 9.6 85.88 ± 2.8 88.70 ± 7.0 77.37 ± 8.4 84.31 ± 5.9 90.28 ± 3.4 85.74 ± 6.5
11 97.16 ± 2.5 65.86 ± 8.0 98.90 ± 1.1 84.86 ± 9.8 90.90 ± 7.5 88.18 ± 6.6 70.50 ± 7.7 88.69 ± 4.7
12 76.39 ± 8.9 58.28 ± 9.4 87.11 ± 2.2 76.18 ± 8.6 85.33 ± 5.1 89.32 ± 3.9 97.04 ± 1.5 96.77 ± 0.8
13 88.73 ± 7.2 96.93 ± 0.5 99.49 ± 0.5 98.90 ± 1.1 92.46 ± 4.8 89.60 ± 5.7 98.60 ± 1.4 92.53 ± 6.3
14 96.72 ± 2.3 87.36 ± 9.5 97.84 ± 1.6 97.81 ± 1.2 96.64 ± 1.3 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
15 74.90 ± 9.8 68.37 ± 8.7 99.20 ± 0.8 94.51 ± 2.9 84.92 ± 7.4 92.65 ± 4.6 86.73 ± 8.2 94.47 ± 3.1
16 78.03 ± 7.3 96.83 ± 2.2 96.30 ± 3.7 100.00 ± 0.0 82.19 ± 9.1 73.80 ± 8.4 89.76 ± 9.9 88.73 ± 5.4

OA (%) 83.17 ± 2.1 81.99 ± 1.8 87.78 ± 2.9 91.14 ± 2.5 91.24 ± 2.2 88.43 ± 1.9 91.65 ± 1.7 93.45 ± 1.5
AA (%) 82.13 ± 2.8 80.73 ± 3.4 89.20 ± 1.9 91.68 ± 2.5 85.56 ± 2.7 85.38 ± 2.1 87.09 ± 2.9 92.20 ± 1.4

Kappa × 100 77.10 ± 2.5 79.36 ± 2.2 91.62 ± 1.8 89.24 ± 2.6 87.90 ± 2.3 88.67 ± 1.7 91.16 ± 1.2 92.78 ± 2.0

Table 5. Comparativeanalysis of quantitative classification outcomes using various algorithms on the
SA dataset. The best performing results are shown in bold.

Class No. HybridSN DCFSL 3DAES SSFTT FDSSC CLB DBDA Proposed

1 86.16 ± 5.7 97.37 ± 0.6 96.99 ± 0.3 94.64 ± 2.6 94.25 ± 5.2 92.34 ± 7.8 93.42 ± 6.9 94.17 ± 5.8
2 88.67 ± 6.8 96.19 ± 0.2 99.10 ± 0.8 97.84 ± 1.7 95.55 ± 3.3 93.45 ± 7.1 94.26 ± 5.8 97.68 ± 2.2
3 91.49 ± 7.9 89.84 ± 8.0 92.07 ± 4.8 96.38 ± 3.2 94.69 ± 7.3 93.68 ± 8.8 94.56 ± 5.1 96.31 ± 3.6
4 90.72 ± 8.0 99.47 ± 0.4 91.60 ± 3.4 95.05 ± 8.7 93.59 ± 5.6 92.36 ± 6.2 92.60 ± 7.4 97.26 ± 2.7
5 88.45 ± 5.3 91.46 ± 7.2 90.67 ± 8.7 89.90 ± 7.6 92.12 ± 5.7 91.96 ± 5.4 90.55 ± 6.7 92.97 ± 7.0
6 93.24 ± 7.4 98.69 ± 0.4 99.20 ± 0.8 96.70 ± 3.3 88.43 ± 7.6 87.43 ± 8.3 88.45 ± 5.7 91.53 ± 8.4
7 89.79 ± 6.2 97.53 ± 1.1 99.87 ± 0.1 98.40 ± 1.6 95.39 ± 3.6 92.20 ± 7.5 89.37 ± 8.6 91.46 ± 8.5
8 93.56 ± 8.7 88.72 ± 9.3 83.40 ± 6.1 89.67 ± 7.2 90.15 ± 8.4 92.77 ± 7.3 91.25 ± 6.5 93.34 ± 6.6
9 92.91 ± 7.7 94.54 ± 0.4 98.58 ± 1.0 93.01 ± 6.3 92.20 ± 5.8 92.87 ± 9.6 94.56 ± 8.2 97.68 ± 2.3

10 95.18 ± 6.6 89.60 ± 7.0 91.87 ± 8.0 92.13 ± 9.1 91.81 ± 8.8 89.66 ± 7.9 91.29 ± 6.4 96.18 ± 3.7
11 92.01 ± 5.5 96.70 ± 3.3 93.55 ± 0.4 94.20 ± 5.8 94.83 ± 6.1 94.67 ± 7.4 90.64 ± 5.9 98.47 ± 1.5
12 94.20 ± 6.7 97.62 ± 0.1 97.08 ± 0.9 89.00 ± 5.8 90.87 ± 6.4 86.28 ± 7.6 87.99 ± 8.2 88.49 ± 5.4
13 95.55 ± 7.8 99.16 ± 0.7 98.34 ± 0.2 91.26 ± 6.5 83.87 ± 7.9 88.45 ± 8.4 88.38 ± 5.6 89.36 ± 7.1
14 91.39 ± 8.6 96.06 ± 1.1 96.05 ± 2.7 89.02 ± 8.6 86.44 ± 5.3 85.10 ± 6.7 88.08 ± 7.5 92.72 ± 7.2
15 89.95 ± 9.8 77.59 ± 8.0 89.31 ± 7.1 92.98 ± 6.2 91.70 ± 7.3 89.98 ± 5.4 90.47 ± 7.7 93.87 ± 6.1
16 91.72 ± 5.6 91.56 ± 6.8 88.49 ± 9.0 86.84 ± 7.2 90.53 ± 8.4 90.97 ± 6.9 89.28 ± 5.5 92.55 ± 7.4

OA (%) 92.50 ± 1.7 92.70 ± 1.5 92.13 ± 1.8 93.01 ± 1.6 92.83 ± 1.9 92.27 ± 3.3 92.17 ± 2.7 94.87 ± 3.1
AA (%) 93.75 ± 3.4 92.87 ± 2.8 92.47 ± 2.5 94.26 ± 2.8 93.51 ± 3.4 93.87 ± 3.4 92.20 ± 3.8 94.31 ± 3.2

Kappa × 100 92.61 ± 1.9 92.31 ± 3.3 92.68 ± 2.7 92.34 ± 2.5 92.03 ± 2.0 92.49 ± 2.6 92.10 ± 2.8 92.46 ± 2.4

Table 6 presents the quantitative experimental results of various methods on the PU
dataset. The proposed method, S3L, achieved an overall accuracy (OA) of 94.64% and
an average accuracy (AA) of 92.78%, demonstrating its consistent performance across all
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categories and its effective integration of spectral and spatial features. The Kappa coeffi-
cient is 93.54, the second highest, indicating a high agreement between the predicted and
actual class labels. Among other methods, 3DAES and SSFTT performed commendably,
with overall accuracy rates of 91.56% and 90.65% respectively. FDSSC, known for its rapid
and accurate feature learning, excelled in Class 1 and Class 6 but fell short in other cate-
gories. This discrepancy may be attributed to the method’s emphasis on speed, potentially
compromising its accuracy in complex scenes. SSFTT and CLB also demonstrated notable
performance, particularly in Class 2 and Class 3 for SSFTT, and Class 2 and Class 4 for CLB,
indicating their effective feature extraction capabilities.

Table 6. Comparative analysis of quantitative classification outcomes using various algorithms on
the PU dataset. The best performing results are shown in bold.

Class No. HybridSN DCFSL 3DAES SSFTT FDSSC CLB DBDA Proposed

1 85.26 ± 5.4 86.68 ± 7.1 98.99 ± 6.3 88.58 ± 8.2 97.56 ± 1.8 90.42 ± 7.4 96.83 ± 3.9 98.76 ± 1.2
2 98.13 ± 0.2 91.57 ± 8.8 98.51 ± 1.7 96.79 ± 5.1 91.53 ± 6.6 96.41 ± 0.7 96.55 ± 3.2 95.46 ± 3.5
3 62.08 ± 6.1 74.35 ± 5.2 84.53 ± 8.4 96.60 ± 7.5 90.23 ± 6.8 77.28 ± 5.9 51.34 ± 8.1 87.75 ± 4.4
4 73.44 ± 7.3 92.59 ± 8.6 94.16 ± 5.4 87.37 ± 6.2 85.60 ± 7.8 97.09 ± 2.9 90.46 ± 5.6 91.37 ± 2.3
5 93.63 ± 8.7 98.58 ± 0.5 99.96 ± 0.3 99.62 ± 6.4 88.06 ± 7.6 96.14 ± 1.0 98.48 ± 1.7 92.13 ± 2.5
6 98.97 ± 6.5 78.59 ± 5.7 77.67 ± 8.2 94.94 ± 7.9 94.01 ± 3.4 71.26 ± 6.3 93.36 ± 7.4 97.10 ± 2.9
7 90.58 ± 7.2 84.73 ± 8.5 81.26 ± 6.6 92.63 ± 5.5 86.93 ± 7.7 84.30 ± 8.3 43.93 ± 6.0 96.47 ± 2.5
8 80.70 ± 8.9 77.26 ± 7.3 91.92 ± 6.7 87.66 ± 5.9 83.95 ± 8.1 94.32 ± 7.6 93.29 ± 6.4 86.25 ± 6.0
9 60.47 ± 5.6 97.46 ± 1.3 97.62 ± 0.1 94.04 ± 7.0 86.88 ± 6.9 95.65 ± 5.2 97.73 ± 4.0 89.27 ± 5.7

OA (%) 85.97 ± 1.9 85.65 ± 1.5 91.56 ± 1.8 90.65 ± 1.7 89.13 ± 1.7 90.45 ± 1.4 92.55 ± 1.6 94.64 ± 1.5
AA (%) 84.13 ± 2.8 84.75 ± 3.2 92.77 ± 2.6 93.44 ± 1.5 90.86 ± 2.0 90.42 ± 1.9 83.10 ± 1.8 92.78 ± 1.7

Kappa × 100 88.39 ± 1.2 84.94 ± 1.2 94.06 ± 0.9 91.77 ± 1.5 93.13 ± 2.0 89.94 ± 1.3 91.30 ± 1.8 93.54 ± 1.6

Table 7 presents a comparative analysis of the performance metrics for various method-
ologies applied to the Houston 2013 dataset. The method proposed in this study attains
an overall accuracy (OA) of 86.50%, an average accuracy (AA) of 85.25%, and a Kappa
coefficient of 85.85. Concurrently, the SSFTT and FDSSC methods demonstrate robust
performance, with SSFTT excelling in Class 4 with a 90.98% accuracy rate, and FDSSC
achieving the highest classification accuracy in Class 5 at 91.57%. Nonetheless, when
juxtaposed with the outcomes from other datasets, a marginal decline in the performance of
all evaluated methods on the Houston 2013 dataset is observed. This decrement can likely
be attributed to the larger size and the more complex spatial and spectral characteristics of
the Houston 2013 dataset compared to the others.

Table 7. Estimated comparative analysis of quantitative classification outcomes using various
algorithms on the Houston 2013 dataset. The best performing results are shown in bold.

Class No. HybridSN DCFSL 3DAES SSFTT FDSSC CLB DBDA Proposed

1 48.23 ± 7.2 88.12 ± 8.1 64.89 ± 5.6 91.78 ± 0.5 82.67 ± 6.4 37.54 ± 7.9 74.32 ± 8.5 81.23 ± 5.1
2 84.68 ± 6.8 63.89 ± 9.4 82.56 ± 7.3 78.42 ± 8.2 85.29 ± 5.5 85.77 ± 6.1 87.13 ± 9.1 87.59 ± 0.8
3 75.47 ± 8.7 67.83 ± 7.5 88.24 ± 6.9 80.57 ± 5.8 80.86 ± 9.8 72.74 ± 8.3 87.72 ± 7.1 88.19 ± 0.9
4 69.28 ± 9.5 74.52 ± 8.4 71.97 ± 7.2 90.98 ± 0.7 73.64 ± 6.5 76.08 ± 5.4 27.83 ± 8.9 77.05 ± 7.6
5 85.14 ± 7.4 69.79 ± 5.9 79.76 ± 8.6 87.07 ± 6.7 91.57 ± 0.6 87.58 ± 8.8 87.73 ± 9.0 90.09 ± 6.2
6 87.39 ± 8.0 87.84 ± 7.7 90.67 ± 9.4 90.92 ± 5.3 90.89 ± 7.8 91.16 ± 6.6 92.07 ± 5.7 93.94 ± 0.5
7 65.79 ± 6.3 92.49 ± 8.9 53.92 ± 7.0 93.02 ± 0.6 60.72 ± 5.5 93.02 ± 0.7 75.18 ± 6.9 87.53 ± 8.7
8 91.33 ± 9.2 82.18 ± 6.0 93.02 ± 0.8 92.36 ± 7.6 92.95 ± 5.8 91.76 ± 9.7 93.02 ± 0.9 93.02 ± 0.7
9 71.87 ± 8.1 92.27 ± 7.9 48.68 ± 6.7 93.02 ± 0.8 26.01 ± 9.0 83.02 ± 5.2 85.24 ± 7.3 86.12 ± 8.2

10 86.72 ± 0.5 66.38 ± 7.4 80.72 ± 6.4 82.60 ± 8.0 72.21 ± 9.3 77.61 ± 5.9 83.84 ± 6.8 78.68 ± 7.2
11 88.90 ± 8.6 71.71 ± 5.4 89.74 ± 7.8 77.68 ± 6.1 85.16 ± 9.0 81.80 ± 8.4 92.47 ± 0.8 81.65 ± 7.3
12 69.02 ± 6.8 69.68 ± 9.1 79.12 ± 8.2 70.36 ± 7.4 80.90 ± 5.6 81.16 ± 9.9 89.03 ± 8.7 89.71 ± 0.6
13 80.14 ± 7.6 92.31 ± 8.3 92.45 ± 0.5 91.82 ± 6.9 85.57 ± 5.7 83.20 ± 8.5 91.42 ± 7.9 85.49 ± 6.4
14 90.70 ± 8.4 81.36 ± 7.1 91.28 ± 6.2 91.71 ± 9.8 91.53 ± 5.9 93.02 ± 0.6 93.02 ± 0.7 93.02 ± 0.8
15 65.77 ± 9.6 76.63 ± 8.8 91.33 ± 0.6 89.87 ± 6.3 76.19 ± 7.5 86.48 ± 8.1 80.17 ± 5.4 88.33 ± 9.9

OA (%) 74.32 ± 1.5 73.75 ± 4.8 80.21 ± 1.9 83.05 ± 1.7 82.68 ± 1.6 83.52 ± 1.8 85.24 ± 1.9 86.50 ± 1.2
AA (%) 75.24 ± 1.4 77.92 ± 1.6 81.17 ± 2.5 84.40 ± 2.8 77.03 ± 1.7 79.39 ± 1.5 82.58 ± 1.9 85.25 ± 1.3

Kappa × 100 66.89 ± 1.2 66.71 ± 1.5 82.42 ± 1.6 81.79 ± 1.4 81.33 ± 1.8 82.27 ± 1.7 86.41 ± 1.9 85.85 ± 1.6
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4.3.2. Qualitative Analysis

Figure 3 presents the visual results of the hyperspectral image classification task on the
Indian Pines (IN) dataset. The classification results of different methods (HybridSN, 3DAES,
SSFTT, FDSSC, DCFSL, CLB, and DBDA) and the ground truth are displayed in sections a–i.
It is evident that the proposed method excels in preserving plot boundaries and minimizing
classification errors, particularly in identifying complex surfaces such as Building–Grass–
Trees–Drives and Stone–Steel–Towers. The classification results of the proposed method
are more coherent and the color blocks are more compact, indicating higher classification
accuracy and spatial continuity. For different types of crops, such as corn (Corn-notill,
Corn-mintill, Corn) and soybeans (Soybean-notill, Soybean-mintill, Soybean-clean) with
varying farming methods, the proposed method appears to distinguish more accurately
between different farming statuses. This is reflected in the classification results in the figure,
with clear color distinctions and fewer misclassifications. When analyzing large areas of
single color such as wheat fields (Wheat) and fallow fields (Fallow, Fallow-rough plow,
Fallow-smooth), the proposed method effectively reduces noise and misclassification areas,
demonstrating smoother and more consistent classification results.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Comparative analysis of hyperspectral image classification on the Indian Pines dataset:
a study of (a) original image, (b) HybridSN, (c) DCFSL, (d) 3DAES, (e) SSFTT, (f) FDSSC, (g) CLB,
(h) DBDA, (i) proposed method, and (j) ground truth.

Figure 4 displays the visualization results of the hyperspectral image classification
task on the Salinas Area (SA) dataset. The proposed method proves effective in identifying
small plots and complex boundaries, such as vineyards (Grapes), lettuce (Lettuce-4wk
to Lettuce-7wk), and Vineyard-untrained, accurately depicting the edges of plots. Com-
pared to other methods, oversmoothing is reduced, thereby better preserving the spatial
characteristics of the original features. Additionally, the results of the proposed method
are more distinct in color distinction, reducing confusion and misclassification, especially
between categories with similar colors, such as lettuce at different stages. Throughout the
visualization outcomes, objects categorized as Grapes and Fallow-plow exhibit a higher
propensity for misclassification.

Figure 5 illustrates the visualization results of the hyperspectral image classification
task on the PU dataset. When classifying urban structures such as buildings, roads, and
lanes, the proposed method produces more refined and coherent results, better preserving
the structural features of the buildings, such as metal surfaces and brick distinctions.
Furthermore, S3L effectively reduces noise, displaying a more uniform and consistent
classification. Throughout the visualization outcomes, objects categorized as Meadows and
Bare Soil exhibit a higher propensity for misclassification.

Figure 6 presents the comparative visualization outcomes for various methodologies
applied to the Houston 2013 dataset, with inaccurately classified regions delineated by
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yellow boxes. The analysis reveals that HybridSN, DCFSL, and SSFTT exhibit a higher inci-
dence of misclassifications, particularly with indistinct demarcations between Tennis Court
and Running Track areas. Both CLB and the newly introduced S3L method encounter some
classification inaccuracies within the Healthy Grass categories. Conversely, FDSSC and the
novel S3L method demonstrate superior qualitative visualization outcomes. Notably, S3L
stands out for its minimal misclassifications, distinct boundary delineations, and adeptness
at accurately classifying small-area features as well as features possessing similar spectral
signatures. Throughout the visualization outcomes, objects categorized as Stressed Grass
and Water exhibit a higher propensity for misclassification.

Figure 7 presents the visualization curves of the proposed S3L method during training
and validation on three hyperspectral datasets: IN, UP, and SA. For the IN dataset, the
initial training loss of S3L is high, reflecting the uncertainty in the initial model. As the
number of epochs increases, it eventually stabilizes around 0.2, indicating effective model
convergence, with the validation accuracy stabilizing at approximately 91%. The training
accuracy of S3L on the UP dataset approaches 100%, the validation accuracy nears 94%,
and the final training loss is close to 0.1. The performance on the SA dataset mirrors that
of the IN and UP datasets, with a similar pattern observed: the training loss significantly
decreases and levels off, with the training set accuracy nearing 100% and the validation set
accuracy approaching 93%.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Enhanced boundary discrimination in hyperspectral image classification on the Salinas
Area dataset: a study of (a) original image, (b) HybridSN, (c) DCFSL, (d) 3DAES, (e) SSFTT, (f) FDSSC,
(g) CLB, (h) DBDA, (i) proposed method, and (j) ground truth.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Urban structure classification precision in hyperspectral imagery on the PU dataset: a study
of (a) original image, (b) HybridSN, (c) DCFSL, (d) 3DAES, (e) SSFTT, (f) FDSSC, (g) CLB, (h) DBDA,
(i) proposed method, and (j) ground truth.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6. Urban structure classification precision in hyperspectral imagery on the Houston 2013
dataset: a study of (a) original image, (b) HybridSN, (c) DCFSL, (d) 3DAES, (e) SSFTT, (f) FDSSC,
(g) CLB, (h) DBDA, (i) proposed method, and (j) ground truth.
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(a) (b) (c)

Figure 7. Visualization of S3L method performance on hyperspectral datasets: (a) IN, (b) UP and
(c) SA: training and validation metrics analysis.

4.4. Ablation Experiment

To validate the effectiveness of each proposed module, we designed several sets of
ablation experiments. In Experiment 1, the spectral transformer module was replaced
with the standard transformer module (Exp 1) to evaluate the performance of the standard
transformer in processing hyperspectral data. In Experiment 2, the GRU module (Exp 2)
was removed to analyze its contribution to the order dependence of captured spectral
features. No pretraining was performed in Experiment 3 (Exp 3). The experimental results
are displayed in Table 8.

Table 8. Comparison of ablation experiment results (UP, IN, SA datasets). The best performing results
are shown in bold.

Experimental UP IN SA

OA (%) Kappa OA (%) Kappa OA (%) Kappa

Full 94.64 0.9354 93.5 0.925 91.8 0.910
Exp 1 91.2 0.905 90.3 0.895 88.5 0.880
Exp 2 92.7 0.920 91.8 0.910 89.9 0.895
Exp 3 87.3 0.865 86.5 0.850 84.7 0.835

When replacing the spectral transformer module with the classic transformer module,
performance deteriorates on all datasets. OA on the UP dataset dropped to 91.2%, and
Kappa dropped to 0.905; on the IN dataset, OA dropped to 90.3%, and Kappa dropped
to 0.895; and on the SA dataset, OA dropped to 88.5%, and Kappa dropped to 0.880. This
demonstrates the critical role of the specialized design of the spectral transformer in process-
ing hyperspectral data for the overall performance of the model. Classic transformers, while
effective in various tasks, may not be as proficient as spectral transformers in capturing
complex spectral dependencies in hyperspectral data.

In the experiment of removing the GRU module, although the performance decreased,
the impact was less than that of Experiment 1. The OA on the UP dataset is 92.7% and
the Kappa is 0.920; the IN dataset has an OA of 91.8% and a Kappa of 0.910; and the SA
dataset has an OA of 89.9% and a Kappa of 0.895. This result illustrates the important role
of the GRU module in the model, especially in capturing the order dependence of spectral
features. However, the model can still maintain good performance even without the GRU
module, indicating that other components (such as the spectral transformer) also play a
significant role in the model.

The experimental results without pretraining performed the worst on all indicators.
On the UP dataset, OA dropped to 87.3%, and Kappa dropped to 0.865; on the IN dataset,
OA dropped to 86.5%, and Kappa dropped to 0.850; and on the SA dataset, OA dropped
to 84.7%, and Kappa dropped to 0.835. This significant performance drop underscores
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the importance of the pretraining phase. Pretraining allows the model to learn robust
feature representations without labeled data, providing a solid foundation for the fine-
tuning phase.

5. Conclusions

This paper introduces a self-supervised learning algorithm, S3L, based on the spectral
transformer for HSI classification. The S3L algorithm operates in two stages: pretraining
and fine-tuning. During the pretraining stage, a mask mechanism is employed to learn the
spatial representation of HSI, and spectral features are modeled through the spectral trans-
former module. In the fine-tuning stage, labeled data are utilized to optimize pretraining
weights and enhance classification accuracy. Additionally, a GRU layer is integrated into
the algorithm to strengthen the sequence dependence of spectral features. Experimental
results on multiple datasets demonstrate that the S3L algorithm performs commendably
when labeled samples are limited and is competitive with current advanced methods.
Future work will explore the application of S3L in a broader range of remote sensing data
classification tasks and further optimize the algorithm structure.

While the proposed method has demonstrated remarkable performance, it is not with-
out its limitations. Compared to convolutional neural networks (CNNs), the self-supervised
learning (S3L) approach, which leverages the transformer architecture, encounters certain
deployment challenges. Primarily, the intricate self-attention mechanism inherent to trans-
formers demands substantial memory during inference, posing significant demands on
hardware resources. Additionally, the scarcity of hardware platforms capable of accelerat-
ing transformer models represents another critical issue that needs addressing. Moving
forward, our research will focus on developing a lightweight transformer architecture and
exploring hardware acceleration capabilities for transformer-based models. Furthermore,
the training, fine-tuning, and testing processes have been confined to a single dataset.
Future efforts will aim to extend these processes across diverse datasets, enhancing the
method’s adaptability and robustness.
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