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Abstract: Underwater detection faces uncomfortable illumination conditions, and traditional optical
images sensitive to intensity often cannot work well in these conditions. Polarization imaging is a
good solution for underwater detection under adverse lighting conditions. However, the process of
obtaining polarization information causes it to be more sensitive to noise; serious noise reduces the
quality of polarized images and subsequent performance in advanced visual tasks. Unfortunately,
the flourishing low-light image enhancement methods applied to intensity images have not demon-
strated satisfactory performance when transferred to polarized images. In this paper, we propose
a low-light image enhancement paradigm based on the antagonistic properties of polarization pa-
rameters. Furthermore, we develop a dual-branch network that relies on a gradient residual dense
feature extraction module (GRD) designed for polarized image characteristics and polarization loss,
effectively avoiding noise introduced during the direct amplification of brightness, and capable of
restoring target contour details. To facilitate a data-driven learning method, we propose a simulation
method for underwater low-light polarized images. Extensive experimental results on real-world
datasets demonstrate the effectiveness of our proposed approach and its superiority against other
state-of-the-art methods.

Keywords: polarization imaging; low-light image enhancement; underwater image enhancement

1. Introduction

Underwater optical images serve as a primary means of acquiring information in vari-
ous underwater applications such as underwater archaeology, underwater infrastructure
inspection, and marine biology research. In practical underwater detection, challenging
lighting conditions are an unavoidable obstacle. Inadequate illumination or signal at-
tenuation during propagation can lead to an insufficient number of photons received by
detectors, which results in intensity image degeneration such as brightness reduction,
contrast decrease, and the target information being drowned in noise. Especially regarding
exploring in the deep sea, additional artificial lighting may disturb marine life, even though
additional lighting is possible, light spots pose a significant challenge to imaging quality.
Inspired by mantis shrimp vision, the introduction of polarization information has made a
breakthrough in obtaining information in strongly scattering media [1]. Current low-light
image enhancement methods mostly rely on intensity and spectral information. In compar-
ison to intensity images, polarized images can still record rich object surface details such
as shape, surface roughness, and curvature even in low light or low contrast conditions.
According to Figure 1b, it is a fact that the degree of linear polarized image (DoLP) can
display target information in low-light conditions. However, it is important to note that the
overall image noise is significant, and the quality of the imaging is undeniably low, which
is attributed to the heightened sensitivity of polarization parameters to noise. Extracting
polarization information from the image involves calculating the Stokes parameters using
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intensity measurements and nonlinear calculations. This process introduces complex noise,
resulting in polarized images with substantial noise in low-light conditions. Therefore,
obtaining high-quality polarized images is crucial for enhancing underwater detection
capabilities and obtaining valuable underwater information.

(@ (b)

Figure 1. Comparison of intensity and polarized images in low-light conditions: (a) intensity image;
(b) DoLP image.

Existing efforts in low-light image enhancement mainly focus on enhancing individ-
ual intensity images and can be categorized into traditional methods and learning-based
methods. Traditional methods may suffer from inadequate or excessive enhancement, and
further amplification of noise in practical applications [2,3]. Learning-based methods [4-9]
utilize deep neural networks to extract image features from a large amount of data to en-
hance the quality of optical images in the intensity domain. However, when these methods
are transferred to the polarized images, their performance significantly deteriorates, which
is attributed to the different noise distributions of different domain images. These methods
fail to leverage the physical constraints between multiple polarized images, leading to the
loss of some physical prior information. Moreover, denoising methods in deep learning
may disrupt the original noise relationships, causing more severe degradation when cal-
culating polarization parameters. Some specialized works for polarized images exist as
well. Hu et al. [10] propose a method to simultaneously enhance intensity and polarized
images by leveraging relationships between multiple polarized images, but it still focuses
on processing in the intensity domain. In [11], a low-light enhancement method in the
Stokes domain is proposed, and it is found that the degradation of Stokes parameters
is much less severe than that of polarized images under low-light conditions. However,
directly amplifying brightness will further amplify noise. In addition, there is also no
publicly available polarization image dataset, which greatly limits data-driven methods.

To address these limitations, we propose a solution for enhancing underwater low-
light polarized images. Inspired by the work [11], we tackle the problem of polarized
image enhancement in the Stokes domain. Through extensive observation and analysis
of a substantial number of underwater polarized images obtained in real-world experi-
ments, we design a dual-branch network combining the physical priors to address the
challenges of reduced brightness and complex noise. To drive the network training, it is
necessary to obtain a substantial dataset of paired underwater polarized images. Even
with the assistance of polarization cameras, collecting a large and abundant dataset is
time-consuming and labor-intensive. There is currently no publicly available underwater
polarization image dataset. Therefore, we consider using a simulated dataset to drive
network training. Integrating both underwater degradation and low-light degradation into
polarization information in a coherent manner to create a comprehensive paired dataset
poses a significant challenge. Existing methods for low-light simulation or underwater
style transfer are mainly designed for independent images. We aim to develop a more
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realistic data synthesis pipeline without compromising the physical constraints relation-
ship between multiple polarized images. Ultimately, we generate a paired underwater
low-light polarized image dataset encompassing various water degradation scenarios and
diverse lighting conditions. To validate the generalization performance, we also set up an
underwater polarimetric imaging system, creating a real-world dataset. We then test the
performance of our algorithm on the real-world dataset, demonstrating the robustness and
effectiveness of our approach. The main contributions can be summarized as follows:

e  We propose a Stokes-domain underwater low-light polarized image enhancement
paradigm inspired by a polarization antagonistic relationship, which can effectively
avoid the damage caused by directly amplifying brightness and can restore the de-
tails by using the physical prior. To our best knowledge, this paradigm designed
according to mutual constraints of Stokes parameters is proposed for the first time
and demonstrates superior performance compared to other methods.

e Based on the proposed paradigm, we propose a dual-branch network based on an
improved autoencoder. We design a GRD feature extraction module specifically
for edge extraction, which effectively captures details and structural information at
various scales. Additionally, we incorporate a polarization loss function to further
preserve the polarization constraint relationships and prevent their disruption.

e  We construct a simulation dataset based on the underwater polarization imaging
model and a camera response function (CRF). To verify the generalization performance
of the algorithm, we build an underwater polarimetric imaging system and create a
real-world dataset. Extensive experimental results on real-world datasets demonstrate
the effectiveness of our proposed approach and its superiority against other state-of-
the-art methods.

2. Related Work
2.1. Low-Light Intensity Image Enhancement

Low-light image enhancement methods can be classified into traditional and deep
learning-based methods. Traditional methods often utilize techniques such as histogram
equalization (HE) [2], Gamma Correction (GC) [12] and the Retinex theory [13]. Histogram
equalization methods transform the low-light image enhancement task as a numerical
optimization problem, which may lead to inadequate or excessive enhancement and in-
troduce intolerable artifacts, because this method does not consider the local luminance
transformation and only considers the global adjustment. Although Gamma Correction can
perform non-linear processing on each pixel independently, this method does not consider
the relationship between the pixel and its neighboring pixels, which can lead to a decrease
in smoothness. Based on the Retinex method, it is assumed that the image has no noise
or color distortion, so it usually introduces severe noise or color distortion and requires
manual adjustment of parameters.

In recent years, deep learning methods have demonstrated remarkable performance
in the field of image processing and have also been applied to low-light image enhance-
ment. These methods can be divided into two categories. The first category of methods
uses Convolutional Neural Networks (CNNs) to learn the map from a large amount of
data from low-light images to normal images. In 2017, LLNet [4] was proposed as the
first deep learning-based method for low-light image enhancement. It employs a variant
of the stacked sparse denoising autoencoder to simultaneously enhance brightness and
denoise low-light images. In 2018, MELLEN [14] introduced an end-to-end multi-branch
enhancement network, incorporating a feature extraction module, an enhancement module,
and a fusion module to achieve low-light image enhancement. To alleviate computational
burdens, in 2018, Li et al. [15] proposed a lightweight model called LightenNet for low-light
image enhancement. Most supervised learning methods are trained on synthetic data and
exhibit poor generalization performance in real low-light conditions. In 2021, DSLR [16]
was proposed to take advantage of Laplacian pyramids in extracting multi-scale features
from images. This method uses Laplacian pyramids in both image and feature spaces
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to adjust global illumination and restore local details, effectively preserving local details
and avoiding significant color distortion. In 2022, Liu et al. [9] proposed a lightweight
Self-Calibrated Illumination (SCI) learning framework, which constructs a self-calibration
module that can quickly and effectively enhance low-light images and demonstrates out-
standing effectiveness in object detection and semantic segmentation tasks.

To address the data scarcity issue, an unsupervised learning method called Enlighten-
GAN [7] is introduced. EnlightenGAN utilizes an attention-guided U-Net as a generator,
employing a global-local discriminator to ensure enhanced results resemble real images
under normal lighting conditions. Special loss functions are designed to stabilize training.
In addition, unlike methods based on image transformation, an unsupervised deep curve
estimation network called Zero-DCE [8] was introduced in 2020. Zero-DCE treats low-light
enhancement as a curve estimation task for images, taking low-light images as input and
generating high-order curves as output. These curves are used to make pixel-level adjust-
ments to the dynamic range input to obtain high-quality images. Additionally, in 2021,
the same authors also introduced a fast and lightweight version called Zero-DCE++ [17].
This curve-based method does not require any paired or unpaired data during training and
achieves zero-reference learning through a set of non-reference loss functions. The map-
ping from images to curves only requires a lightweight network, significantly improving
computational efficiency. However, these curve transformation methods do not consider
noise influence. In 2023, Wang et al. [18] proposed a method to enhance low-light images
using the image fusion strategy. This method can automatically simulate the exposure of
each image, calculate the perceptual quality based on the contrast, saturation, and saliency
of each image, and automatically select useful pixels for fusion to obtain enhanced re-
sults. These methods that rely solely on CNNs to learn mappings lack interpretability and
theoretical justification.

The second category of methods combined with Retinex theory usually includes
multi-stage training. Firstly, different networks are used to realize the tasks of image de-
composition, illumination map adjustment, and reflection map recovery, respectively. Then,
they are connected for end-to-end fine-tuning. These kinds of deep learning methods based
on Retinex theory have stronger interpretability. In 2018, the first deep learning method
combining the Retinex theory, Retinex-Net [19], was proposed. It includes a Decom-Net
that decomposes the image into illumination and reflection maps, while the Enhance-Net
adjusts the illumination map for low-light enhancement. In 2019, Zhang et al. proposed
KinD [6], composed of a layer decomposition network, a reflection restoration network, and
an illumination adjustment network, to separately handle illumination maps and reflection
maps, enabling the training of paired images captured under different exposure conditions.
In 2021, an improved method was proposed based on KinD, named KinD++ [20], which
effectively fixes the color distortion problem in the KinD method using the Multi-scale
INlumination Attention Module (MSIA). However, these methods usually require training a
multi-stage network, and the entire training process is cumbersome and time-consuming.
In 2019, Wang et al. proposed DeepUPE [21], a single-stage method based on the Retinex
theory, which can directly predict the illumination map, avoiding the cumbersome training
of a multi-stage network. However, this method did not consider the interference intro-
duced during low-light enhancement, resulting in amplified noise during the enhancement
process and introducing additional distortion. In 2021, Liu et al. [22] proposed RUAS
(Retinex-inspired Unrolling with Architecture Search), a lightweight framework based on
the Retinex theory for optimization model establishment, using a reference-free learning
strategy to discover architectures for illumination estimation and noise removal from a
compact search space, which can be applied to different types of low-light scenes. In
2023, to suppress noise introduced during the enhancement, Wang et al. [23] proposed
a method based on the Retinex theory. The illumination map enhancement module in
this method is composed of a new feature extraction structure using depthwise separable
convolution, which reduces the size of the network parameters while compensating for
some of the shortcomings of poor brightness in dark areas. It better adjusts the brightness
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of the illumination map. The reflection map restore module, because it incorporates the
illumination map as a reference, makes the texture details of the enhanced image clearer,
suppressing noise interference. In addition, these CNN-based methods have limitations
in capturing image contextual relevance and non-local self-similarity, which are crucial
for image restoration. The recent emergence of the transformer may provide insights for
addressing this drawback. In 2023, Cai et al. first proposed a low-light image enhancement
algorithm based on the transformer called Retinexformer [24]. This method designs a
single-stage low-light image enhancement framework, with a simple training process that
can reuse contextual relationships.

While these methods exhibit excellent enhancement performance in numerous appli-
cations within the intensity domain, they are not suitable for the enhancement of multiple
polarization images. This is because their inputs are individual images, and the networks
do not need to consider the physical constraint relationships between multiple images. We
attempted to adapt these methods to multiple polarized images, but the enhanced results
introduced intolerable artifacts. Polarized image enhancement requires consideration not
only of the brightness adjustment but also of the relationships between multiple images.

2.2. Low-Light Polarized Image Enhancement

To address the challenges in enhancing low-light polarized images, Hu et al. proposed
a dedicated network called IPLNet in 2020 [10]. The network consists of two sub-networks,
RGB-Net and Polar-Net. RGB-Net generates three different channels, and Polar-Net pre-
dicts polarization information. Additionally, a polarization loss function is designed to
balance the network’s intensity and polarization features. The effectiveness of the method
is validated on indoor and outdoor datasets. While it can enhance multiple low-light polar-
ized images simultaneously, it remains limited to processing polarization information in
the intensity domain. In 2023, a study [11] analyzed the average error rate of the image radi-
ance reduction factor for polarization-related variables (including multi-angle polarization
images, AoP, DoLP, and Stokes parameters) in the polarization low-light imaging model.
The study concluded that, in low-light conditions, the degradation of Stokes parameters is
less than that of multiple polarization intensity measurements. Therefore, a new pipeline is
proposed to address low-light polarized image enhancement in the Stokes domain rather
than the intensity domain. However, this method introduces additional noise when directly
amplifying brightness and does not fully leverage the characteristics of different Stokes
parameters. Additionally, due to the low number of photons, image quality is affected
not only by reduced brightness but also by severe noise. Multiple polarization intensity
measurements obtained in low-light conditions contain noise, and polarization parameters
are derived from these measurements through a non-linear operator, further amplifying the
noise. Therefore, enhancing low-light polarized images requires specific consideration of
denoising. A method proposed in [25] is based on Principal Component Analysis (PCA) for
denoising, effectively utilizing spatial correlations among various polarization states. Key
processes involve dimensionality reduction and linear minimum mean square error estima-
tion in the transformed domain. Another novel denoising algorithm based on K-Singular
Value Decomposition (K-SVD) is presented in [26], effectively eliminating Gaussian noise
while preserving details and edges. In [27], a polarized image denoising method based on
BMS3D is introduced, showing noticeable noise removal effects and good robustness.

The non-data-driven methods have some limitations. Firstly, they assume noise to be
additive Gaussian white noise, while real noise situations are more complex, leading to
poor generalization performance on real data. Secondly, most methods rely on manually
set prior assumptions, requiring subsequent manual parameter adjustments. In 2020, a
denoising method called PDRDN, based on a residual dense network, was proposed [28].
This network considers multi-channel polarized image inputs and outputs corresponding
residual images. PDRDN outperforms traditional methods and represents the first publicly
available work on polarized image denoising based on deep neural networks. In 2022, a
CNN-based method utilizing an attention mechanism for polarized image denoising was
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introduced [29]. The attention mechanism adjusts the contributions of different channels
to extract polarization features, proving effective for training multi-channel multi-branch
networks. Another contribution of this work is an adaptive polarization loss, enabling the
network to focus more on learning polarization information.

3. Methods
3.1. Underwater Polarization Imaging Model
3.1.1. Traditional Underwater Image Model

The atmospheric scattering model is a classical dehazing model commonly used in
image dehazing [30] and some underwater image enhancement methods, as shown in
Figure 2. The irradiance I(x, y) received by the detector comes from the superposition of
the following two parts.

I(x,y) = D(x,y) + B(x,y). 1

Polarizing
filter

DoFP Camera

Figure 2. Underwater polarization imaging model.

The first source is the signal of an object, whose radiation is attenuated by absorption
and scattering in the water, generally referred to as the direct transmission D(x,y), which
can be described as the following;:

D(x,y) = L(x,y)t(x,y) 2)

where, (x,y) represents the coordinates of the pixels in the image, L(x, y) represents the
original object radiance before attenuated on the line of sight (LOS), and ¢(x, y) represents
the transmittance of the medium, which can be expressed as follows:

tx,y) =e P 3)

where, z represents the shooting distance, and p = {B(c)} is the attenuation coefficient,
which is related to the absorption and scattering effects of the water body.

The second source comes from the light that part of the ambient light is scattered
towards the camera by particles in the water, which is generally called veiling light or
backscatter signal B(x,y), which can be expressed as:

B(x,y) = As[l —t(x,y)] @

Among them, A, indicates the ambient light where the LOS extends to infinity, which
is generally related to the particles in the water and the lighting conditions. The above
model based on atmospheric imaging characteristics considers ¢(x, y) to be the same in
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forward scattering and backward scattering, which is in line with the negligible absorption
of light in the atmosphere, and can achieve better results in air dehazing, but in underwater
turbid environment, the absorption and scattering of light cannot be ignored. To better
simulate the underwater environment, we use the modified underwater imaging model
in the literature [31], in which #(x, y) in forward scatter is replaced with T”, and #(x, y) in
backscatter is replaced with T2.

TP = ¢=F7 o)z (5)

T8 = o~ Be(v)z (6)

where, B is the direct transmission attenuation coefficient, B is the backscatter trans-
mission attenuation coefficient. vg = {E,S., b, B} is affected by ambient light E, camera
response S, scene reflectivity p, water scattering coefficient b and water attenuation coeffi-
cient B.

3.1.2. Underwater Polarization Imaging Model

Given a series of multiple polarization intensity measurements, i.e., I,c(134), the
Stokes vector notation can quantitatively describe the polarization and intensity informa-
tion with four Stokes parameters. Our approach accomplishes image enhancement by
modulating the linear polarization component, whereas unlike circularly polarization light,
which has four Stokes parameters, linearly polarization light can be fully represented by
three parameters Sy, S1, Sp. The formula is as follows:

So=32(Ii+ I+ Is+ Iy)
S1=1—- 1 ()
So=I4— I

where the parameter S is the intensity image, which describes the total intensity of the
light field. The parameters S; and S, represent the difference in linearly polarization light.
DoLP describing the polarization characteristics can be calculated as.

\/S7+ 53
DoLP = +—— (8)

The pixels of DoLP are constant between 0 and 1, indicating the proportion of polariza-
tion light in the total light intensity. Figure 3 shows a diagram of the multiple polarization
intensity measurements, the Stokes parameter, and the polarization image.

(f) (8) (h)

Figure 3. Visualization of methods for describing polarization information: (a-d) images from

the dataset [32] with different polarization angles (I, I;5°, lyye, I135°); (e~g) corresponding Stokes
parameters (Sg, S1,52); and (h) DoLP image.
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Next, we will discuss the influence of polarization effects in underwater imaging mod-
els. It is worth noting that both forward scatter and backscatter contribute to polarization.
Some traditional polarization imaging methods ignore the contribution of forward scatter-
ing, which will lead to a decrease in performance. First, we assume that the illumination
of any scattered particle comes from one direction, and the parallel lines emitted from the
camera to the scattered particles are defined as a plane of incidence (Pol), then there are two
directions, parallel and perpendicular, and these two directions represent the two images
with the greatest difference according to the idea of polarization differential imaging. Then,
our above imaging model can be divided into two directions: Il and I'*+. According to
Equation (1), Il and I+ can be expressed as:

l(x,y) = D(x,y) + Bl (x, ) ©)

I (xy) = D*(xy) + B-(x,y). (10)
Similarly, the total intensity of the obtained irradiance can be expressed as:
I(xy) =11(x,y) + I (xy). (1)

Then, D and B in the imaging model can also be represented as:
D(x,y) = Dl(x,y) + D* (x,y) (12)

B(x,y) = Bl (x,y) + B*(x,y). (13)

Similarly, DoLP, denoted as P in the formula, can be expressed as follows (we assume
that IH(x,y) > I (x,y)):

_ ) - xy) M) - (xy)
P(xl y) 1l (x,y) n IL(x,y) i (14)
Dl(xy) =D (x¥)  pl(x,y)— D" (x,y)
Pp(x,y) = DH(x,y) N DL(x,y) = D (15)
ey - Bleoy) B (xy) _ Bl(xy)- B (xy)
) e B e ] "

Since the scattered light is partially polarized in the perpendicular direction of the Pol,
P, Pp and Pg are not less than zero. In [33], it is pointed out that the polarization properties
P of transmitted light depend on the material properties of the scene objects (e.g., surface
textures), and that objects in the same semantic segment tend to have similar material
properties. Thus, P is spatially varied, while Pp and Pp are in the same semantic segment,
and Pp is approximately uniform, while Pp can be seen as spatially homogeneous, and the
Pp can be simulated according to the semantic information S.

To calculate the polarization information, it is necessary to obtain multiple polarization
intensity measurements; the principle is to place a polarizer in front of the camera, when
the polarization angle is &, according to Marius’s law, the captured polarization image I,

can be calculated as:
I I-(l—P-cos(Z(a—GH))) -

2
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where, GH = {GTH—N (x,y,0) } denotes the direction of the polarizer, i.e., the optimal trans-
mission components of the parallel Pol. D, and B, also have:

b D. (1PD.COZS(2(0¢9|))) s
b B. (1—133 .co;(2<rx—9|>)) .

From the above equation, it can be deduced:
I.P=D-Pp + B-Pgp (20)
which means that D and B are determined by P, Pp, Pg. According to Equation (21):

. D .- Pp+B-Pg

p
I

(21)
P can be easily calculated. Once P is obtained, we can calculate the I, of the polarized
image according to Marius’s law.

3.2. Polarization-Based Low-Light Image Enhancement Pipeline

Most of the existing underwater low-light image enhancement methods are processed
in the intensity domain, which only rely on the intensity information, and the introduction
of polarization information can improve the imaging performance in low-light scenes.
There are two main problems in the existing deep learning intensity domain methods to
deal with polarization images, one is that the noise distribution of polarization images
is more complex than intensity images, and directly amplified brightness may introduce
new noise influences, and the independently designed denoising module in the network
often assumes that the noise is Gaussian white noise, which is not good for complex
polarization images. Second, the input of the network is often an individual image in
a scene, relying on the network to learn the feature distribution of the image, which
does not apply to multiple polarization images in the same scene, and the independent
processing of multiple images by the network will destroy the polarization constraint
relationship and introduce additional interference and noise (this can be verified from the
experimental results in Section 4.3.1). Therefore, the underwater low-light polarization
image enhancement method needs to study how to better combine the network design
to extract polarization information and achieve high-quality underwater low-light image
enhancement based on not destroying the polarization relationship. Our goal is to obtain
high-quality DoLP. Inspired by [11], the degree of degradation in the Stokes domain is
smaller than that intensity domain under low-light conditions, so we can solve the problem
in the Stokes domain instead of the intensity domain.

Using the network to learn the mapping between Stokes parameters independently
will destroy the polarization constraint relationship, and we hope to further explore how
to enhance the Stokes parameters in the same scenario without breaking the polarization
relationship. Through a large number of experimental observations, we have stumbled
upon different characteristics of the physical properties of the Stokes parameter. For the low-
light enhancement task, after directly magnifying the brightness by 10 times, as shown in
Figure 4, Sy is less affected by noise, and although most areas in 51 and S, are degraded by
noise, their edges are less affected, which can provide rich detailed structural information.
This is due to the differential antagonistic mechanism calculated 5; and S,.
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Low_light §

xX10

(a) (b) (©)

Figure 4. (a) Sy is not sensitive to noise, and the degradation is similar to an intensity image,
(b,c) S; andS; have an antagonistic relationship.

Inspired by the observation, we propose a Stokes-domain underwater low-light po-
larized image enhancement paradigm based on the physical characteristics of Stokes
parameters. The Stokes parameters S;c (1 2} are obtained from the multiple polarization
intensity measurements I, (134 utilized in Equation (7). We aim to enhance S;c (12}
to obtain high-quality DoLP. Two independent branch networks are used to enhance
SpandS » separately. The Brightness Adjustment Network is designed for Sy focusing on
improving brightness, while the Detail Enhancement Network inputs S; and S; to focus on
enhancing edge details by using their antagonistic relationship. Then, the curve(-) obtained
by the Brightness Adjustment Network is used to adjust the brightness of the enhanced
S12;, and this adaptive adjustment of brightness effectively reduces the noise introduced
by directly amplifying the brightness. The polarization loss Ly, is further utilized to
constrain the maintenance of polarization relationships. The overall framework of our
polarization-aware low-light image enhancement algorithm is illustrated in Figure 5.

Son = fea(So1), curve = So,— Sy (22)
S12; = foE(S12)) (23)
S1,0;, = curve(S12;). (24)

Figure 5. The overall framework of the proposed polarization-aware low-light underwater image
enhancement algorithm.
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3.3. Polarization-Based Low-Light Image Enhancement Network
3.3.1. Brightness Adjustment Network

The Brightness Adjustment Network based on the Retinex is designed. The Retinex
theory posits that the observed image is composed of an illumination map I(x,y) and a
reflectance map R(x,y). I(x,y) capture ambient lighting information, and R(x, y) describe
the intrinsic properties of the target, which should remain consistent under any brightness
conditions. The Brightness Adjustment Network comprises the Layer Decomposition
Module (LD), the Reflectance Restoration Module (RR), and the [llumination Adjustment
Module (IA). Specifically, LD is responsible for decomposing the input Sy into a reflectance
map R(x,y) and an illumination map I(x,y), RR addresses degradation issues, and IA
adjusts brightness. The design of the Brightness Adjustment Network is inspired by [19]
and the network structure is shown in Figure 6.

Figure 6. The architecture of Brightness Adjustment Network.

Layer Decomposition Net. The layer decomposition network consists of two branches,
corresponding to the reflectance and illumination map, respectively. We divide the dataset
into Sp; and Sp;, based on the exposure information, representing low-light and high-
light images, respectively. The decomposed reflectance map and illumination map are
represented as [R;, R;,| and [I}, I;]. Recovering two components from an image is a highly
undetermined problem, so we designed three loss functions to constrain the similarity of
R;, I; and Sy;. LED represents the loss of reflection component consistency, to constrain the
consistency of the reflection component R; pairs of images.

LD = ||R,— Ry (25)

LD is the smoothing loss of the lighting component, which is based on the assumption
of the lighting component; ideal lighting I; component should be as smooth as possible in
texture detail, and the loss function is expressed as assigning weights to the gradient map
of the [; by finding the gradient R; of the reflection component, and using the reflection
component to constrain the smoothed area of the R; in the smoothing area.

L) = Zi:l,thli x exp(—AgVRy) | (26)
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LLD is the reconstruction loss, and the decomposed image should be able to be re-

assembled into the pre-decomposition image.
Ll = [1Sor= Ry x Ll + | Son— Ry x I . (27)

Therefore, the total loss function of the layer decomposition network is as follows, and
A1, A2 and Aj are, respectively, set to 1, 0.01, 0.08.
LED = M LED 4+ ApLED 4 A5LED. (28)
Reflectance Restoration Net. The network structure is a deeper U-Net structure. Since
we focus more on brightness enhancement, the loss function for RR is relatively simple,
where R represents the reconstructed reflectance maps.

LRR — ||R), — R[5 (29)

Illumination Adjustment Net. The network consists of three Conv + ReLU layers,
followed by one Conv layer with 3 x 3 kernel size and a Sigmoid layer. The loss function is
as follows, where [, n is the reconstructed illumination maps.

LA —

b= B2+ [||VH| = VL2 (30)

Finally, we use the Sg;, and the Sy, to calculate a curve(-), which will be used to adjust
the Siz ; obtained by the Detail Enhancement Network.

3.3.2. Detail Enhancement Network

Although S 5 is seriously affected by noise, it still retains a relatively complete target
edge, which can provide rich structural information. We design a gradient residual dense
feature extraction module (GRD) based on the attention mechanism, including feature
extraction blocks composed of convolutional layers to extract the features of the input image
S1, features and gradient residuals dense blocks based on the attention mechanism to
extract the edge information of S 5, which can extract deep features with rich fine-grained
detail information, and then input into the backbone to complete image reconstruction, the
backbone is represented by E, and the whole process can be described as follows:

Si = fpe(S;) = E(conv(S;)@dense(VS;)) + S;. (31)

To handle multi-scale inputs, we use two downsampling and upsampling blocks,
embedding three Denseblocks [34] in the middle to obtain more comprehensive contextual
information, and adding skip-connections to maximize the use of shallow features. The
downsampling block adopts a residual bottleneck structure [35] and introduces a channel
shuffle operation [36] to enhance the information flow. The design of the upsampling
block is inspired by Attention U-Net [37] and is used to efficiently merge high-resolution
and low-resolution features. Figure 7 shows the network structure of the Detail Enhance-
ment Network.

The Detail Enhancement Network focuses on the structural similarity between the
ground truth and the output of the network, we choose the smoothness of the total vari-
ational loss Ly, to improve the results and the gradient loss L4 to keep the structure
invariant and add L; loss and L; loss to improve the stability and generalization ability of
network training.

Ly =

Si— S, +

S2— S (32)

Ly = [[S1= 5]+ [[$2= 5[, (33)

N 2 2
Ltv(x) = NZ’ (Zh,w,c (thrl,w,c - xh,w,c) + (xh,zu+1,c - xh,w,c) ) (34)
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Lorat = Y i1 o MSE([[V (S, V(S ) (35)

where x represents the image data, which in this branch is S; », and its shapeis N x ¢ X h x w,
n is the batch size, ¢ is the number of channels, and / and w are the height and width of
the image. In addition, to better reconstruct the polarization information, we have also
introduced the polarization loss Lyq:

Lyotar = ||DSLP — DoLP|5. (36)

The total loss function is defined as follows, where A, A2, A3, A4 and A5 are, respec-
tively, set to 10, 100, 1, 100 and 20.

Lpg = ALy 4+ Ax-Ly + A3-Lyy + A4'Lgmd + AS'Lpolar' 37)

i
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Figure 7. The architecture of Detail Enhancement Network.

4. Experiments
4.1. Data Preparation

Currently, there is no publicly available underwater polarization image dataset. The
existing low-light image enhancement dataset only contains intensity information and
cannot be used to generate polarized images, and the existing polarized image dataset [32]
has only a single target in the scene, and the scene depth information is simple, as shown in
Figure 3, making it difficult to simulate the real underwater scene. Therefore, we construct
an underwater low-light polarization image dataset, including the real-world acquired
by polarization camera and simulated polarization dataset, we train the network with the
simulated data, test the performance on the real-world dataset, and compare it with other
advanced methods.

4.1.1. Simulation Dataset

According to the underwater polarization imaging model introduced in Section 3.1.1
above, we use the scene depth map z to restore the real underwater scene as much as
possible. B2 and B2 can be obtained using the following formula:

)\2 _

Se(A)p(M)E(d, e PMzdp

BP = In| —-1 c(A)p(A)E( } . -
2 Se(A)p(AE(d, A)e PN E+A2)d
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The ambient light E and B* are related to the superficial and optical properties (AOPs)
and intrinsic optical properties (IOPs) of water, and the data of AOPs and IOPs can be
obtained from related studies [38], and the camera response S;(A) can also be obtained
in [39], in which we set p to 1, and use CIE D65 as the surface light.

For the simulation of polarization information, through the analysis in Section 3.1.2
above, we need semantic segmentation labels S to generate reasonable Pp and Pp. Therefore,
our raw dataset needs to meet the following two conditions:

(1) Clear image L(x,y) with depth map z. Using Equation (1), we can generate I(x,y) by

simulating ﬁCD , ,Bf and Ae. ﬁCD , ﬁf settings refer to [31]. A is in [0.85, 0.95].

(2) Paired semantic segmentation labels S. We can generate reasonable Pp based on

semantic information, generate Pp from S. Pp = f(S) (in [0.025, 0.2]), Pp (in [0.05, 0.4]).

Cityscapes-DBF [40] is widely used in scene understanding and semantic segmen-
tation tasks. It is composed of high-resolution images of multiple cities in Germany, the
dataset covers a variety of weather conditions and urban environments, and each image is
divided into labeled and unlabeled parts, and the labeled part provides pixel-level semantic
segmentation labels, covering categories such as roads, buildings, vehicles, pedestrians, etc.
It is convenient for us to use semantic information to assign similar polarization properties
to objects in the same semantic segment.

Most of the low-light image simulation methods simulate the noise impact of the real
low-light environment by adjusting the brightness of the image and then adding noise.
To get as close to the real world as possible and not break the polarization constraint
relationship, we use the polarization camera response function (CRF) to simulate the
low-light images. Since the images acquired by the polarization camera have different
polarization directions, it is necessary to acquire CRF separately for each polarization
direction. Polarization images taken from four angles are used as baseline images, and CRF
based on luminance values are obtained from these baseline images. The synthesis process
is shown in Figure 8.

Py
Mﬂ 1 - m
L b | I

Figure 8. Simulation dataset synthesis process.

We select 2975 images to simulate, and the final dataset is expanded to 14,875 groups
by cropping, each of which includes a four-angle polarization image in low light and
normal light. One group of the simulation dataset is shown in Figure 9.
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Figure 9. Example of simulation dataset.

4.1.2. Real-World Datasets

To verify the generality of the algorithm, we set up an underwater polarimetric
imaging system. In the experiment, the shooting target is placed in a water tank with a size
of 50 x 27 x 30 cm3, and we use a Divide of Focal Plane (DoFP) Hikvision monochrome
polarization camera (MV-CH050-10UP) (Hikvision, Hangzhou, China) to acquire polarized
images with a spatial resolution of 2048 x 2448. The experiment uses active illumination,
and the polarization state generator (PSG) generates linearly polarization light through an
LED light source with a linear polarizer (extinction ratio 1000:1, diameter 50.8 mm). The
experimental setup is shown in Figure 10. Both the polarization camera and the PSG are
fixed on a tripod to ensure that the relative position remains unchanged throughout the
shooting process.

Figure 10. Underwater polarimetric imaging system.

The polarization camera can acquire four polarization images of different angles
(Ioo s Itse Igg°, I135°) at one time, which is due to the polarization camera’s CMOS sensor
integrating four angle polarizers into one sensor. The internal structure of the polarization
camera is shown in Figure 11. Shooting four polarization images at different angles at once
avoids the error caused by rotating the polarizer.
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MMM 77772 %%%,

(Il
—\\
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Demosaiced image

Figure 11. The principles of polarization camera imaging.

To facilitate the subsequent experimental evaluation, we change the camera exposure
time to make image pairs with pixel alignment. A long exposure time means that the
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camera’s sensor can receive more photons, and the normal-light image is used as ground
truth, while a short exposure time means that the camera’s sensor receives fewer photons,
resulting in a low-light image. In this way, we can obtain the corresponding ground truth
for each low-light image. To reduce the influence of noise, we collect five images for each
scene and keep other camera parameters unchanged except for the exposure time for each
shot. Then, we calculate the average value as the ground truth. We select 300 groups of real
data, and an example of the dataset is shown in Figure 12.

Figure 12. Real-world underwater polarization datasets with different illumination.

To simulate the real water environment, we analyzed the characteristics of various
scattering particles and finally chose to simulate the underwater scattering medium by
adding different amounts of milk to clean water. We then recorded images with degen-
erative polarization information in the scattering environment after uniform diffusion of
the milk. Furthermore, to ensure the diversity of the dataset and analyze the influence of
the polarization characteristics of different materials, we select different materials objects,
including metal, plastic, paper, wood, glass, resin, etc. The metal target’s polarization
characteristics are the most obvious, and we also arrange targets with different materials in
the same scene to verify the proposed method’s robustness. Examples of acquired datasets
for different targets are shown in Figure 13.

Figure 13. Real-world underwater polarization dataset with different material targets.
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4.2. Training Details

We used the simulation dataset to train the network and selected 32 sets of data with
different turbidity and polarization characteristics in real-world underwater polarization
dataset as the test dataset. To speed up network training and enrich the dataset, we crop
all images in the training dataset to the size of 256 x 256 and expand the cropped data by
flipping and rotating. We implement the network using PyTorch and train it for 400 epochs
with a batch size of 8. The network optimizer uses the Adam (Adaptive Moment Estimation)
optimizer (default parameters 51 =0.9, B2 = 0.999 [41]). The Adam optimizer adaptively
calculates different learning rates by comprehensively considering the mean and variance
of the loss gradient, and limits them to a certain range, so that the update of network
parameters is more stable, simple calculation is efficient, and the memory requirement is
low. We run all the experiments on an NVIDIA 3090Ti GPU.

4.3. Qualitative and Quantitative Analysis

Considering that there are two main problems faced by low-light polarization image
enhancement, brightness enhancement and noise removal. Therefore, in this section, we
compare our method with the low-light enhancement method and the denoising method
on the real-world dataset, respectively.

4.3.1. Qualitative Analysis of Final Results

For the denoising method, we chose the traditional denoising method BM3D [27] and
the learning-based method Noise2Noise [42]. For both methods, we use two enhancement
solutions, one is to denoise the DoLP directly, naming as BM3D_1 and Noise2Noise_1,
and the other is to denoise the Stokes parameter and then calculate the DoLP, naming as
BMB3D_2 and Noise2Noise_2. The experimental results of the denoising method are shown
in Figure 14. BM3D and Noise2Noise are both blind denoising methods, and the BM3D
method needs to select the noise type, and the results given here are the best results obtained
by our artificial parameter tuning. The results of BM3D_1 and Noise2Noise_1 are better,
and the results of BM3D_2 and Noise2Noise_2 are very bad, which seriously damages the
structural stability and introduces unbearable artifacts. This is because the blind denoising
methods will introduce new interference with denoising. The result obtained by the first
method is also unable to recover target information, and the denoising effect is not good,
because the DoLP’s noise obtained in the low-light situation is very complex, a variety of
noise models are mixed, and most of the existing denoising methods assume that the noise
is following the Gaussian distribution, which is obviously not suitable for the situation of
low-light acquisition of polarized images.

Figure 14. Visual comparison on real-world dataset among denoise approaches: (a) ground truth;
(b) input; (c¢) BM3D_1; (d) BM3D_2; (e) Noise2Noise_1; (f) Noise2Noise_2; and (g) ours.
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For the low-light enhancement method, we select eight intensity domain low-light
enhancement methods, including Retinex-Net [19], MBLLEN [14], KinD [6], Enlighten-
GAN [7], DSLR [16], ZeroDCE [8], RUAS [22], SCI [9] and a polarization low-light enhance-
ment method Polar [11]. For metal targets with obvious polarization such as coins and
rulers, the experimental results are shown in Figure 15. It can be seen from the results that
Retinex-Net, MBLLEN, and EnlightenGAN have excessive enhancement, and MBLLEN
and DSLR have serious structural distortion. This is due to the lack of guidance from
polarization constraints, and the direct enhancement of the S; and S, will amplify the noise,
which will be further amplified by nonlinear calculations. Although the KinD method
remains stable, the overall noise is still very serious. Although the ZeroDCE, RUAS, and
SCI methods maintain good structural integrity overall, the effect of observing image
detail recovery is not good, because there is no specific detail information extracted for
polarization parameters. In summary, the intensity domain method enhances multiple
images of the same scene in isolation, resulting in poor structural stability and poor image
detail recovery. Polar, the polarization domain method, performs well in structural stability
but is slightly inferior to our method in detail recovery and brightness adjustment. Our
method achieves the best results in terms of both noise reduction and brightness recovery
compared to other methods.

(€3]
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Figure 15. Comparison of metal target enhancement results: (a) input; (b) ground truth; (c) Retinex-
Net; (d) MBLLEN; (e) KinD; (f) EnlightenGAN; (g) DSLR; (h) ZeroDCE; (i) RUAS; (j) SCI; (k) Polar;
and (1) ours.

For targets with different polarization materials in the same scene, such as plastic
chips and metal coins, the experimental results are shown in Figure 16. Retinex-Net,
MBLLEN, KinD, EnlightenGAN, and DSLR have introduced obvious semicircular artifacts,
in which MBLLEN and DSLR both have blurred edges and distorted overall structure,
while ZeroDCE, RUAS, SCI methods maintain overall structure, but only have a good
recovery effect on metal target coins with obvious polarization, and the “scale” recovery
effect of details is not obvious. The polarization enhancement method Polar is not as good
as our method for recovering the edge details of the scale and plastic chips, and our method
is more balanced for different polarization materials.

4.3.2. Qualitative Analysis of Intermediate Results

To further demonstrate the effectiveness of our proposed dual-branch network design,
we provide intermediate results for the dual-branch network. For the Brightness Adjust-
ment Network, we compare it with the above low-light enhancement methods. Figure 17
shows the intermediate result of parameter Sy.
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Figure 16. Contrast of multiple polarization materials target enhancement results: (a) input;
(b) ground truth; (c) Retinex-Net; (d) MBLLEN; (e) KinD; (f) EnlightenGAN; (g) DSLR; (h) ZeroDCE;
(i) RUAS; (j) SCI; (k) Polar; and (1) ours.
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Figure 17. Contrast of Sy intermediate enhancement results: (a) input; (b) ground truth; (c) Retinex-
Net; (d) MBLLEN; (e) KinD; (f) EnlightenGAN; (g) DSLR; (h) ZeroDCE; (i) RUAS; (j) SCI; (k) Polar;
and (1) ours.

It is worth noting that there is no standard definition of “ground truth” for low-light
enhancement methods, therefore, we do not calculate quantitative evaluation indicators.
The “ground truth” shown in the figure is just used to illustrate that under superior
brightness conditions, real-world images have different brightness distributions. From the
experimental results, many low-light enhancement methods aim to improve the overall
visual effect and achieve brightness balance, such as Retinex-Net and ZeroDCE balanced
different brightness distributions, although visually it looks more balanced, but destroys
the brightness distribution relationship, which will interfere with the calculation of Stokes
parameters. This is because low-light enhancement methods are fundamentally different
from our purpose of brightness enhancement. The goal of intensity domain low-light image
enhancement methods is to obtain the result of visual pleasure, but the purpose of our
brightness enhancement is only the intermediate process, the goal is to restore the three
Stokes parameters to calculate high-quality DoLP, so this part of the purpose is to restore
better brightness distribution, rather than get the optimal balanced visual effects. KinD and
EnlightenGAN introduced the artifacts in the process of brightness enhancement, there are
also obvious artifacts in the final results shown in Figures 15 and 16. In detail, the MBLLEN
method and DSLR method fail to restore details well, resulting in a structural collapse in
the final results. RUAS method, SCI method, Polar method, and our method can adaptively
adjust brightness for different exposure regions.



Remote Sens. 2024, 16, 1134

20 of 24

Next, we continue to discuss the intermediate result of the Detail Enhancement Net-
work. First, we need to emphasize that in our proposed paradigm, the purpose of the
Detail Enhancement Network is to restore the edge information of parameters S; and Sp
rather than brightness recovery. Figures 18 and 19 show the enhanced results of S; and
Sy, respectively. From the results, the purpose of the intensity domain low-light image
enhancement method is to obtain better brightness improvement. It can also be seen from
the results that they perform well in terms of their purpose, but considering only the
restoration of brightness without considering the constraint relationship between different
parameters will lead to the destruction of polarization information in the final results. The
overall brightness can be restored, but the DoLP obtained by calculation loses important
detailed structural information. As for the Stokes-domain low-light image enhancement
method, Polar also focuses on restoring the detailed structural information of S; and S, but
from the results in Figures 18 and 19, we can see that thanks to the design of our gradient
residual dense feature extraction module (GRD), we have better restoration of edge infor-
mation, with a more complete overall contour. In particular, it can be seen from Figure 19
that although the overall noise is severe, both the “scale” and coin’s edge information
can be well restored. This enables us to achieve the best enhancement performance in the
final results.

(®
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Figure 18. Contrast of S; intermediate enhancement results: (a) input; (b) ground truth; (c) Retinex-
Net; (d) MBLLEN; (e) KinD; (f) EnlightenGAN; (g) DSLR; (h) ZeroDCE; (i) RUAS; (j) SCI; (k) Polar;
and (1) ours.
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Figure 19. Contrast of S, intermediate enhancement results: (a) input; (b) ground truth; (c) Retinex-
Net; (d) MBLLEN; (e) KinD; (f) EnlightenGAN; (g) DSLR; (h) ZeroDCE; (i) RUAS; (j) SCL (k) Polar;
and (1) ours.



Remote Sens. 2024, 16, 1134

21 of 24

From the discussion of the above intermediate process results, we prove that the
proposed Stokes-domain underwater low-light polarized image enhancement paradigm
is very effective. The dual-branch network realizes different functions, respectively. Com-
pared with the intensity-domain low-light image enhancement method, we define different
enhancement tasks that are proven to be very effective. Compared with the Stokes-domain
enhancement method, the special network module designed can better realize the bright-
ness adjustment task and the target edge restoration task, proving the superiority of our
network design.

4.3.3. Quantitative Analysis

We aim to recover high-quality DoLP in the low-light underwater environment, and
the purpose of the restoration is to improve the brightness and detail information of the
image, mainly from the structural stability and image detail recovery evaluation method
performance. Therefore, we select PSNR (Peak Signal to Noise Ratio) and SSIM (Structural
Similarity Index) [43] as the evaluation index [44]. SSIM is used to quantify the structural
similarity between two images, and PSNR is used to measure the quality of the enhanced
image. Since the recovery effect of the denoising method is too poor, the calculated PSNR
and SSIM values have no reference value, so we only show the comparison results of the
low-light enhancement method. We calculate the average of PSNR and SSIM in the test
set, and the results of the real-world experimental are presented in Table 1, from which we
can see that our results are superior to all other methods in terms of PSNR and SSIM. Polar
obtains inferior results.

Table 1. Quantitative comparison on real-world datasets. The best results are bold-underlined.

Metrics Retinex-Net MBLLEN KinD EnlightenGAN DSLR
PSNR? 9.8347 5.7199 10.2895 14.4324 6.7146
SSIM?T 0.2041 0.1516 0.2718 0.2410 0.2446
Metrics ZeroDCE RUAS SCI Polar Ours

PSNR? 17.2694 15.8941 17.0511 20.9472 24.9282
SSIM?T 0.1992 0.3799 0.2938 0.3241 0.4674

4.4. Ablation Study

To demonstrate the effectiveness of the individual components of our method and the
effectiveness of our proposed paradigm based on Stokes parameters constraint design, we
perform a series of ablation studies, the results of which are shown in Figure 20.

b) 0

Figure 20. Comparison of visual results of ablation experiments: (a) input; (b) Single-Branch; (c) w/o
GRD; (d) w/o Lyojqr; and (e) full method.

First of all, we compare with the model of estimating parameters Sy, S; and S, with a
single branch to verify the effectiveness of our proposed paradigm, which is denoted as
Single-Branch, and the experimental results show that the image brightness recovery effect
of Single-Branch enhancement is not ideal, and the detail recovery effect is not good, even if
we design a very effective feature extraction module, it still cannot maintain the stability of
the structure, and it needs to rely on the constraints of polarization relationship to recover
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the structural details well. Secondly, we remove the gradient operator and chunk-self-
attention module in the gradient residual dense feature extraction module, and only use
the dense connection, which is denoted as w/o GRD, and the experimental results show that
the edge discontinuity occurs, which proves that the complete feature extraction module
proposed can extract the edge information in the polarized image well. Finally, we also
verify the significance of the loss function by removing the polarization loss function Ly,
which is denoted as w/o Lyoiar, and the experimental results of removing the polarization
loss constraint are average in detail recovery. The corresponding quantitative evaluation
indicators are given in Table 2, and the results of the ablation experiment show that our
complete model achieves the best performance.

Table 2. The results of the ablation study. The best results are bold-underlined.

Metrics Single Branch wlo GRD wo Lyo1ar Full Method
PSNR?T 22.8461 21.8611 22.0593 24.9282
SSIM? 0.3392 0.3146 0.3166 0.4674

5. Conclusions

In this work, we propose a Stokes-domain underwater low-light polarized image
enhancement paradigm based on the physical characteristics of Stokes parameters found in
experimental observations and design a dual-branch network based on the paradigm. To
drive the network training, we also propose an underwater low-light polarization image
simulation method and construct a simulation dataset containing various water types and
scene information. To verify the effectiveness and robustness of our method, we set up
an underwater polarimetric imaging system and test the performance of our algorithm
on the captured real-world dataset, and the experimental results prove that our method
achieves the best performance. We also demonstrate the effectiveness of our proposed
components and the effectiveness of our design based on the physical properties of the
Stokes parameters through a series of ablation experiments. Our work provides a new
way to study low-light polarization imaging enhancement. Of course, our work still has
some shortcomings, which are currently limited by our research equipment which can
only acquire gray images. In the future, this work will also be extended to the field of
color polarized images. In addition, we will further explore the possibility of polarization
imaging in more scenarios and continue to explore how to combine polarization prior
information in the network to achieve better detection results.
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