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Abstract: The aim of this study is to predict and map winter wheat yield in the Parvomay municipality,
situated in the Upper Thracian Lowland of Bulgaria, utilizing satellite data from Sentinel-2. The
main crops grown in the research area are winter wheat, rapeseed, sunflower, and maize. To
distinguish winter wheat fields accurately, we evaluated classification methods such as Support Vector
Machines (SVM) and Random Forest (RF). These methods were applied to satellite multispectral data
acquired by the Sentinel-2 satellites during the growing season of 2020–2021. In accordance with
their development cycles, temporal image composites were developed to identify suitable moments
when each crop is most accurately distinguished from others. Ground truth data obtained from
the integrated administration and control system (IACS) were used for training the classifiers and
assessing the accuracy of the final maps. Winter wheat fields were masked using the crop mask
created from the best-performing classification algorithm. Yields were predicted with regression
models calibrated with in situ data collected in the Parvomay study area. Both SVM and RF algorithms
performed well in classifying winter wheat fields, with SVM slightly outperforming RF. The produced
crop maps enable the application of crop-specific yield models on a regional scale. The best predictor
of yield was the green NDVI index (GNDVI) from the April monthly composite image.

Keywords: Sentinel-2; crop mapping; machine learning; yield prediction; vegetation indices;
winter wheat

1. Introduction

The agricultural sector is one of the economic sectors with the greatest impact on land
use worldwide, with around 1.2–1.5 billion hectares currently occupied by agricultural
crops [1]. To meet the projected human population growth and increasing food demand,
the historical rates of increase in production must continue [2]. However, the increase in
agricultural production must be accompanied by a sustainable management of agricultural
areas, which will stop or at least slow down the negative environmental impacts on water
and soil resources, greenhouse gas emissions and biodiversity losses [3]. It is worth
noting that agriculture is among the main drivers of climate change and environmental
pollution, but it is also the most vulnerable economic sector to climate change itself [4]. Since
the end of the last century, with the development of earth observation and information
technology, methods for obtaining and evaluating crop growth information based on
remote sensing, geographic information system (GIS), and crop growth models have
become increasingly popular in scientific studies and are useful in the decision-making

Remote Sens. 2024, 16, 1144. https://doi.org/10.3390/rs16071144 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16071144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4821-8231
https://orcid.org/0000-0002-6248-0148
https://doi.org/10.3390/rs16071144
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16071144?type=check_update&version=2


Remote Sens. 2024, 16, 1144 2 of 20

process in agriculture [5–7]. Agricultural fields can be identified and monitored using
crop-specific spectral, temporal and spatial features derived from satellite imagery [7,8].

The necessity for crop type mapping and yield prediction is paramount in the context
of global food security and sustainable agricultural practices. These tasks play a crucial
role in several areas: (1) Food security: Accurate and timely crop yield predictions are
essential for ensuring food security. They allow for effective planning of food production,
distribution, and consumption, and enable proactive measures against potential food short-
ages [9]. (2) Agricultural management: Crop type mapping and yield prediction inform
decision making in the agricultural sector, from choosing which crops to grow for maxi-
mum yield considering factors like temperature, rainfall, and area, to managing resources
efficiently [10]. (3) Environmental sustainability: these tasks contribute to sustainable
agricultural practices by enabling the monitoring of crop health and growth, which can
lead to the optimization of resource use and minimization of environmental impact [11].

Satellite imaging has proven to be a highly effective tool for crop type mapping and
yield prediction. Recent studies have demonstrated the value of this technology in these
areas: (1) Wide coverage: satellite images provide extensive geographical coverage and
high temporal frequency, making them a convenient choice for monitoring and forecasting
at both national and regional scales [12]. (2) Advanced techniques: the use of deep learning
techniques with remote sensing data has shown remarkable success in crop mapping and
yield estimation [11]. (3) High accuracy: studies have shown that satellite imagery, com-
bined with machine learning algorithms, can predict crop yields with high accuracy [13,14].
(4) Time-series analysis: satellite imagery allows for time-series analysis, which is robust
regarding irregular imaging intervals and can substantially help yield prediction at large
scales [14].

GIS has the function of processing and analyzing geographic data and is widely
applied in many fields, including agriculture [7,15,16]. Crop growth models provide an
important means of quantifying agricultural production. They can simulate physiological
processes such as crop growth stage, organ formation, biomass accumulation, yield, and
the relationship between physiological processes and the environment [7,17]. Land cover
and land use analysis has been identified as a key component in global climate change
research, as well as in various environmental and agricultural research applications [18].
The extraction of such information increasingly relies on satellite-borne remote sensing,
primarily because it offers a cost-effective means of surveying vast land areas with varying
spatial and temporal resolutions to meet specific research requirements. One of the pri-
mary approaches for extracting such information via remote sensing is the classification of
multispectral satellite images. In recent decades, satellite image classification, especially
non-parametric approaches (machine-learning-based algorithms), has gained increasing
importance in remote-sensing-based applications [19]. Classifiers using neural networks
also represent a non-parametric approach and avoid some of the problems faced by the
parametric methods. Another non-parametric approach is Support Vector Machines (SVM).
The theoretical basis and mathematical formulation of the method can be found in Vap-
nik [20]. It has shown its effectiveness for land cover classification tasks with high accuracy.
A non-technical overview of SVM and an in-depth review of its remote sensing applications
are provided in the work of Mountrakis et al. [21]. The Random Forest (RF) classifica-
tion algorithm is a non-parametric machine learning algorithm widely used in remote
sensing in recent years [22]. The RF method is an ensemble classifier that uses a set of
classification trees to make a prediction [23]. Depending on the number of variables used at
each stage, there are univariate and multivariate decision trees. One-dimensional decision
trees have been used to develop global-scale land cover classifications [24]. Although
multidimensional decision trees are often more compact and can be more accurate than
unidimensional decision trees, they involve more complex algorithms and, as a result, are
affected by a range of algorithm-related factors [24]. In recent decades, the integration of
remote sensing observations and crop growth models has been recognized as a promising
approach for crop growth monitoring and yield estimation [25]. The use of accurate and
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timely information to monitor crop growth and to predict yield through earth observation
helps farmers to adapt farm operations and optimize work processes, thus reducing the
risk of crop loss and production costs [26,27]. Timely information on yields and production
is critical for optimizing agricultural processes. Due to its large coverage and temporal reso-
lution, Sentinel-2 satellite images have been a source of valuable information for forecasting
and yield assessment at national and regional scales. Sentinel-2 enables data acquisition
every 3–5 days [28,29], therefore providing good capability for timely spatial and temporal
assessments of different crop variables, being essential for effective and precise crop man-
agement [30]. For example, vegetation indices derived from Sentinel-2 imagery allowed
for the development of several winter wheat yield assessment/forecast models with good
accuracy [31].

Crop type mapping and yield prediction, while seemingly distinct, are intrinsically
linked and mutually informative in the context of precision agriculture. Crop type mapping
provides essential information about the spatial distribution of different crops within a
field or region [32]. This information is crucial for yield prediction as different crops
have different growth patterns, resource needs, and yield potentials [33]. On the other
hand, yield prediction models often rely on crop-specific parameters that are derived from
crop type mapping. For instance, the spectral signatures of different crops captured in
satellite images, which are used for crop type mapping, can also indicate crop health and
growth stage, which are key inputs for yield prediction [32,33]. Therefore, combining
these two tasks can lead to more accurate and comprehensive insights for agricultural
management [11,32,33].

The aim of this study is to predict and map the winter wheat yield in the Parvomay
municipality, located in the Upper Thracian Lowland, utilizing satellite data from Sentinel-2.
This yield map will be further used as input data for the calculation and analysis of the
water productivity on a regional level. In order to create a yield map, the following research
stages were carried out:

1. Classifying and mapping the main crop types in the study area. For that purpose,
different classification algorithms were built, and their performance was compared
over different crop growth seasons.

2. Modeling and mapping winter wheat yields in the study area. The winter wheat fields
were identified using the crop mask created from the best-performing classification
algorithm. Yields were predicted with regression models calibrated with in situ data
collected in the Parvomay study area.

2. Materials and Methods
2.1. Study Area

The municipality of Parvomay is situated in the southern part of Bulgaria (Figure 1).
The area falls within the catchment basin of the Maritsa River, which crosses the northern
part of the municipality. In this part of its course, the Maritsa River flows through the Upper
Thracian Lowland. Most of the study area is characterized by low relief and an altitude of
120–300 m above sea level. The elevation increases to 800 m above sea level towards the
Rhodope Mountains in the south of the study area. The municipality of Parvomay falls into
the transitional continental climate subzone of the temperate climate zone. The average
annual temperature is 12.7 ◦C, with positive values even in the coldest month of January.
The annual rainfall is averaged around 518 mm. The greatest share of rainfall is in the
spring–summer period, followed by rainfall periods in the autumn months. The major soil
types observed in the territory according to the WRBSR 2002 soil classification are Fluvisols,
Planosols, Vertisols, Chromic Luvisols, and Salic soils. The territory of the municipality
has a surface of 534 km2 and more than two thirds are occupied by agricultural fields.
Agricultural vegetation is dominated by winter wheat, sunflower, alfalfa, grasslands and
maize. Other crops, such as vegetables, industrial crops, perennial crops, and vineyards,
occupy smaller surfaces and contribute to the diversity of the agricultural landscape.
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Figure 1. (A) Study area location, Parvomay municipality, in Bulgaria. (B) Sentinel-2 April 2021
composite image over Parvomay municipality (band combination = B11, B5, B4). (C) High-resolution
image (from Bing Maps) of the winter wheat field where yield data were collected showing the
locations of the sampling plots.

2.2. Crop Type Identification
2.2.1. Crops Reference Dataset

Reference data for the crops sown in the study area in 2021 were obtained from the
Integrated Administration and Control System (IACS) and its Land Parcel Identification
System (LPIS). The IACS/LPIS dataset is an annually updated crop layer generated by the
Bulgarian Ministry of Agriculture, Food, and Forestry. It is a vector dataset containing the
borders of agricultural parcels (arable fields, grasslands, and permanent crops) accompa-
nied by attributive information about the crop/land cover type in each parcel according to
the declarations submitted by farmers.

2.2.2. Satellite Imagery Dataset and Pre-Processing

In this study, for the purpose of crop type identification, the Sentinel-2 surface re-
flectance (Level-2A) dataset was used. This dataset is available in Google Earth Engine
(GEE) platform [34] and it includes images that have been corrected for atmospheric ef-
fects using the Sen2Cor Version 2.10 atmospheric correction software [35]. Two temporal
composites were created for the months of April and June 2021, covering the Parvomay
municipality. Additionally, a single multitemporal image was generated by stacking these
composites together. These time periods were set because of the image availability and
because of the crop phenology in the transitional continental climate subzone, where win-
ter wheat and rapeseed are the first crops to emerge among other crops in March–April.
Sunflower and maize are developing later in May–June, respectively; the April compos-
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ite targets the identification of winter crops and the June composite targets the summer
crops’ identification.

Images with a cloud cover of less than 10% were chosen for the analysis and creation
of image composites. Clouds, cloud shadows, and saturated or defective pixels were
masked using the information from the scene classification map (band ‘SCL’ of the GEE
dataset). The 20 m resolution SCL band was available following the Sen2Cor Level-2A
pre-processing. Pixels classified as vegetation, bare soils, water, or dark areas in the ‘SCL’
band were selected for subsequent processing. The spectral bands ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’,
‘B7’, ‘B8’, ‘B11’, and ‘B12’ were retained for further analysis, with their original resolutions
of either 10 or 20 m. To create a cloud-free and data-gap-free image mosaic over the defined
area, the median of available observations within each pixel was calculated for each one-
month period. This compositing approach was widely applied in recent research [36–40].
These two 9-band monthly composite images were then exported in 16-bit unsigned integer
GeoTIFF format with a 10 m resolution and an “EPSG:32635” reference system. A single
18-band multitemporal image was generated by stacking these two composites together.

2.2.3. Classification Procedure

Three classification scenarios were investigated to analyze the potential for mapping
crops in different phonological periods during the growing season and to examine the
utility of multitemporal satellite data. These scenarios were numbered 1 to 3 according to
the input dataset for classification, namely the monthly composites of April, and June, as
well as the stacked 18-band multitemporal composite image. The classification schemes for
the three scenarios are shown in Table 1. The classes in each scheme differ because of the
different crops present in the field at different times during the growing season.

Table 1. Lists of the classes considered for each of the three classification scenarios and the corre-
sponding numbers of pixels used for training of the classifiers (see the text for details regarding the
generation of the training samples).

Scenario 1—April 2021 Scenario 2—June 2021 Scenario 3—Multitemporal
(April and June 2021)

Class Pixels Class Pixels Class Pixels

Winter wheat 1000 Sunflower 1000 Winter wheat 1000
Alfalfa 1000 Alfalfa 669 Sunflower 1000

Pastures/meadows 415 Pastures/meadows 400 Alfalfa 1000
Winter

rapeseed 835 Maize 1000 Pastures/meadows 532

Other crops 1000 Other crops 1000 Maize 1000
Winter rapeseed 1000

Other crops 1000

In Scenario 1, the classification was focused on the main winter crops in the study
area, ‘winter wheat’ and ‘winter rapeseed’, as well as two grassland classes, ‘alfalfa’ and
‘pastures/meadows’. These classes represented the main agricultural land covers in April
when all other fields, which have to be sown with summer crops, were still in bare soil
conditions with minimum vegetation cover. The ‘alfalfa’ and ‘pastures/meadows’ were
considered permanent land covers through the growing season, similarly to the other
two scenarios.

The analysis conducted under Scenario 2 involves employing the monthly composite
of June as input. It adopts a similar legend to that used previously, with a shift in focus from
winter crops to the primary summer crops, such as ‘sunflower’ and ‘maize’. Since winter
crops are not harvested in June and their canopies have typically matured and dried by this
time, distinguishing between different types of winter crops based on spectral information
becomes challenging. Consequently, a broader class labeled as ‘other crops’ was introduced
to encompass all types of winter crops.
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Finally, the analysis under Scenario 3 explored the feasibility of mapping both winter
and summer crops in a unified classification process by integrating spectral data from both
April and June. The multitemporal classification approach, where two or more images
registered during the growing season are classified as a single dataset, has been utilized
before [41,42], yielding good results due to the ability of such data to capture phenological
variations of crops. The same reasoning was applied to Scenario 3, but we tested the
possibility of using monthly composite images rather than single images. Table 1 provides
details on the classes considered for each of the three classification scenarios, along with
the corresponding numbers of pixels used for training the classifiers (see the text for details
regarding the generation of the training samples).

For each scenario, training and validation datasets were prepared based on the
IACS/LPIS database. The procedure for each case involved the following steps. Ini-
tially, utilizing the existing attributive information from LPIS for crops, each polygon
was re-labeled according to the legend specified in the respective classification scenario.
Subsequently, the polygons were randomly split into equal portions for training and val-
idation purposes. To eliminate mixed pixels at field boundaries, a 20 m inward buffer
was applied to the training polygons. Random points within the training polygons were
generated using QGIS software version 3.47, with a minimum distance of 20 m between
each point, and a target of 1000 points per class was set. In most instances, the desired
number of points was achieved; however, in a few cases, particularly due to the small
area of training polygons, this target could not be met. The actual numbers of training
points utilized for each scenario and class are detailed in Table 1. Finally, the vector files
containing the training dataset (comprising points) and the validation dataset (comprising
polygons) were rasterized with the same geo-referencing system. A raster, aligned with
the satellite imagery, was acquired, maintaining a resolution of 10 m and matching the
projection, extent, and coordinates of the origin vector point. Likewise, a validation raster
was created by rasterizing the validation polygons.

The classifications were conducted using EnMap-Box v3.5. [43,44]. Two supervised
machine learning algorithms were applied, namely Random Forest (RF) and Support
Vector Machine (SVM). Both methods are supervised machine learning algorithms which
can deal with both regression and classification problems [20,45]. They were extensively
reported in recent years for classification of land cover/land use in the context of remote
sensing [21–23,46]. The machine learning python package Scikit-learn was used to perform
the classifications [47]. The following settings were used for the SVM classifications: the
kernel type was radial basis function (‘rbf’); and the values of kernel coefficient Gamma and
the regularization parameter C were optimized using a grid search 5-fold cross validation
with the following tested values C [0.01, 0.1, 1, 10, 100, 1000, 10,000] and Gamma [0.0001,
0.001, 0.01, 0.1, 1, 10, 100]. Five folds were selected for the cross validation, as this value
was recommended by James et al. [48].

The default parameter values were used for parameterization of the RF except for
the number of trees, which was set to 500 [23]. We did not tune the number of trees
parameter because a study by Kwak and Park [49] has shown that the error rate stabilizes
far before the value of 500. In addition, the RF classifier does not overfit as more trees
are added [45]. During the classification process, the IACS/LPIS dataset served as a
mask to restrict the analysis solely to areas representing agricultural fields. The accuracy
assessment was also performed based on the information from all the pixels within the
randomly selected validation polygons. A confusion matrix was produced expressing the
number of pixels assigned to a particular class by the classifier relative to the actual class as
indicated by the validation raster [50]. Overall accuracy (OA) was used as a measure of
the general classification performance. The F1 score was used to indicate the accuracy of
individual classes,

F1 =
2 × UA × PA

UA + PA
,
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where UA is the user’s accuracy and PA is producer’s accuracy for a specific class. Details
about the calculation of OA, UA, and PA based on the confusion matrix can be found in
Congalton’s work [50], among others.

2.3. Winter Wheat Yield Modeling
2.3.1. Yield Data

Yield data collection was performed on 25 June 2021, when the winter wheat was in
technological maturing stage BBCH 99 [51]. Field samples were collected from 12 plots in an
industrial agricultural field in the borders of the study area, according to the methodology
of Shanin [52]. The sample locations are chosen after a preliminary visual examination of
the field, using NDVI images to distinguish the within-field variation. In each test plot,
plants were cut from a 0.5 × 0.5 m area. The plants in each sample were counted. The
following indicators were recorded for 25 randomly selected plants: plant height (cm); spike
length (cm); grains in the class (number); mass of the grain in the class (g); and physical
properties of grain. Using the measurements from the sampled plants, the biological yield
(t/ha) was calculated. The mass of 1000 grains (g) was determined according to the ISO [53].

2.3.2. Vegetation Indices and Yield Modeling

To address one of the research objectives in this study, specifically the generation of
a prediction model for winter wheat yield, a simple regression modeling approach was
adopted. For that purpose, vegetation indices (VI) were utilized as a predictor variable.
The VIs were calculated from Sentinel-2 images registered at the following dates: 26 March,
31 March, 10 April, 30 April, 10 May, 25 May, 9 June, and the monthly composite for
April. These images were selected because of the absence (or only minimal presence) of
clouds over the study area. A systematic shift in one-pixel was observed over the winter
wheat field in the original image from 10th of May in GEE. Therefore, this image (subset)
was exported and corrected using the ‘gdal_translate’ program [54] before extracting the
band data. To find an optimal predictor, we tested a set of VIs (Table 2) generated from
Sentinel-2 imagery.

Table 2. Vegetation indices used for yield prediction in this study.

Vegetation Index Formula Reference

NDVI (B8 − B4)/(B8 + B4) Rouse et al. [55]
OSAVI (1 + 0.16) × (B8 − B4)/(B8 + B4 + 0.16) Rondeaux et al. [56]

EVI 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1) Huete et al. [57]
EVI2 2.5 × (B8 − B4)/(B8 + 2.4 × B4 + 1) Daughtry et al. [58]
GDVI B8 − B3 Gitelson et al. [59]

CIrededge B7/B5 − 1 Gitelson et al. [60]
CIgreen B7/B3 − 1 Gitelson et al. [60]
reNDVI (B8 − B6)/(B8 + B6) Gitelson and Merzlyak [61]

greenNDVI (B8 − B3)/(B8 + B3) Gitelson et al. [62]
NDRE (B6 − B5)/(B6 + B5) Gitelson and Merzlyak [61]

The reflectance values of the spectral bands were extracted from the imagery at each of
the 12 sample plots together with the corresponding yield measurements based on the GPS
coordinates recorded on the field. This was performed in GEE using the ‘sampleRegions’
method, with the ‘scale’ argument set to 10 m (thus, all bands are resampled to 10 m before
sampling). The spectral band data were then exported and analyzed in a spreadsheet,
where the VIs and their correlation with field data for crop yield were computed.

The combination of image registration date and VI (Table 2) producing the highest
Pearson’s correlation coefficient with yield was selected as a predictor and used to fit a
linear regression model. Due to the small-yield dataset, the model was validated through a
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leave-one-out cross-validation (LOOCV). The LOOCV Root Mean Square Error (RMSEcv)
was calculated as follows:

RMSEcv =

√
1
n ∑n

i=1(yi − ŷi)
2,

where yi and ŷi are the true and predicted yield for the i-th observation, respectively, and n
is the number of observations. The predicted value for each observation ŷi was obtained by
applying a model fit to the remaining n − 1 observations. Therefore, a total of n models are
generated each using n − 1 observations for training and the remaining observation for
validation [48]. A relative error, rRMSEcv, was calculated as the percent of RMSEcv relative
to the mean yield measured in the field plots.

3. Results and Discussion
3.1. Crop Type Identification

The optimal values of the parameters C and Gamma of the SVM classifier were
determined by searching among pre-defined sets of values. The results of the grid search
procedure are shown in Figure 2, which presents the classification accuracy (F1 score) for
different combinations of parameter values. The accuracy was estimated through a 5-fold
cross validation on the training data. The best combination of Gamma and C was the same
for Scenario 1 and Scenario 3 and differed slightly for Scenario 2. The variation in the
model parameters strongly affected classification performance in all scenarios. Overall,
the accuracy varied between 0.04 and 0.91. The optimal parameter search was therefore
critically important for the SVM classifier, which was also demonstrated by Kwak and
Park [49].

Remote Sens. 2024, 16, 1144 8 of 22 
 

 

greenNDVI (B8 − B3)/(B8 + B3) Gitelson et al. [62] 

NDRE (B6 − B5)/(B6 + B5) Gitelson and Merzlyak 
[61] 

The reflectance values of the spectral bands were extracted from the imagery at each 
of the 12 sample plots together with the corresponding yield measurements based on the 
GPS coordinates recorded on the field. This was performed in GEE using the �sampleRe-
gions� method, with the �scale� argument set to 10 m (thus, all bands are resampled to 10 
m before sampling). The spectral band data were then exported and analyzed in a 
spreadsheet, where the VIs and their correlation with field data for crop yield were 
computed. 

The combination of image registration date and VI (Table 2) producing the highest 
Pearson�s correlation coefficient with yield was selected as a predictor and used to fit a 
linear regression model. Due to the small-yield dataset, the model was validated through 
a leave-one-out cross-validation (LOOCV). The LOOCV Root Mean Square Error 
(RMSEcv) was calculated as follows: 𝑅𝑀𝑆𝐸𝑐𝑣 = ∑ 𝑦 𝑦 , 

where 𝑦  and 𝑦  are the true and predicted yield for the i-th observation, respectively, 
and n is the number of observations. The predicted value for each observation 𝑦  was 
obtained by applying a model fit to the remaining n − 1 observations. Therefore, a total of 
n models are generated each using n − 1 observations for training and the remaining ob-
servation for validation [48]. A relative error, rRMSEcv, was calculated as the percent of 
RMSEcv relative to the mean yield measured in the field plots. 

3. Results and Discussion 
3.1. Crop Type Identification 

The optimal values of the parameters C and Gamma of the SVM classifier were de-
termined by searching among pre-defined sets of values. The results of the grid search 
procedure are shown in Figure 2, which presents the classification accuracy (F1 score) for 
different combinations of parameter values. The accuracy was estimated through a 5-fold 
cross validation on the training data. The best combination of Gamma and C was the 
same for Scenario 1 and Scenario 3 and differed slightly for Scenario 2. The variation in 
the model parameters strongly affected classification performance in all scenarios. Over-
all, the accuracy varied between 0.04 and 0.91. The optimal parameter search was there-
fore critically important for the SVM classifier, which was also demonstrated by Kwak 
and Park [49]. 

 
Figure 2. Results of the grid search procedure for selection of the best combination of the SVM pa-
rameters, C and Gamma. The combination with the best accuracy is underlined: (a) Scenario 
1—April 2021; (b) Scenario 2—June 2021; and (c) Scenario 3—Multitemporal (April and June 2021). 
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parameters, C and Gamma. The combination with the best accuracy is underlined: (a) Scenario
1—April 2021; (b) Scenario 2—June 2021; and (c) Scenario 3—Multitemporal (April and June 2021).

Both classification methods, SVM and RF, performed well in the identification of major
crop types, achieving an overall accuracy over 80% in all three scenarios. Slightly higher
accuracy was achieved by SVM, which outperformed RF with up to 3.1% in Scenario 3. The
class-wise accuracies (F1 scores) were also higher for SVM in the general case. Accordingly,
the results from the SVM classifications are discussed.

The crop type classification based on the April composite (Scenario 1) is shown in
Figure 3. The two main winter crops in the study area, wheat and rapeseed, were mapped
with high accuracy (F1 = 91.4% and 98.3%, respectively, Table 3), which indicates that April
is a suitable time to distinguish between these crops.
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Table 3. Accuracy measures of the Scenario 1 classification (April 2021). Accuracies reported are for
the validation set.

SVM RF

F1 Accuracy (%)
Winter wheat 91.4 90.4
Alfalfa 44.7 44.0
Pastures and meadows 74.3 70.2
Winter rapeseed 98.3 98.2
Other crops 83.2 84.4

Overall Accuracy (%)
82.4 82.1
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As shown in Figure 1B, winter rapeseed has a distinct spectral appearance in the April
composite (the bright green fields at the center of the image) due to the flowering of the
crop. This phenological feature explains the good separability between the two crops at
this time of the growing season. The low accuracy of the ‘alfalfa’ class (F1 score of 44.7%),
was led by an overestimation of the crop area at the expense of the class ‘other crops’ as
indicated by the error matrix (Table 4). A further investigation in the IACS/LPIS dataset
showed that most of the land, wrongly classified as alfalfa, was actually covered by einkorn
wheat, winter peas, vineyards, and orchards. The ‘pastures/meadows’ class is also partially
misclassified as class ‘other crops’ but to a lesser extent, leading to a moderate F1 score of
74.3%.

Table 4. Error matrix of the SVM classification for Scenario 1 (April 2021) composed using the
validation set.

Reference

Classification Winter Wheat Alfalfa Pastures and Meadows Winter Rapeseed Other Crops UA (%)

Winter wheat 432,227 3013 1069 8 51,876 88.5
Alfalfa 11,958 49,807 15,559 168 79,069 31.8

Pastures and
meadows 2434 2425 60,625 19 19,420 71.4

Winter
rapeseed 84 10 2 13,918 19 99.2

Other crops 11,065 11,039 1056 170 429,650 94.8

PA (%) 94.4 75.1 77.4 97.4 74.1
OA (%) 82.4

Figure 4 illustrates the crop type classification according to Scenario 2, using the
monthly composite of June. Sunflower, which is the most important summer crop in the
study area, was classified with fair accuracy (F1 score of 88.9%, Table 5). The accuracy
for maize, the other main summer crop, was lower (F1 score of 72.3%). This crop was
overestimated at the expense of class ‘other crops’ (Table 6). Summer crop mapping seemed
to be a more difficult task than winter crop mapping using a single monthly composite,
especially when a single June composite was used. Most of the area, misclassified as maize,
represented vineyards and orchards, but also other crops such as vegetables, cotton, and
tobacco. Similarly to Scenario 1, the classes ‘alfalfa’ and ‘pastures/meadows’ represented
a major challenge to the classification. The first is overestimated at the expense of class
‘other crops’. Part of the pastures and meadows are incorrectly classified as ‘alfalfa’ and
vice versa (Table 6).

Among the three scenarios, the classification in Scenario 3 had the highest overall
accuracy (Table 7, Figure 5). The classification was performed on the multitemporal dataset
(April and June), as this approach has the advantage that both winter and summer crops
are mapped through a single processing operation. Moreover, the accuracy for the winter
crops remained high and that for the summer crops increased in comparison with Scenario
2. The increase in accuracy was more important for the ‘maize’ class, which had a 13.3%
higher F1 score in Scenario 3 compared with Scenario 2. The two grassland classes, ‘alfalfa’
and ‘pastures/meadows’, also increased their accuracy. However, the ‘alfalfa’ remained
poorly recognized (F1 score of 65.5%) even though an increase of 10.4% compared with
Scenario 2 was observed. The reason, as in the other scenarios, was the overestimation
at the expense of class ‘other crops’ (Table 8). The high classification accuracy achieved
using the multitemporal data is in agreement with previous studies which demonstrated
the utility of using monthly Sentinel-2 composites. For instance, a study by Hernanedez
et al. [63] mapped 31 land cover and crop classes with good accuracy using 12 monthly
composites in a 1.2 Mil. ha study area in Portugal. Similarly, Khuong et al. [64] used
seven intra-annual median monthly composites from Sentinel-2 to map land cover and
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crop classes in two study areas in the USA, achieving an overall accuracy of 83% and 94%,
respectively.
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Table 6. Error matrix of the SVM classification for Scenario 2 (June 2021) composed using the
validation set.

Reference

Classification Sunflower Alfalfa Pastures and Meadows Maize Other Crops UA (%)

Sunflower 295,247 5935 1489 3484 29,522 88.0
Alfalfa 17,604 59,596 19,436 3689 34,317 44.3

Pastures and
meadows 959 12,555 56,560 220 10,759 69.8

Maize 9311 1518 927 80,734 39,015 61.4
Other crops 5477 2255 3129 3746 525,473 97.3

PA (%) 89.9 72.8 69.4 87.9 82.2
OA (%) 83.2

Table 7. Accuracy measures of the Scenario 3 classification (multitemporal). Accuracies reported are
for the validation set.

SVM RF

F1 Accuracy (%)
Winter wheat 92.1 91.1
Sunflower 91.2 90.8
Alfalfa 65.5 56.6
Pastures and meadows 78.0 68.7
Maize 85.6 81.6
Winter rapeseed 98.0 98.4
Other crops 68.7 63.1

Overall Accuracy (%)
85.6 82.5

Table 8. Error matrix of the SVM classification for Scenario 3 (multitemporal) composed using the
validation set.

Reference

Classification Winter
Wheat Sunflower Alfalfa Pastures and

Meadows Maize Winter
Rapeseed

Other
Crops UA (%)

Winter wheat 430,920 3690 1293 871 713 32 25,515 93.1
Sunflower 10,940 325,679 3141 996 3820 19 8617 92.2

Alfalfa 4226 11,270 51,783 9789 2019 246 14,720 55.1
Pastures and

meadows 1358 730 2920 56,753 362 11 10,053 78.6

Maize 4222 6361 413 108 85,866 0 5706 83.6
Winter

rapeseed 16 3 1 0 0 10,736 28 99.6

Other crops 21,199 13,073 4501 4765 5117 76 124,192 71.8

PA (%) 91.1 90.3 80.8 77.4 87.7 96.5 65.8
OA (%) 85.6
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The two machine learning methods used in the present study have become the stan-
dard choice when classifying remote sensing imagery in recent years as they are relatively
simple and implemented in many software packages. However, other methods, like deep
learning, are under constant development and have shown promising results [65]. Such
models may lead to further increases in crop mapping accuracy; however, their complexity
may be forbidding. Alternative approaches, such as hierarchical classification, may also be
considered for crop mapping. For instance, a first level of classification may extract winter
and perennial crops in the study area, while other agricultural areas may be classified in a
second level of classification discriminating between summer crops.

Both the SVM and RF classification methods demonstrated strong performance in
distinguishing major crop types, although SVM notably achieved slightly higher accuracy
compared to RF, in terms of higher class-wise accuracies (F1 scores) and overall accuracies
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in all three scenarios. In Scenario 1, the winter crops are distinguished with very high
accuracy (F1 score for winter rapeseed > 98%). In early spring, the winter crops are in the
early development phase and their identification with high accuracy during this period
is of crucial importance because it allows farmers to make early season management
decisions in the event of possible disturbances, which can be detected with remote sensing
methods [11]. While many classification methods prioritize prediction accuracy, it is equally
crucial to consider the timeliness of predictions. Making decisions early can significantly
impact time-sensitive activities, such as agricultural management. [66]. European countries
utilize land parcel identification systems (LPISs) based on remote sensing data and farmers
declarations for crop distribution data. However, most developing nations lack similar
systems, hindering precision agriculture development. Establishing parcel-level crop
mapping systems is crucial for timely adjustments and an accurate allocation of agricultural
resources [67].

3.2. Winter Wheat Yield Modeling

The correlations between yield and VIs were strongly dependent on the time of image
acquisition (dates of registration) throughout the growing season, as observed in Figure 6.
With few exceptions, the tested VIs were not significantly (α = 0.05) correlated with yield
for the images collected on 26 and 31 March. This is not unexpected because winter
wheat was still in a tillering growth stage at that period in time. The correlations became
significant starting from registration on 10 April. The highest correlations were observed
for the registration on 30 April (up to r = 0.82 for greenNDVI). The correlation coefficients
started to decrease gradually from May and the beginning of June. Figure 6 also shows
the correlation coefficients for the monthly composite of April. It is interesting to note
that the correlations for that composite are comparable to those based on the 10 April and
30 registrations. This consistency suggests that one can use VIs computed from a monthly
composite instead of single-date registration without losing prediction capability. This can
be of particular importance for application over larger areas where a single cloud-free image
covering the entire study area may not be available, thus making temporal compositing the
only solution. Notably, the highest correlation for the April composite was achieved again
by using the index greenNDVI (GNDVI).

The data from Figure 6 reflect the agro-climatic conditions and winter wheat growth
situations through vegetation indices for the period, as the average daily temperatures for
the month of March were close to the multi-annual values for the area. An exception was
observed for the last decade (10 days) of the month, when a strong cooling started to persist
until the second decade of April. This cooling led to a delay in the crop development, until
the middle of April, when a sharp warming began, which led to a rapid crop development
and recovery.

At the beginning of May, due to the lower volume of rainfall (54% lower than the
norm for the period), the crop began to experience temperature stress, therefore straining
its development. Abundant precipitation occurred in the last decade of May, which helped
the crop development and the crop recovery from the temperature stress and the grain
filling. A favorable temperature regime in June in addition to the rainfall at the end of May
helped the crop to enter the final stage of development, wax maturity, which is reflected by
the good correlation between yield and VIs based on the data from 9 June (Figure 6).

Based on the results from the correlation analysis, greenNDVI computed from the
April composite was selected for constructing a yield prediction model. Figure 7a shows
the fitted linear regression model where greenNDVI is the predictor. The RMSEcv of the
model was 2.1 t/ha, and the rRMSEcv was 19.4%. Figure 7b presents the measured yield
against that predicted through the LOOCV. The predicted yield was generally in good
agreement with the true yield. Figure 8 shows the map of the biological yield estimated for
the entire test field. The yield is calculated using the regression model with greenNDVI
(Figure 7a). The range of the predicted yield values showed a good agreement with the
field yield samples.
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We can deduce that the Sentinel-2 data are suitable to provide accurate estimates
of within-field yield variation, provided that ground-based yield data could be used to
calibrate the model. Also, for a better interpretation of the results, an eventual integration of
Sentinel-2 data with meteorological and soil data into the model would certainly improve
the model’s prediction capability. It should also be noted that the regression model was
calibrated with a limited number of field samples from a single test field and, therefore, the
model may generate less accurate estimates in agricultural fields with higher green NDVI
values than the calibration dataset. In the future, the model will be further calibrated with
a larger amount of data representative of the entire study area. Cavalaris et al. [31] used
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Sentinel-2 satellite data to forecast and estimate yield using vegetation indices: NDVI, EVI
NDWI and NMDI. They found that the model utilizing vegetation index EVI performed
with the highest accuracy when the input data were collected between 20 April and 31 May.
In the present study, the best results were achieved when the input data between April and
May were provided. Also, when Cavalaris et al. [31] used models based on a single date, as
well as models based on maximum seasonal vegetation index values, the achieved results
showed similar accuracy.
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As water content in wheat plays a role in grain filling and yield formation, some
authors use this variable to predict yield due to its role in grain filling [68]. They use NDVI
to predict yields. Also, NDVI is a sensitive index to specific phenological developments
and it is suitable for predicting and estimating the yields not only of wheat but also of other
autumn cereal crops [69]. Skakun et al. [29] also used NDVI to estimate yields. Both NDVI
and EVI2 have been found to be useful for yield modeling and perform well. Furthermore,
to improve yield estimation and prediction models, Zhao et al. [70] used a combination
of the peak values of several vegetation indices obtained during the growing season. In a
multivariate analysis determining the best combination for wheat yields’ prediction at the
field level, “PeakOSAVI + PeakCI” and “PeakNDVI + PeakCI” were found to be the two
combinations showing the highest correlations with the yields [70].

Yield monitoring is essential to inform and develop national food security policies
and production management strategies [71]. In addition, this type of open access data can
be used by the public sector to limit the insurance risk for insurance companies [72,73],
making the service more accessible to farmers. Satellite technologies provide opportunities
for a timely signaling of problems in crops and, accordingly, for predicting yields both at the
field level and for the whole farm. They enable farmers to make timely decisions to counter
potential problems that would have an impact on yields. Unfortunately, a large number
of farmers still do not apply this type of technology due to gaps in knowledge about their
sufficiency, expediency and the economic effect they will have on the farms [74,75]. It is
necessary for farmers to be adequately trained on how to use these technologies to improve
their productivity and income, and improve the state of the environment [76].
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4. Conclusions

This study considered some important aspects in agricultural area monitoring, namely
crop and yield mapping. Both aspects of this research were successfully carried out using
Sentinel-2 data. First, crop mapping was performed at different times of the growing
season using monthly composites. An April composite was found suitable as input data
for mapping the two main winter crops in the study area—wheat and rapeseed—achieving
an F1 score over 90% for both crops. Using a June composite, sunflower was classified
with high accuracy, while the other summer crop, maize, was more difficult to be recog-
nized. A multitemporal approach combining the April and June composites proved to be
advantageous for maize mapping, resulting in 85.6% accuracy for this crop. In contrast to
identifying the main winter and summer crops, the grasslands, represented in the study
area by alfalfa and pastures/meadows, were more challenging to accurately classify. The
multitemporal approach was useful to increase the accuracy of these two classes but the
accuracy of alfalfa identification was still low. Both machine learning algorithms used for
classification performed well, although SVM provided slightly better results than RF. The
produced crop maps allowed crop-specific yield models to be set up in order to map the
yield on a regional scale.

Moreover, this study showed that under the agro-climatological conditions in the
Upper Thracian Lowland, the data collected during the tillering growth stage were not
suitable for yield modeling. The correlation between yield and VIs increased in April and
reached its maximum for the input data collected around 30 April, when the crop entered
the phonological stage of stem elongation. For the whole study period from March to
June, GNDVI proved to be the best-performing index for yield prediction. The highest
correlation using a linear regression model was found when an April monthly GNDVI
composite was used as input data, allowing us to estimate the winter wheat yield at the
municipality level two months before the harvest.
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