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Abstract: Sea surface temperature (SST) is a key parameter in ocean hydrology. Currently, existing
SST prediction methods fail to fully utilize the potential spatial correlation between variables. To
address this challenge, we propose a spatiotenporal UNet (ST-UNet) model based on the UNet model.
In particular, in the encoding phase of ST-UNet, we use parallel convolution with different kernel
sizes to efficiently extract spatial features, and use ConvLSTM to capture temporal features based
on the utilization of spatial features. Atrous Spatial Pyramid Pooling (ASPP) module is placed at
the bottleneck of the network to further incorporate the multi-scale features, allowing the spatial
features to be fully utilized. The final prediction is then generated in the decoding stage using
parallel convolution with different kernel sizes similar to the encoding stage. We conducted a series
of experiments on the Bohai Sea and Yellow Sea SST data set, as well as the South China Sea SST
data set, using SST data from the past 35 days to predict SST data for 1, 3, and 7 days in the future.
The model was trained using data spanning from 2010 to 2021, with data from 2022 being utilized to
assess the model’s predictive performance. The experimental results show that the model proposed
in this research paper achieves excellent results at different prediction scales in both sea areas, and
the model consistently outperforms other methods. Specifically, in the Bohai Sea and Yellow Sea
sea areas, when the prediction scales are 1, 3, and 7 days, the MAE of ST-UNet outperforms the
best results of the other three compared models by 17%, 12%, and 2%, and the MSE by 16%, 18%,
and 9%, respectively. In the South China Sea, when the prediction ranges are 1, 3, and 7 days, the
MAE of ST-UNet is 27%, 18%, and 3% higher than the best of the other three compared models, and
the MSE is 46%, 39%, and 16% higher, respectively. Our results highlight the effectiveness of the
ST-UNet model in capturing spatial correlations and accurately predicting SST. The proposed model
is expected to improve marine hydrographic studies.

Keywords: sea surface temperature (SST); spatiotemporal prediction; deep learning; convolutional
neural network; U-Net

1. Introduction

Sea surface temperature (SST) is an integrated result of solar radiation, ocean thermal
and dynamical processes, and air–sea interactions, and is an important physical parameter
for the study and understanding of the oceans [1–8]. Studies have shown that sea surface
temperature anomalies in tropical seas can influence the summer Asian monsoon and
determine precipitation patterns [9]. Sea surface temperature anomalies can also act
as triggers for ENSO events [10]. In addition, SST has an impact on tropical cyclone
activity [11]. Therefore, SST prediction is an important topic in ocean research. Existing
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products provide past and present SST data, and SST projections can provide future
projections based on these data, providing an efficient and accurate complementary tool
for the short-term monitoring and forecasting of the marine environment. This is of great
practical importance for the management and protection of marine ecosystems, for early
warning of marine hazards and for supporting shipping and offshore operations. However,
SST is affected by a variety of factors such as heat flux, radiation, and ocean currents, so the
accurate prediction of SST remains a challenge.

SST prediction methods have witnessed a notable improvement in accuracy in recent
years [12–25]. Current methods for predicting SST can be categorized into two groups [26].
the first are numerical methods and the second are data-driven methods. The numerical
methods are based on physical conditions and processes, using mathematical models such
as partial differential equations to describe the variations of sea surface temperature [27].
The method is not only more complex, but also requires multiple factors affecting the ocean
surface temperature as inputs. Data-driven methods include traditional statistical methods,
machine learning, and deep learning methods, etc., and such models learn patterns of sea
surface temperature variation directly from data. The prediction of sea surface temperature
is usually solved as a time series problem. Examples include support vector regression
(SVR) [28] and multi-layer perceptrons (MLP) [29]. With the development of deep learning,
it has evolved from the original RNN to improved networks such as long short-term
memory (LSTM) and gated recurrent unit (GRU). These networks have been applied to
SST prediction tasks with good performance [30–37]. Among the more classical ones,
Zhang et al. [38] proposed a fully-connected network model based on LSTM (FC_LSTM) for
SST prediction. Xie et al. [39] proposed a GRU encoder-decoder model (GED) based on SST
code and dynamic influence link for SST prediction. Usharani [40] improved the accuracy
of LSTM-based SST prediction by introducing a new loss function in LSTM. Jia et al. [41]
predicted and analyzed SST in the East China Sea using LSTM. However, the above models
only utilize the temporal information of SST, thereby neglecting the spatial information.
This easily leads to a loss of a significant amount of important information, which impacts
the prediction accuracy. Therefore, there is a need for a model that can fully utilize the
spatiotemporal information of SST.

Recently, a newly proposed convolutional network architecture, namely the U-net
model, has demonstrated remarkable ability in analyzing spatial variability patterns [42].
UNet, as well as various extended versions of UNet, have also been applied to prob-
lems such as cloud or ocean vortex studies [43,44], but rarely to SST prediction studies.
Multi-scale convolution allows the data to be analyzed by using different sized convo-
lution kernels at the same time, enabling the model to understand the details of the
information and the larger context, helping the model to look at the data from multiple
perspectives, capturing more comprehensive information, and thus making more accurate
predictions [42,45,46]. Xiao et al. [47] applied the Convolutional LSTM (ConvLSTM) model
to the spatio-temporal prediction of the East China Sea SST, and confirmed the spatial
information processing capability and time series data processing capability of ConvLSTM.
The Atrous Spatial Pyramid Pooling (ASPP) module [48] is able to effectively understand
different features in the image ranging from small to wide by simultaneously capturing the
multi-scale information of the image using different scales of dilated convolution, which
enhances the model’s ability to capture multi-scale spatial features in the data. Based on
the content above, we propose an improved version of the UNet architecture, namely the
Spatiotemporal UNet (ST-UNet). In this model, during the encoding stage, a multi-scale
convolutional fusion block, combining multi-scale convolutional feature block with ConvL-
STM, is employed to comprehensively capture both temporal and spatial characteristics [49].
Additionally, an ASPP module is utilized at the network bottleneck to further leverage
spatial information. Finally, in the decoding stage, a multi-scale convolutional feature block
is used to generate prediction results. Through this model, comprehensive utilization of
spatiotemporal information in sea surface temperature data can be achieved. We utilize
the 13-year SST time series in the Bohai and Yellow Seas, as well as the South China Sea,
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and compare them with several representative SST prediction models. The experimental
results show that ST-UNet has the best performance.

2. Materials and Methods

In this section, we present the details of our ST-UNet model. We first introduce the
various components utilized to construct the network, and then provide a comprehensive
explanation of the entire architecture.

2.1. Data

The experimental data utilized in this study were sourced from the National Oceanic
and Atmospheric Administration (NOAA) optimum interpolation SST (OISST) dataset, ac-
cessible at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html (accessed
on 19 July 2023). The dataset includes daily, weekly, and monthly mean SST data from
September 1981 to the present. The dataset offers extensive coverage of the entire global
ocean region and is continually updated to ensure its accuracy and relevance. In the
study of this paper, we selected the daily mean SST dataset of the Bohai and Yellow
Seas (33.07◦N∼41.0◦N, 117.35◦E∼125.3◦E) and the South China Sea (12.125◦N∼19.875◦N,
112.125◦E∼119.875◦E) as the experimental dataset [50]. The area boxed out in Figure 1 is
the ocean area where the SST data were collected in the experiment. The daily mean SST for
this dataset was obtained by combining SST observations from different sources (including
satellites, buoys, ship observations, etc.) using an optimal interpolation method and a daily
mean calculation. The time span of this dataset is from January 2010 to December 2022,
with 4748 days of data and the spatial resolution is 0.25◦ × 0.25◦. Where the ground part
is the default value, we set it to 0. In our experiments, we use a total of 4383 days of data
from 2010 to 2021 to train the model. Subsequently, we evaluate the performance of the
model by testing its predictions using data for a total of 365 days in 2022.

Figure 1. The target region for sea surface temperature (SST) data in the experiment.

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
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2.2. Methods
2.2.1. Multi-Scale Convolutional Feature Block

Our block, depicted in Figure 2a, divides the data stream into parallel convolutions
with different kernel sizes and subsequently reconnects the branches. The purpose of
this design is to extract diverse features by applying multiple kernel sizes to the same
data. In this research paper, we utilize three parallel branches with 1 × 1 × 1, 3 × 3 × 3,
and 5 × 5 × 5 convolution kernels. To reduce the computational cost, we approximate
a 5 × 5 × 5 convolution with two consecutive 3 × 3 × 3 convolutions, Inspired by [51].
Next, the outputs of the various branches are concatenated and merged into a 1 × 1 × 1
convolution. Consequently, the network learns over time to favor the branch with the most
suitable kernel. Lastly, we apply the ReLU activation function to the output of this block.
This block serves as the fundamental building block in the decoding phase of our network.

Multi-scale convolutional feature block

3DConv(k=(3,3,3))

3DConv(k=(1,1,1))

3DConv(k=(3,3,3))

3DConv(k=(3,3,3))

3DConv(k=(1,1,1)) 3DConv(k=(1,1,1))

3DConv(k=(3,3,3))

Concatenate

3DConv(k=(1,1,1))

Activation

Multi-scale convolutional fusion block

2DConvLSTM(k=(3,3,3))

3DConv(k=(1,1,1))

3DConv(k=(3,3,3))

3DConv(k=(3,3,3))

3DConv(k=(1,1,1)) 3DConv(k=(1,1,1))

3DConv(k=(3,3,3))

Concatenate

3DConv(k=(1,1,1))

Activation

(a) (b)

Figure 2. (a) Multi-scale convolutional feature block. Different kernel sizes are convolved in parallel to
extract features at different scales. (b) Multi-scale convolutional fusion block. Replacing Conv3D with
ConvLSTM to capture long-term dependencies and dynamics in time series based on the previous
block. Where 3DConv stands for 3D convolution, k stands for convolution kernel size, Concatenate
stands for splicing, and Activation stands for activation function. In addition, 2D ConvLSTM with
k = (3, 3, 3) represents a 2D ConvLSTM using a 3 × 3 spatial convolution kernel with depth 3.

2.2.2. Multi-Scale Convolutional Fusion Block

As shown in Figure 2b, our block improves on multi-scale convolutional feature
block. We recognized that in order to address temporal dependencies in time series, it
is not sufficient to use only convolution. Therefore, we decided to introduce ConvLSTM
at the beginning of the branch instead of the previous convolutional layer. This choice
is based on the memory capability of ConvLSTM, which can effectively model temporal
relationships and better capture long-term dependencies and dynamics in time series.
With this improvement, our model can better model dynamic changes in features. This
block plays the role of a core building block in our network coding phase and its importance
cannot be ignored. By introducing ConvLSTM, our block is able to more fully exploit
the underlying patterns in the time series, improving the performance and modeling
capabilities of the model.

2.2.3. Atrous Spatial Pyramid Pooling (ASPP)

Atrous Spatial Pyramid Pooling (ASPP) is a mechanism capable of capturing multi-
scale information. It is realized by using multiple parallel convolutional branches. Each
branch uses the same convolutional kernel size, but with different expansion rates (6, 12,
and 18). The expansion rate is the number of intervals at which zero values are inserted
into the convolution kernel during the convolution process. By performing convolution
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operations at different expansion rates, information can be captured at different scales.
In addition to the convolution branch with different expansion rates, it also includes a
branch for extracting global context information. In this branch, the features of the entire
image are downscaled through global pooling. These global features are then merged
with the features from other branches using reshaping and upsampling operations. The re-
sulting extracted features are concatenated and combined using a 1 × 1 × 1 convolution.
A visualization of this mechanism is shown in Figure 3.

Atrous Spatial Pyramidal Pooling (ASPP)

1×1×1 conv

1×3×3 conv
6 dilatuon rate

1×3×3 conv
12 dilatuon rate

1×3×3 conv
18 dilatuon rate

image 
level 

pooling

Concat 1×1×1 conv

Figure 3. Atrous Spatial Pyramidal Pooling (ASPP) block. Different expansion rates enable the
network to extract multi-scale information in order to fully extract spatial information.

2.2.4. ST-UNet

We chose the UNet architecture as the basis of our model because it has been shown
to be very effective in solving image-to-image mapping tasks. Initially developed for
medical image segmentation purposes, the U-Net architecture shares similarities with a self-
encoder structure. The encoding stage involves a sequence of downsampling operations
aimed at extracting essential feature information. The decoder stage classifies each pixel to
reconstruct the segmented output. In our proposed encoder for ST-UNet, the multi-scale
convolutional fusion blocks alternate with pooling operations. This configuration enables
the network to effectively capture spatial and temporal dependencies within a set of 2D
images during the contraction phase. The first input dimension (temporal dimension)
is then reduced from a time step (35 in our case) to a prediction step (1, 3, and 7 in our
case, respectively). This reduction occurs before the data are forwarded to the expanded
phase. The extracted and merged features are then employed in the decoder to reconstruct
the image. In the decoder, we follow a similar structure to the encoder, using alternating
multi-scale convolutional feature blocks and upsampling. Ultimately, with this architectural
design, our ST-UNet model is able to fully utilize temporal and spatial information for
the prediction task, while maintaining the model performance at the lowest possible
computational cost.



Remote Sens. 2024, 16, 1205 6 of 16

To achieve multi-scale feature learning, we integrate the ASPP module with the
convolutional blocks at the network’s bottleneck. This strategic placement occurs at a point
where the data possesses a highly abstract representation. By adopting this approach, we
enable the network to effectively leverage and comprehend information of varying scales
from this representation, avoiding the need for larger kernels and excessive computational
resources. In addition, we apply dropout techniques at bottlenecks to motivate the network
to learn sparser data representations, reduce training time, and avoid the possibility of
overfitting. Thus, the input shape of our network is T × H × W × F and the output shape is
L × H × W × F, where T is the number of time steps (lags), L is the prediction steps, H and
W are the height and width of the image, and F is the number of features or elements, which
we consider as channels in the network. Using a prediction step of 1 as an example, we
achieve the reduction of the first input dimension by applying a convolution with a kernel
size of lags × 1 × 1 and employing effective padding. The comprehensive architecture of
our model is depicted in Figure 4.

Conv.
block

Conv.
block

T×H×W×15

Conv.
block

Conv.
block

Conv.
block

T×(H/2)×(W/2)×30

T×(H/4)×(W/4)×60

T×(H/8)×(W/8)×120

T×(H/16)×(W/16)×240

Conv.
block

ASPP

240 filters

L×(H/8)×(W/8)

L×(H/16)×(W/16)×240

Conv.
block

L×(H/8)×(W/8)×120

120 filters

L×(H/16)×(W/16)

Conv.
block

L×(H/4)×(W/4)×60

60 filters

L×(H/4)×(W/4)

30 filters

Conv.
block

L×(H/2)×(W/2)×30

L×(H/2)×(W/2)

15 filters

L×H×W

Conv.
block

L×H×W

input
(T×H×W×F)

output
(L×H×W×F)

L×H×W×15

F filters

Convolution

Concatenation

Spatial pooling

Spatial uppooling

Figure 4. The complete ST-UNet architecture. For simplicity, the multi-scale convolutional feature
block and the multi-scale convolutional fusion block are shown as different colored “Conv. block”
according to the previously shown figure. The annotations on these blocks describe the output
dimensions, where T denotes the time steps (lags), L is the prediction steps, H and W denote the
height and width of each image, and F denotes the number of predicted features or elements.

2.3. Data Processing

To promote faster convergence during training and mitigate distribution discrepancies,
we implement MaxMinScaler normalization to restrict the value range of the dataset to 0
to 1:

Xnorm =
X − Min

Max − Min
(1)

where Xnorm is the normalized value, Min is the minimum value of the data in the dataset
we used and Max is the maximum value.

2.4. Experiments Settings and Evaluation Indices

In our experimental configuration, we utilize Adam optimizer for training purposes.
The batch size is set to 64, the training epoch is set to 100, and the learning rate is set at 0.001.
To assess the performance of the model, we employ three metrics: mean absolute error
(MAE), mean square error (MSE) and coefficient of determination (R2). MAE provides
an accurate representation of the actual prediction error, while MSE is highly sensitive to
errors and effectively gauges prediction accuracy. The R2 measures the performance of
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our model in explaining the variance of the target variable in order to assess its prediction
accuracy and reliability.

MAE =
1
n

n

∑
i=1

∣∣∣ypred(i)− ytrue(i)
∣∣∣ (2)

MSE =
n

∑
i=1

(
ypred(i)− ytrue(i)

)2
(3)

R2 = 1 −
∑n

i=1(ypred(i)− ytrue(i))2

∑n
i=1(ypred(i)− ȳtrue(i))2 (4)

where ypred(i) and ytrue(i) represent predicted and actual values, respectively.

3. Result
3.1. Accuracy Analysis

The ST-UNet was compared to the CFCC-LSTM (combined FC-LSTM and convolution
neural network) model [52], GRU encoder–decoder (GED) [39] and memory graph convo-
lutional network (MGCN) [53]. To fairly compare model performance, we align the sliding
window length with the GED. Specifically, we configure the length of the sliding window
to be 35 to predict the daily average SST for the subsequent 1, 3, and 7 days. To show the
advantage of ST-UNet more clearly, we specifically indicate the best predictions in the table
by highlighting them in bold. The experimental results on the Bohai Sea and Yellow Sea
data sets are shown in Table 1. The comparison reveals that the ST-UNet, as proposed in this
paper, exhibits varying degrees of superior performance over other models across different
prediction scales, with the MGCN model following closely behind. Moreover, when the
prediction scales are 1, 3, and 7 days, respectively, the MAE of the ST-UNet is higher than
that of the MGCN model by 17%, 12%, and 2%, respectively (0.2085 vs. 0.2503, 0.3316 vs.
0.3779, and 0.5087 vs. 0.5210). To validate the reliability of ST-UNet, this research conducts
a comparative analysis of the four models mentioned earlier, utilizing the South China Sea
dataset. The experimental outcomes, which demonstrate the performance of each model,
are documented in Table 2. The findings indicate that ST-UNet continues to exhibit superior
performance compared to the other models across various prediction scales, which also
proves the generality of our model. By comparing the data in Tables 1 and 2 together, we
find that the prediction performance of all the methods seems to be better on the South
China Sea dataset than on the Bohai Sea and Yellow Sea datasets. The preliminary analysis
may be due to the fact that the South China Sea, with its lower latitude and geographic
location near the equator, is able to absorb more heat throughout the year and has relatively
less climatic variability compared to the Bohai Sea and the Yellow Sea. Therefore, the model
can relatively simply predict SST in the South China Sea.

However, when R2 is taken into account, the situation presents different characteristics.
We observe that the Bohai and Yellow Seas also show higher values of R2 despite their
higher MSE and MAE, indicating that the model is able to capture the SST variability within
this region. This phenomenon may be indicative of the fact that despite the larger prediction
errors in absolute measures, the model is still able to effectively simulate the fluctuating
trends in SST relative to the overall variability in this regions. In contrast, the South China
Sea has relatively low R2 values despite having a low MSE and MAE. This may reflect the
fact that although the model predicts smaller errors in this region, the model has limited
ability to capture these variabilities relative to the overall SST variability in the South China
Sea. This may be related to the relatively more stable climatic conditions and smaller SST
variability in the South China Sea, making even small prediction errors likely to appear
more pronounced in the calculation of R2 values.
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Table 1. Prediction results of the Bohai Sea and Yellow Sea datasets.

Model Metrics
Predictions Days

1 3 7

CFCC-LSTM
MSE (◦C) 0.1334 0.3127 0.5843
MAE (◦C) 0.2347 0.4264 0.5971

R2 (%) 99.73 99.44 98.85

GED
MSE (◦C) 0.1305 0.3113 0.5811
MAE (◦C) 0.2459 0.4012 0.6026

R2 (%) 99.74 99.45 98.86

MGCN
MSE (◦C) 0.0985 0.2517 0.5146
MAE (◦C) 0.2503 0.3779 0.5210

R2 (%) 99.78 99.49 98.95

ST-UNet
MSE (◦C) 0.0823 0.2063 0.4674
MAE (◦C) 0.2085 0.3316 0.5087

R2 (%) 99.83 99.59 99.05

Table 2. Prediction results of the South China Sea datasets.

Model Metrics
Predictions Days

1 3 7

CFCC-LSTM
MSE (◦C) 0.0714 0.1427 0.2495
MAE (◦C) 0.1778 0.2893 0.3856

R2 (%) 96.97 93.16 86.01

GED
MSE (◦C) 0.0681 0.1534 0.2619
MAE (◦C) 0.1718 0.2761 0.3646

R2 (%) 97.00 93.18 85.73

MGCN
MSE (◦C) 0.0533 0.1273 0.2230
MAE (◦C) 0.1626 0.2481 0.3383

R2 (%) 97.32 94.19 88.68

ST-UNet
MSE (◦C) 0.0286 0.0782 0.1868
MAE (◦C) 0.1192 0.2028 0.3269

R2 (%) 98.62 96.15 90.50

In order to visualize the prediction performance of the model, this study now focuses
on the SST prediction results for the onset and aftermath of specific extreme weather events
and compares these results with the true values, which are selected from a test set with
a forecast scale of 1 day. In particular, the Bohai and Yellow Seas for 15–22 September
2022 and the South China Sea for 30 October to 6 November 2022 have been selected for
in-depth analysis. These dates were chosen because typhoons will pass through during
this period. By comparing the predicted and actual values of the model, we can evaluate
the performance of the model under complex weather conditions. The comparison results
are shown in Figures 5 and 6. Since the input history length is 35 days, we visualize the
first 35 days of the initial prediction date, so the first 35 days of each prediction date are
shown in the figure. As shown in Figures 7 and 8, the red dots in the plots mark the path of
action of the typhoon on that day. The slight difference is that the typhoons in Figure 7 are
categorized into tropical storms by intensity, while those in Figure 8 are categorized into
strong tropical storms and typhoons.
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Figure 5. Visualization of SST in the Bohai and Yellow Seas predicted by four forecasting methods,
with the red dots indicating the typhoon’s path of movement on the day of the typhoon.

It is obvious from the data comparison between Tables 1 and 2 that our ST-UNet
model’s prediction performance in the South China Sea is significantly better than that in
the Bohai Sea and the Yellow Sea at a prediction scale of 1 day. This is further confirmed
by the comparative analysis in Figures 5 and 6. In particular, a careful analysis of these
two figures reveals that the ST-UNet model exhibits overall higher prediction accuracy
compared to other prediction methods, despite the differences in prediction ability in
different sea areas.



Remote Sens. 2024, 16, 1205 10 of 16

Figure 6. Visualization of SST in the South China Sea predicted by four forecasting methods, with the
red dots indicating the typhoon’s path of movement on the day of the typhoon.

However, as can be seen in Figure 6, a notable challenge we face is how to accurately
predict SST changes during the transit of tropical cyclones. SST changes caused by tropical
cyclones are extremely complex, and deep learning models still have limitations in captur-
ing this complex ocean phenomenon. Despite the challenges in predicting extreme weather
events, our ST-UNet model still outperforms existing models in SST prediction accuracy for
other time periods. This demonstrates that we have made significant progress in improving
the accuracy of deep learning for predicting sea surface temperature. In the future, we plan
to continue to optimize our model and explore new ways to improve the model’s ability to
predict extreme weather events, especially the effects of tropical cyclone transits.

In conclusion, despite the challenges in predicting SST variations during tropical
cyclones, our study still provides valuable insights into the application of deep learning in
the field of sea surface temperature prediction and points to the direction of future research.
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Figure 7. Visualization of SST in the Bohai and Yellow Seas from 11 August to 14 September 2022.

3.2. Analysis of Module

In this section, we compare four different sea surface temperature prediction models:
ST-UNet, UNet, UNet-ASPP, and UNet-Convblock. Among them, UNet refers to ordinary
3D UNet. UNet-ASPP refers to a model that is based on UNet and places an ASPP
block at the bottleneck. UNet-Convblock refers to a model that is based on UNet and
replaces normal convolution with a multi-scale convolutional feature block and multi-scale
convolutional fusion block. With these comparison experiments, we aim to evaluate the
impact of each module on the prediction performance. As in the experiments above, the past
35 days are used to predict the daily mean SST for 1, 3 and 7 days in the future, and the
bolded items in the table indicate the best prediction. The results of the experiments on the
Bohai and Yellow Sea datasets are shown in Table 3, and the results on the South China
Sea dataset are shown in Table 4. Through the two tables, it can be seen that the ST-UNet
proposed in this paper has the best effect, followed by UNet-Convblock, then UNet-ASPP,
and finally UNet. This indicates that the multi-scale convolutional feature block and
multi-scale convolutional fusion block, as well as the ASPP module are effective, and all
of them make the prediction accuracy gained to a different degree on the basis of UNet.
Among them, the multi-scale convolutional feature block and multi-scale convolutional
fusion block are more effective than the ASPP module.
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Figure 8. Visualization of SST in the South China Sea from 25 September to 29 October 2022.

Table 3. Prediction results of the Bohai Sea and Yellow Sea datasets.

Model Metrics
Predictions Days

1 3 7

UNet
MSE (◦C) 0.0918 0.2210 0.5308
MAE (◦C) 0.2205 0.3477 0.5589

R2 (%) 99.78 99.53 98.96

UNet-ASPP
MSE (◦C) 0.0901 0.2188 0.5273
MAE (◦C) 0.2172 0.3448 0.5484

R2 (%) 99.80 99.54 98.97

UNet-Convblock
MSE (◦C) 0.0876 0.2134 0.5056
MAE (◦C) 0.2149 0.3412 0.5379

R2 (%) 99.82 99.57 98.99

ST-UNet
MSE (◦C) 0.0823 0.2063 0.4674
MAE (◦C) 0.2085 0.3316 0.5087

R2 (%) 99.83 99.59 99.05
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Table 4. Prediction results of the South China Sea datasets.

Model Metrics
Predictions Days

1 3 7

UNet
MSE (◦C) 0.0309 0.0835 0.2098
MAE (◦C) 0.1250 0.2114 0.3382

R2 (%) 98.58 95.95 89.25

UNet-ASPP
MSE (◦C) 0.0292 0.0827 0.1989
MAE (◦C) 0.1223 0.2080 0.3322

R2 (%) 98.60 96.10 90.00

UNet-Convblock
MSE (◦C) 0.0291 0.0801 0.1912
MAE (◦C) 0.1210 0.2058 0.3289

R2 (%) 98.61 96.13 90.37

ST-UNet
MSE (◦C) 0.0286 0.0782 0.1868
MAE (◦C) 0.1192 0.2028 0.3269

R2 (%) 98.62 96.15 90.50

To facilitate a more convenient and visually descriptive presentation of the experimen-
tal findings in this paper, we generated plots depicting the Mean Absolute Error (MAE)
and Mean Squared Error (MSE) for the four models across different prediction intervals
(1 day, 3 days, and 7 days) for datasets from two distinct regions. These plots, as illustrated
in the Figure 9, enable a comparative analysis.

Figure 9. SST prediction results of the four models at different scales and sea areas.
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4. Conclusions

In our study, the ST-UNet model is designed to address the dynamic spatial correlation
problem that is often neglected by conventional sea surface temperature (SST) prediction
models. By fusing convolutional kernels of different sizes, ST-UNet is able to generate more
accurate feature mappings, an innovation that enables the model to synthesize different
magnitudes of surrounding information and thus capture the spatial distribution properties
of SST more effectively. Specifically, the large convolutional kernel is able to capture broader
regional information, while the small convolutional kernel is able to capture detailed
information, and this fusion strategy greatly enhances the model’s ability to sense spatial
variations in SST. In addition, we also introduce the ASPP module into the model to apply
the convolutional operations of different receptive fields in parallel.The inclusion of the
ASPP module further enhances the model’s ability to process information at different scales,
enabling ST-UNet to utilize the available spatial information in a more comprehensive way.
This design not only improves the performance of the model in dealing with static features,
but also strengthens the model’s ability to capture temporal correlations in time-series data
by incorporating the ConvLSTM module, thus realizing effective prediction of dynamic
changes in SST.

The performance evaluations conducted on the Bohai and Yellow Seas, as well as
the South China Sea SST datasets, consistently demonstrate the superior performance of
ST-UNet over other models such as CFCC-LSTM, GED, and MGCN. That results hold
true across various sea areas and prediction scales. Secondly, at the same prediction scale,
the SST in the South China Sea is easier to predict than that in the Bohai Sea and Yellow Sea.
In future studies, we will explore new methods to improve the model’s ability to predict
extreme weather events, especially the effects of tropical cyclone transits.
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