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Abstract: The normalized difference vegetation index (NDVI) can depict the status of vegetation
growth and coverage in grasslands, whereas coarse spatial resolution, cloud cover, and vegetation
phenology limit its applicability in fine-scale research, especially in areas covering various vegetation
or in fragmented landscapes. In this study, a methodology was developed for obtaining the 30 m
annual maximum NDVI to overcome these shortcomings. First, the Landsat NDVI was simulated by
fusing Landsat and MODIS NDVI by using the enhanced spatial and temporal adaptive reflectance
fusion model (ESTARFM), and then a single-peaked symmetric logistic model was employed to fit
the Landsat NDVI data and derive the maximum NDVI in a year. The annual maximum NDVI was
then used as a season-independent substitute to monitor grassland variation from 2001 to 2022 in a
typical area covering the major vegetation types in the Qinghai Lake Basin. The major conclusions
are as follows: (1) Our method for reconstructing the NDVI time series yielded higher accuracy than
the existing dataset. The root mean square error (RMSE) for 91.8% of the pixels was less than 0.1.
(2) The annual maximum NDVI from 2001 to 2022 exhibited spatial distribution characteristics, with
higher values in the northern and southern regions and lower values in the central area. In addition,
the earlier vegetation growth maximum dates were related to the vegetation type and accompanied
by higher NDVI maxima in the study area. (3) The overall interannual variation showed a slight
increasing trend from 2001 to 2022, and the degraded area was characterized as patches and was
dominated by Alpine kobresia spp., Forb Meadow, whose change resulted from a combination of
permafrost degradation, overgrazing, and rodent infestation and should be given more attention in
the Qinghai Lake Basin.

Keywords: vegetation trend analysis; alpine grassland; annual maximum NDVI; Landsat and MODIS;
Qinghai Lake Basin

1. Introduction

Vegetation is extremely sensitive to stressful environments [1], and its growth process
is shaped by significant seasonal and interannual variability [2]. Analyzing the seasonal
or interannual variation characteristics of vegetation is critical for comprehending how
vegetation interacts with global or regional climate change and evaluating alterations in
ecological environmental quality [3].

With the increasing number of multisource remote sensing satellites, the normalized
difference vegetation index (NDVI) derived from these platforms offers a more compre-
hensive and accurate representation of vegetation cover and growth status information [3].
High temporal resolution NDVI can be acquired by NOAA-AVHRR, MODIS, or SPOT
VEGETATION sensors. However, the spatial resolution of these NDVIs varies from 250 m
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to 8 km, which hinders the representation of details and their application in fragmented
landscapes [4].

The Qinghai Lake Basin (QLB) is northeast of the Qinghai-Tibetan Plateau (QTP) and
is adjacent to the Qaidam Basin. Researchers have focused on the impacts of climate change
and/or anthropogenic activities on the environment at QLB due to the advantageous
geographical location of the region, which prevents the expansion of the Qaidam Desert
into inland China [5]. Most current studies directly use multitemporal MODIS data at
moderate resolution rather than fine spatial resolution for vegetation analysis [6,7] such as
for grassland degradation or restoration [8]. Based on field experience, the degradation of
grasslands often initiates from relatively small patches [9], which do not manifest on larger
scales of pixels due to their relatively limited spatial scope [10], especially when there is an
increasing trend in the surrounding pixels. In addition, it has been confirmed that green
herb leaf cover shows a robust yearly pattern with significant fluctuations in magnitude [11],
especially in the QLB. High altitudes profoundly affect vegetation phenology [12], causing
alpine vegetation to turn green and wither within 1–2 weeks in the QLB. Despite the
advantageous features of Landsat data such as the consistency of geo- and radiometric
calibrations and the fine spatial resolution of 30 m, which have been available since the
1980s [13], there will be less comparability between bitemporal Landsat NDVIs in terms of
annual vegetation phenology variation, even if these two or more temporal scenes were
acquired on the same date [10].

The variations in the maximum value composite (MVC) of the NDVI can match well
with the state of vegetation coverage [14], and it would be feasible to assess the vegetation
status by applying season-independent analysis or a comparison of the annual maximum
NDVI per pixel. However, it is impossible to obtain the annual maximum NDVI directly
from the Landsat data by applying MVC because of the insufficient Landsat images caused
by the 16-day temporal resolution or cloud cover. Therefore, how to reconstruct a Landsat
NDVI time series and derive the annual maximum NDVI became key issues in our study.

Deriving the annual maximum NDVI involves NDVI reconstruction methods. Gener-
ally, NDVI time series reconstruction methods can be summarized into three categories.
The first is the time-based function fitting or filtering method, in which time series models
are used to iteratively fit the existing intra-annual data such as logistic function fitting [15],
asymmetric Gaussian function fitting (AG) [16], and Savitzky–Golay filtering [17]. The sec-
ond is spatial frequency domain-based methods such as harmonic analysis (HANTS) [18]
and the fast Fourier transform (FFT) [19]. The third is a hybrid method based on spa-
tiotemporal information such as spatiotemporal Savitzky–Golay (STSG) [20]. However,
the reliability of Landsat NDVI data reconstructed using the above methods without other
data sources relies heavily on the quantity of observations free from cloud cover and the
vegetation growth adhering to a pattern of constant variation [21]. In some cases, a Landsat
time series with continuous missing values may not provide satisfactory reconstruction
results [22]. Therefore, this paper developed a reconstruction method for Landsat NDVI.

Our aims were (1) to explore a technique to derive the annual maximum NDVI,
unaffected by seasonal variations, using high-resolution Landsat NDVI images in con-
junction with frequent MODIS NDVI data and (2) to explore the spatial pattern of the
annual maximum NDVI distribution in the QLB as well as its interannual variation from
2001 to 2022.

2. Study Area and Materials
2.1. Study Area

The QLB lies northeast of the QTP and is surrounded by mountains on three sides.
Spanning an area of 29,660 km2, this basin is vital in preventing the Qaidam Desert from
expanding inland. The altitude of the basin is between 3007 and 5281 m, gradually declining
from the northwest to the southeast (Figure 1). The lowest altitude occurs around Qinghai
Lake in the southeast, which represents China’s largest inland saltwater lake on the plateau.
This lake is located at an altitude of 3196 m and covers a water surface area of 4495 km2 [23].
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The Buha River stands as the longest and greatest among over 40 rivers that feed into
Qinghai Lake, contributing nearly half of the entire runoff. Moreover, the majority of these
rivers are intermittent [24].

Figure 1. Location and vegetation types of the study area.

The selected study area is located northwest of Qinghai Lake and features rolling
terrain with elevations varying from 3162 m to 4287 m. It spans approximately 2300 km2

and lies between 36◦56′16′′–37◦37′01′′N and 99◦20′37′′–99◦41′39′′E. The annual average
temperature falls between −5 and 2 ◦C, with an average yearly precipitation of 450 mm.
The Buha River courses through the southern region, eventually flowing into Qinghai Lake.
The selected region is an area covering the major vegetation types in the QLB, where Alpine
grass, Carex Steppe (accounting for 45.2%) and Alpine kobresia spp., Forb Meadow (accounting
for 39.1%) are widely distributed [25]. The remaining region consists of shrubs and water
bodies (Figure 1). Pastoralism is the main industry, with a combination of agriculture,
mainly involving yaks and sheep grazing.

2.2. Materials

A total of 88 Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational Land
Imager (OLI) views taken in 2001, 2005, 2009, 2011, 2014, 2016, 2019, 2020, and 2022 were
retrieved from the USGS archives (https://earthexplorer.usgs.gov/, accessed on 30 March
2023) due to their lower cloud coverage. The Landsat images captured the vegetation
growth period spanning from May to October in the study area.

The reflectance data in the red and near-infrared bands of the daily MOD09GQ product
and 8-day composited MOD09Q1 product, both of which offer a spatial resolution of 250 m,
were retrieved from the NASA data archive (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 30 March 2023). The MOD09GQ data spanned from 1 May to 10 October (day
of year (DOY) from 121 to 283) in the above stated 9 years, for a total of 1467 tiles, while the
MOD09Q1 data spanned from 1 May to 8 October (DOY from 121 to 281) in the same years,
totaling 189 tiles.

The 1:1 million Chinese vegetation map released by the Resource and Environmental
Science and Data Center (http://www.resdc.cn/, accessed on 30 September 2022) was
used to provide an overview of the spatial distribution of vegetation in the study area. The
digital elevation model was constructed from the publicly accessible online repository of

https://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.resdc.cn/
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the geospatial data cloud (http://www.gscloud.cn/, accessed on 30 September 2022). The
acquired dataset was ASTER GDEM Version 3 in GeoTIFF format with a resolution of 30 m.

3. Methods
3.1. Data Preprocessing

All Landsat images were from Collection 2 Level-1; L1TP are top-of-atmosphere
reflectance data that have been radiometrically and geometrically corrected and preci-
sion terrain processed. The FLAASH atmospheric correction tool provided by ENVI 5.6
software [26] was then applied to all the images to compensate for atmospheric effects.

To ensure the data quality for subsequent analysis, we used the Cloud Mask Using
Fmask Algorithm (version 3.2) to identify and exclude pixels affected by clouds and snow
cover [27,28]. Landsat NDVIs were then derived from the reflectance of the near-infrared
and red bands.

In addition, we used the MODIS Reprojection Tool (MRT) to convert the MODIS
reflectance products into the GeoTIFF format and reprojected them to the WGS84/UTM
coordinate system. Then, we calculated the MODIS NDVI values from the near-infrared
and red bands and obtained the MODIS daily and 8-day synthetic NDVI time series.
The ASTER GDEM 30 m elevation and vegetation map data were also reprojected to the
WGS84/UTM coordinate system. Finally, all datasets were extracted based on the extent of
the study area.

3.2. Landsat NDVI Time Series Reconstruction

Three procedures were needed for Landsat NDVI time series reconstruction and
Landsat annual maximum NDVI derivation. First, the MOD09GQ data should minimize
cloud contamination through noise reduction. Second, the existing Landsat and MOD09GQ
data were fused to obtain additional intra-annual Landsat simulated NDVIs. Finally, a
single-peaked symmetric logistic curve (S-logistic) was applied to fit the vegetation growth
process in each pixel and extract the annual maximum NDVI value.

3.2.1. Denoising of MODIS Daily NDVI

Despite filtering using the MOD09GQ product’s quality flag, subpixel cloud contami-
nation still occurred in a large amount of vegetation index (VI) data [29]. In contrast, there
was less cloud contamination in the generated composite product (MOD09Q1) when using
one of the collected values from the 8-day periods [30]; however, uncertainty inevitably
arises in terms of time, and the time interval between two consecutive observations can
reach a time error of 0–15 days [31,32], during which subtle short-term vegetation change
information will be lost [32–34].

To monitor rapid vegetation change events, previous studies have suggested the use of
daily VI time series [33,35]. Before using the daily NDVI for fusion, we performed pixel-by-
pixel denoising of the daily NDVI using the DAVIR-MUTCOP method [36]. This method
combines the accurate date of daily MOD09GQ NDVI and the high quality of composite
MOD09Q1 NDVI to screen out more high-quality daily NDVI, which are interpolated
to generate the daily MODIS NDVI. For a more detailed description, refer to Zeng [36].
The denoised daily NDVI was then spatially resampled to a 30 m resolution using the
bicubic interpolation method, which has been proven to produce smoother results with
reduced interpolation distortions [37]. The resampled results were subsequently used for
spatiotemporal fusion.

The date when the vegetation growth in each pixel reached the maximum value
(Maxday) was also obtained by comparing the reconstructed MODIS daily NDVI. The
Maxday was used as the initial parameter for subsequent S-logistic fitting.

3.2.2. Generating Simulated Landsat NDVI

The process of using the corresponding MODIS data to generate simulated Landsat
NDVI data based on the ESTARFM is as follows.

http://www.gscloud.cn/
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If a pair of Landsat and MODIS images are obtained at tm and another MODIS image
is obtained at tp, then the prediction pixel values in the center of the Landsat window at
tp are:

F
(

xw/2, yw/2, tp
)
= F(xw/2, yw/2, tm) +

N

∑
i=1

Wi × Vi ×
(
C
(
xi, yi, tp

)
− C(xi, yi, tm)

)
(1)

where F denotes the Landsat image, tm denotes the reference image acquisition date,
C denotes the MODIS image, W denotes the weight, V denotes the conversion factor,
(xw/2, yw/2) is the position of the window center pixel, w denotes the window size, N
denotes the number of similar pixels, and (xi, yi) is the position of the ith similar pixel.

We select two pairs of Landsat and MODIS reference images acquired at different
dates and then calculate the center pixel value of the Landsat image for a given prediction
date tp based on the above formula. The two prediction results are weighted combinations
to produce the final window center pixel value in the predicted image:

F
(

xw/2, yw/2, tp
)
= Tm × Fm(xw/2, yw/2, tm) + Tn × Fn(xw/2, yw/2, tn) (2)

where Fm(xw/2, yw/2, tm) and Fn(xw/2, yw/2, tn) denote the values of the target date tp
predicted from the values at the reference dates tm and tn, respectively, and Tm and Tn
denote the temporal weights.

Zhu confirmed that the accuracy of the predicted Landsat image values is affected by
the time interval between the reference and predicted images as well as by the inter-image
correlation between Landsat and MODIS, but there is no specific index for determining how
to select the optimal reference date image [38]. In our study, we used the phase difference
parameter proposed by Dong [39] as the selection strategy to improve the prediction result
accuracy. For convenience, we named the reference date before the prediction date the
“left” reference date and the reference date after the prediction date the “right” reference
date. The spatiotemporal correlation parameter P is expressed as follows:

P =
R1

D1
+

R2

D2
(3)

where R1 and R2 denote the correlation between the MODIS image acquired at the predicted
date and the MODIS image at the left or the right reference date, respectively; D1 and D2
denote the DOY interval between the predicted date and the left or the right reference
date, respectively. To improve the availability of the fusion results, four fusion rules are
proposed in our study as follows.

1. At most, each Landsat image in the time series should participate in the fusion once.
2. The Landsat images used in the fusion should meet the conditions that the proportion

of clear pixels in the image after Fmask 3.2 detection is more than 85%.
3. The predicted image time should be between the left and right reference image dates.
4. Combined with the MOD09GQ NDVI data, the spatiotemporal correlation parameter

showed p > 0.1.

We fused only reference images that met the above four fusion rules. The information
of the reference and predicted target images participating in the fusion each year is shown
in Table 1.
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Table 1. Reference and target image dates for each year.

Year Reference Date:
Landsat Month/Day (MODIS DOY)

Target Date:
Landsat Month/Day

2001
06/02 (152) + 06/18 (169)
07/04 (185) + 08/21 (233)
08/28 (240) + 10/08 (281)

06/10
08/02
09/04

2005
06/13 (164) + 06/29 (180)
07/15 (196) + 08/23 (235)
09/08 (251) + 09/17 (260)

06/25
07/21
09/13

2009
06/24 (175) + 07/17 (198)
07/26 (207) + 08/11 (223)
08/27 (239) + 09/28 (271)

06/28
08/05
09/22

2011

06/14 (165) + 07/07 (188)
07/16 (197) + 08/01 (213)
08/08 (220) + 08/24 (236)
09/09 (252) + 10/04 (277)

06/30
07/24
08/16
09/25

2014 06/06 (157) + 07/15 (196)
07/24 (205) + 09/17 (260)

07/04
07/31

2016
07/04 (186) + 07/20 (202)
07/29 (211) + 09/06 (250)
09/15 (259) + 10/01 (275)

07/15
08/07
09/20

2019
06/11 (162) + 07/22 (203)
08/14 (226) + 09/15 (258)
10/01 (274) + 10/17 (290)

07/05
08/30
10/09

2020
06/29 (181) + 08/09 (222)
08/25 (238) + 09/10 (254)
09/17 (261) + 10/03 (277)

07/25
09/04
09/23

2022
05/11 (131) + 07/22 (211)
07/30 (211) + 10/01 (274)
07/30 (211) + 10/10 (283)

06/17
08/19
09/14

3.2.3. S-Logistic Model Fitting

Sprouting in early spring and peaking in summer is a typical pattern of the natural
growth process of vegetation. Logistic models can simulate this growth pattern and are
extensively employed in monitoring regional and global vegetation phenology [40–43].
In our study area, an S-logistic model, improved from the four-parameter logistic model
proposed by Zhang [15], was applied to fit the Landsat NDVI growth curve. Compared
with other fitting models, the S-logistic model depicts the whole growth and decline
process of vegetation within a year with a single-peaked curve [44]. The S-logistic model is
described below.

NDVI(t) =
d

1 + ea(t−b)2+c
+ f (4)

where t is the Landsat image date, as well as the date for the predicted target image, and
NDVI(t) is the fitted NDVI at date t. The shape of the fitted curve is controlled by the
nonlinear parameters a, b, and c, where b determines the time at which the fitted curve
reaches its peak, a, c determines the inflection points and its derivative on the left and
right sides of the fitted curve, d is the growth amplitude and f is the minimum NDVI value
in winter.

Based on the available NDVIs and dates, the five parameters in Equation (4) were
assigned initial values according to the nonlinear least squares fitting solution. Importantly,
the regression parameters of the S-logistic model were not manually set based on our expe-
rience, but were estimated through iterative optimization using the Levenberg–Marquardt
algorithm [45]. This optimization process involved iteratively fitting the model to time
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series data until the criterion of minimizing the sum of squared residuals was met. When
the S-logistic model parameters were determined and the NDVI curve was reconstructed,
Maxday was brought into Equation (4) to find the NDVI maximum within the year.

3.3. Evaluation of Reconstruction Method Accuracy

According to the reconstruction curve (Equation (4)), input the DOY of the reference
date to calculate the reconstructed NDVI of each pixel and generate the reconstructed
series. The RMSE between the reconstructed and reference series on each pixel is calculated
as follows:

RMSE =

√√√√√ s
∑

t=1
(NDVIre f (t)− NDVIrec(t))

2

s
(5)

where s is the number of reference Landsat NDVI images in a year, NDVIre f (t) rep-
resents the NDVI value of the tth reference series, NDVIrec(t) is the NDVI value of
the tth reconstructed series; the smaller the RMSE, the better the performance of the
reconstruction method.

3.4. Trend Analysis

One-dimensional linear regression analysis was conducted on the NDVI, with time
serving as the independent variable. The regression coefficient (θslope) represents the
direction and magnitude of changes in the NDVI time series [46]. It can be calculated as:

θslope =

n
n
∑

i=1
iNDVIi −

n
∑

i=1
i

n
∑

i=1
NDVIi

n
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (6)

where n is the number of study years (n = 9 in this study), NDVIi denotes the NDVI in
the ith year, and θslope is the slope of the linear regression. If θslope was positive, the
NDVI showed an increasing trend during the study period; if θslope was negative, it
was decreasing.

The coefficient of variation (CV) characterizes the degree of dispersion of the time
series and measures the degree of fluctuation of the NDVI over time [47]. The CV is
calculated at the pixel scale as follows:

CV =

√
1

n−1

n
∑

i=1

(
NDVIi − NDVI

)2

NDVI
(7)

where NDVI is the mean NDVI of the n years. The larger the CV, the greater the volatility
and dispersion of the data, while the opposite is more stable.

4. Results
4.1. Validation of the Reconstructed Landsat NDVI

Figure 2 shows the Landsat reference NDVI image acquired on 8 September 2022,
which contains numerous pixels affected by cloud cover and the NDVI image processed by
our reconstruction algorithm. The overall RMSE between the two images for the cloud-free
pixels was 0.077. The reconstructed NDVI image also showed that most of the pixels in the
cloud areas were recovered and spatially matched the adjacent pixels.
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Figure 2. Comparison of the NDVI images on 8 September 2022. (a) Landsat reference NDVI image,
(b) reconstructed NDVI image.

The 2022 Landsat NDVI reference images were used to evaluate the reconstruction
model fitting performance, where n = 8. We counted the number of pixels with an RMSE
not exceeding 0.1 as 91.8%. An RMSE greater than 0.1 is mainly distributed in the cloud
shadow portion (see Figure 3) because the cloud mask processed with the Calculate Cloud
Mask Using Fmask tool in ENVI 5.6 is a binary image where cloud pixels have values of 0
and non-cloud pixels have values of 1 (Calculate Cloud Mask Using Fmask), and the cloud
shadow portion is not detected. The effectiveness of the fitted model depends largely on
whether it is consistent with the vegetation growth season trajectory [48]. In general, the
photosynthetic response of herbaceous plants fluctuates more rapidly within a cycle in
response to seasonal climate change; therefore, short-term plateau NDVI curves are more
common in grassland ecosystems [49]. Therefore, the S-logistic model is suitable for the
NDVI reconstruction of alpine grasslands in the study area, and its NDVI temporal profile
is similar to the experimental research results of Liu [48] and Jiang [50].

4.2. Vegetation Growth Fitting under Different Coverage Types

To analyze the seasonal characteristics of the Landsat NDVI curves within typical
vegetation areas, we randomly selected six pixels for different vegetation types, and Figure 4
shows the NDVI curves of various types of vegetation during the growth period. It
is obvious that different types reached their peak growth at different dates, as did the
maximum NDVI value.
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Figure 3. Spatial distribution and share of classes of RMSE in 2022.

Although phenological metrics describing the start, end, and length of vegetation
growth have been extensively studied, the date when the NDVI reaches a maximum that
corresponds to peak photosynthesis has not been well-explored. This maximum reflects
the turning point of photosynthetic dynamics from the greening stage to the senescence
stage, affecting livestock habitat and forage [51]. We analyzed the spatial distributions and
frequency distribution of the Maxday (Figure 5) and maximum NDVI values in 2022 and
found the following:

The vegetation (mainly Alpine grass, Carex Steppe) near the banks of the Buha River
generally grew at a peak of around 231, and the maximum NDVI value generally reached
only approximately 0.6, while the vegetation on the northern and southern edges of the
study area (Alpine kobresia spp., Forb Meadow) reached its peak earlier, generally around 213,
and the maximum NDVI could reach close to 0.8. The Maxday is related to the vegetation
type, and the mean values of Maxday for the different vegetation types were calculated
separately, as shown in Table 2:
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Figure 4. Landsat NDVI fitting curves of typical vegetation types. (a) Alpine kobresia spp., Forb
Meadow. (b) Subalpine broadleaf deciduous scrub. (c) Alpine grass, Carex Steppe. (d) Cultivated vegetation.
(e) Temperate deciduous scrub. (f) Temperate needlegrass arid steppe.

Figure 5. Maxday for all grasslands in 2022. (a) Spatial distribution. (b) Frequency distribution.



Remote Sens. 2024, 16, 1222 11 of 20

Table 2. Mean values of Maxday for typical vegetation types in the study area.

Vegetation Types DOY (MM/DD)

Alpine kobresia spp., Forb Meadow 213.8 (08/01)
Subalpine broadleaf deciduous scrub 212.1 (07/31)

Alpine grass, Carex Steppe 231.2 (08/19)
Cultivated vegetation 241.2 (08/29)

Temperate deciduous scrub 238.0 (08/26)
Temperate needlegrass arid steppe 246.7 (09/03)

4.3. Spatial and Temporal Patterns of Landsat NDVI Annual Maxima

Figure 6 shows the spatial distribution of the NDVI maxima from 2001 to 2022, where
the black regions are non-vegetated areas with an NDVI less than 0, anomalous areas
with an NDVI exceeding 1, or areas where the NDVI cannot be reconstructed because of
insufficient Landsat true NDVIs.

Figure 6. Spatial distribution of Landsat NDVI maxima from 2001 to 2022 and the DEM.

In comparison, the overall vegetation cover in 2005, 2014, and 2020 was greater than
that in other years. The NDVI maxima generally showed high spatial characteristics in the
north and south, with values ranging from 0.6 to 0.8, while they were low in the central
valley, with values ranging from 0.4 to 0.6.

According to our fieldwork, there are two reasons for the observed spatial differences.
The first is the topography; the central part falls within the Buha River alluvial plains,
which is used for various human activities such as railroads, highways, settlements, and
pastoral areas. In contrast, the northern and southern sides are mainly mountainous, with
fewer human dwellings and less intensive grazing. The other reason is related to the type
of vegetation present; the mountains on both sides primarily consist of Kobresia pygmaea
meadows, which are characterized by the dense growth of small, perennial herbaceous
plants thriving in cold, high-altitude areas [52]. The central part of the vegetation is mostly
Stipa purpurea steppe, whose leaves are typically linear and relatively slender and often
reach lengths of 10–20 cm. Its flowers are purple or pale purple in color and tend to grow
at the top of the plant, forming clustered inflorescences [53].

The multiyear average maximum NDVI was 0.623, but the spatial vertical zonation
varied significantly [54]. Alpine kobresia spp., Forb Meadow is located on the north and south,
and its multiyear average growing season maximum can reach 0.663. Subalpine broadleaf
deciduous Scrub was the next highest at 0.652. The values for Alpine grass, Carex Steppe and
Cultivated vegetation could reach approximately 0.590, while that for Temperate deciduous
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scrub was 0.551, and that for Temperate needlegrass arid steppe had the lowest maximum value
of 0.521. The average NDVI during the study period reflects the grass biomass capacity for
different vegetation.

The spatial distribution of the NDVI intra-annual maximum variation trends from 2001
to 2022 is shown in Figure 7a. The overall trend showed an increasing trend, with an average
of 0.0028 per year. Approximately 68% of the area exhibited either a significant increase
(θslope > 0.005) or a slight increase (0.001 < θslope < 0.005). The trend of the intra-annual
maximum NDVI decreased mostly for Alpine kobresia spp., Forb Meadow and Temperate
deciduous scrub and was characterized as patches.

Figure 7. Spatial distribution of the NDVI change from 2001 to 2022. (a) Slope. (b) CV.

Figure 7b shows the CV of the NDVI intra-annual maxima from 2001 to 2022. The
study area’s variability was mainly stable, and nearly 40% of the area was distributed
as patches in fluctuating or sharply fluctuating states. In particular, the areas in a sharp
fluctuation state were also concentrated in Alpine kobresia spp., Forb Meadow in the southwest
and northeast, and Temperate deciduous scrub on banks of the river valley.

5. Discussion
5.1. Advantages and Limits of Reconstructed Landsat NDVI

This study aimed to address the limitations of the current NDVI time series in moni-
toring grassland degradation in fragmented landscapes. Two limitations are the insufficient
spatial resolution of the NDVI series and the impact of intra-annual vegetation phenology.
To tackle these issues, this study explored a method for reconstructing a Landsat NDVI
time series and deriving the annual maximum NDVI. This method involved using higher
frequency MODIS NDVI data and combining ESTARFM and the S-logistic model.
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The S-logistic model has fewer parameters and requires fewer NDVIs to simulate
vegetation growth, which is essential in the QTP where clouds and rainfall occur frequently
during the vegetation growing season. The ESTARFM can fill in the gaps in the existing
Landsat data, but it relies on the linear principle when predicting new images while
vegetation grows nonlinearly; a typical example is at the transitional stage including
the maximum NDVI. We must propose four fusion rules to achieve a balance between
meeting the requirements of S-logistic fitting and minimizing the errors. We examined the
reconstructed results in 2022 and found that 91.8% of the RMSEs fell within 0.1 compared
with the original reference images, as shown in Figure 2.

Generally, the photosynthetic response of herbaceous plants fluctuates rapidly with
seasonal changes within a growth cycle [49], and in grassland ecosystems, photosynthesis
rarely exhibits long-term peaks in the growth phase. After reaching its maximum, it
also rapidly enters the senescence phase [48]. Alpine grass commonly experiences a
singular vegetation peak during the summer growing season, which aligns well with the
characteristics of an S-logistic curve. We used Maxday, a derivative of the MOD09GQ
and MOD09Q1 series cross-correction, as the initial value of parameter b during S-logistic
iteration. MODIS data are considered to have minimal influence from clouds, viewing
angles, and atmospheric aerosols [55,56], so using the Maxday derived from MODIS data
not only provides more accurate peak dates, but also saves time in the S-logistic fitting
iterations. Other parameters are not needed beforehand because the prediction function can
be iteratively adjusted through the existing optimization rule for the Levenberg–Marquardt
algorithm until the parameters automatically satisfy the minimum RMSE, which yields a
more flexible and stable estimation for different vegetation types.

Dong developed a 30-m annual maximum NDVI dataset for China from 2000 to
2020 [57] using Savitzky–Golay filtering to fill gaps and the generalized additive model
to smooth data [49]. The dataset was released by the National Ecosystem Science Data
Center (http://www.nesdc.org.cn/, accessed on 30 June 2023). We calculated the RMSE
between the two datasets and the actual values in the study area. Landsat NDVI on
August 9th, 2020 (DOY = 222) was used as the actual or true values to validate the accu-
racy of both datasets. First, we extracted pixel locations corresponding to Maxday when
DOY = 222 and identified 153,146 pixel locations. Then, we took the Landsat NDVI values
at these locations on August 9th as ground truths and calculated the RMSE between our
results and the ground truths as well as the RMSE between the national products and the
ground truths. The calculated values were 0.066 and 0.190, respectively. Therefore, our
data achieved higher accuracy within the study area.

However, due to the severity of the missing Landsat data resulting from cloud cover
or low-quality MODIS data during the study period, there were still a few zones where the
NDVI could not be reconstructed successfully, as shown by the outlier values in Figure 6.
In addition, as the satellite equipped with the MODIS sensor was launched in 2000, the
Landsat NDVI could not be reconstructed before 2000 by ESTARFM and S-logistic fitting.
On a larger scale, many pixels affected by clouds will inevitably appear. In light of the
data missing problem caused by cloud coverage, some methods have been proposed
to remove the effects of thick clouds such as the modified neighborhood similar pixel
interpolator (MNSPI) [58], which uses similar pixels in spatial and temporal neighborhoods
to interpolate thick cloud pixels, autoregression to remove clouds (ARRC) [59], an algorithm
to weigh the autocorrelation of long-term data and distance similarity of short-term data,
spatio-temporal tensor [60], and deep learning techniques [61].

5.2. Reasons for Spatial Characteristics and Variations in Vegetation NDVI

Our results showed that earlier vegetation growth maximum dates were accompanied
by higher NDVI maxima. For example, for Alpine kobresia spp., Forb Meadow, the maximum
NDVI values appeared at the beginning of August, while in areas with smaller NDVI max-
ima such as Alpine grass, Carex Steppe, the growth maximum dates appeared in mid-August.
Our findings are consistent with prior research conducted using low-resolution remote

http://www.nesdc.org.cn/
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sensing images. For example, Duan used the vegetation index derived from MOD13A2
with a resolution of 1 km every16 days [62], and Wang used MOD09A1 captured at
500 m intervals occurring every 8 days [63]. Their results showed that alpine mead-
ows have greater maximum NDVI values and earlier maxima dates than alpine steppes
throughout the QTP, but they studied only the two most widely distributed vegetation types
(i.e., meadows and steppes). In addition, our study provided more refined results or in-
sights at a smaller scale such as a magnifier and involved more vegetation such as shrubs
and plantations.

On the QTP, greening trends have been observed in many studies. Liu used the MVC
method to construct an 8 km NDVImax time series from 1981 to 2019 and concluded that the
QTP was generally greening, with only localized degradation from 2000 to 2019 [6]. Chen
also reached similar conclusions based on the MOD13A2 NDVI dataset [7]. However, large-
scale studies are often inconsistent with those at small scales, as grassland degradation
generally starts in small plots and then extends into patches. Our study did find small
degraded patches in areas of overall greening, and it is even more important that we focus
on monitoring these small patches of grass that may expand the extent of degradation.

Previous studies have shown that climate factors significantly impact the NDVI
variability in alpine vegetation [64]. Lehnert analyzed trends in grassland cover using
MCD43A4 and explored the interactions among vegetation dynamics, climate shifts, and
human influences on the QTP, concluding that large-scale alterations in grassland cover
on the QTP stemmed more from climate variability than overstocking [65]. Other studies
affirmed a correlation between vegetation growth in the northeastern QTP and spring
temperature and summer precipitation [66]. Alpine meadows are the most sensitive and
complex in their response to climate shifts [7,67], and climate warming will promote their
rapid growth. Moreover, the melting of ice and snow caused by high temperatures ad-
versely affects the growth of shallow-rooted plants [68]. Another result of a warming
climate is the degradation of frozen soil [69], causing a decline in the water table, soil
desiccation, and the subsequent degradation of alpine meadows [70,71].

Apart from the greater influence of climate on alpine meadow vegetation, the prolifer-
ation of wildlife and anthropogenic overgrazing can also lead to vegetation degradation.
According to our field work, guided by the results of the NDVI slope and CV spatial
distribution, localized degradation in the study area should be attributed to a combination
of permafrost degradation, overgrazing, and rodent infestation. The number of sheep
equivalents in Gangcha County significantly increased, rising from 1,587,800 in 2000 to
1,891,600 in 2017, representing a 19% increase [72], which puts great pressure on the grass-
land, especially in the widely distributed alpine meadow area where Kobresia pygmaea is a
high-quality forage grass. However, the explosive increase in plateau pikas has severely
impacted the local grassland in the study area. We conducted field work at some of the sites
in 2023 where the NDVI slope was declining and changing dramatically. Figures 8–10 show
one of the degraded sites, which is in seasonally frozen soil with severe rodent infestation.
An increase in the frequency of the freeze–thaw cycle hastened nutrient depletion and re-
duced the soil’s ability to retain water [73], ultimately resulting in the degradation of alpine
meadows. Without proper management, the eventual outcome will be the development of
black soil conditions, which pertains to the significant deterioration of grasslands caused
by factors such as excessive grazing, rodent infestation, cycles of freezing and thawing as
well as wind or water erosion. These factors lead to sparse vegetation and diminished land
cover [74].



Remote Sens. 2024, 16, 1222 15 of 20

Figure 8. Degraded Alpine kobresia spp., Forb Meadow in the southern region of the study area.

Figure 9. Degraded frozen soil zone in the southern region of the study area.

It is crucial to prioritize the monitoring of soil properties in alpine meadows as these
properties significantly contribute to stabilizing and improving the ecosystem services
offered by alpine grasslands against climate warming. The study’s discoveries can lay a
foundation for local political institutions to safeguard grassland ecosystems and maintain
an ecological balance.
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Figure 10. Dense clusters of pika burrows in the degraded meadow areas (99◦24′E, 37◦04′N).

6. Conclusions

The QLB lies on the northeastern Tibetan Plateau and serves as a crucial barrier
in preventing the expansion of the Qaidam Desert into inland China. Monitoring and
analyzing alterations in the region’s vegetation are relevant for gaining insights into climate
change responses and formulating sustainable ecological conservation policies. In this
study, we addressed the critical issue of the low resolution of NDVI time series data and
improved the data sources for grassland monitoring. In addition, we conducted an analysis
of the distribution of the annual maximum NDVI from 2001 to 2022, revealing its spatial
pattern and interannual variability. The following conclusions were drawn:

1. By leveraging the unique spatiotemporal advantages of MODIS NDVI and Landsat
NDVI data, we successfully derived the maximum NDVI for the whole year inde-
pendent of the season at high resolution. The reconstruction results showed higher
accuracy than those of the existing dataset. Our study provides more refined re-
construction results for the spatial characterization and variability of the NDVI at a
fragmented landscape scale.

2. Similarly, the annual maximum NDVI from 2001 to 2022 exhibited spatial vertical
distribution differences, with higher values ranging from 0.6 to 0.8 in the northern and
the southern regions, and lower values from 0.4 to 0.6 in the middle region. The maxi-
mum NDVI in Alpine kobresia spp., Forb Meadow was much higher than the average,
and that in Temperate needlegrass arid steppe was significantly lower than the average.
Furthermore, the earlier vegetation growth maximum dates were accompanied by
greater NDVI maxima.

3. From 2001 to 2022, the annual NDVI maximum value increased slightly, with a growth
rate of 0.0028 per year. The annual maximum NDVI showed a decreasing trend mainly
for Alpine kobresia spp., Forb Meadow and Temperate deciduous scrub. Nearly 40% of
the area was distributed as patches in fluctuating or sharply fluctuating states. In
particular, the areas in a sharp fluctuation state are also concentrated in Alpine kobresia
spp., Forb Meadow in the southwest and northeast, and Temperate deciduous scrub on
both sides of the river valley.

However, with ongoing climate warming, the soil moisture and nutrients in alpine
meadows affected by permafrost degradation, rodent infestation, and overgrazing may face
degradation, and the root growth patterns of alpine meadows could shift, potentially re-
sulting in a decrease in grassland ecosystem services. To avoid serious consequences, there



Remote Sens. 2024, 16, 1222 17 of 20

is an urgent need to implement effective measures to restore degraded alpine meadows,
aiming to attain sustainable rejuvenation goals.

Author Contributions: Conceptualization, F.L. and G.W.; Methodology, M.L. and F.L.; Software, M.L.;
Validation, M.L., A.S. and Y.W.; Formal analysis, G.W.; Investigation, M.L., A.S. and Y.W.; Resources,
G.W.; Data curation, A.S.; Writing—original draft preparation, M.L.; Writing—review and editing,
G.W.; Visualization, M.L.; Supervision, G.W.; Project administration, G.W.; Funding acquisition, S.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Strategic Priority Research Program of the Chinese
Academy of Sciences, grant number XDA20100103, and the Applied Fundamental Research Founda-
tion of Qinghai Province in China, grant number 2017-ZJ-743.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: We sincerely thank the Foundation for its support of our field work. We would
also like to thank the anonymous reviewers for their constructive comments on the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, H.; Zhao, Y.; Zhu, J.K. Thriving under Stress: How Plants Balance Growth and the Stress Response. Dev. Cell 2020, 55,

529–543. [CrossRef] [PubMed]
2. Camacho-De Coca, F.; García-Haro, F.; Gilabert, M.; Meliá, J. Vegetation cover seasonal changes assessment from TM imagery in a

semi-arid landscape. Int. J. Remote Sens. 2004, 25, 3451–3476. [CrossRef]
3. Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series,

multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [CrossRef]
4. Busetto, L.; Meroni, M.; Colombo, R. Combining medium and coarse spatial resolution satellite data to improve the estimation of

sub-pixel NDVI time series. Remote Sens. Environ. 2008, 112, 118–131. [CrossRef]
5. Jin, X.; Liu, J.; Wang, S.; Xia, W. Vegetation dynamics and their response to groundwater and climate variables in Qaidam Basin,

China. Int. J. Remote Sens. 2016, 37, 710–728. [CrossRef]
6. Liu, E.; Xiao, X.; Shao, H.; Yang, X.; Zhang, Y.; Yang, Y. Climate Change and Livestock Management Drove Extensive Vegetation

Recovery in the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 4808. [CrossRef]
7. Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors

and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [CrossRef]
8. Wang, X.; Yi, S.; Wu, Q.; Yang, K.; Ding, Y. The role of permafrost and soil water in distribution of alpine grassland and its NDVI

dynamics on the Qinghai-Tibetan Plateau. Glob. Planet. Chang. 2016, 147, 40–53. [CrossRef]
9. Li, L.; Fassnacht, F.E.; Storch, I.; Bürgi, M. Land-use regime shift triggered the recent degradation of alpine pastures in Nyanpo

Yutse of the eastern Qinghai-Tibetan Plateau. Landsc. Ecol. 2017, 32, 2187–2203. [CrossRef]
10. Fassnacht, F.E.; Schiller, C.; Kattenborn, T.; Zhao, X.; Qu, J. A Landsat-based vegetation trend product of the Tibetan Plateau for

the time-period 1990–2018. Sci. Data 2019, 6, 78. [CrossRef]
11. Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire

using the pixel based regeneration index. ISPRS J. Photogramm. Remote Sens. 2011, 66, 17–27. [CrossRef]
12. Wang, Z.; Cao, S.; Cao, G.; Lan, Y. Effects of vegetation phenology on vegetation productivity in the Qinghai Lake Basin of the

Northeastern Qinghai–Tibet Plateau. Arab. J. Geosci. 2021, 14, 1030. [CrossRef]
13. Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward,

A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147.
[CrossRef]

14. Cuomo, V.; Lanfredi, M.; Lasaponara, R.; Macchiato, M.F.; Simoniello, T. Detection of interannual variation of vegetation in
middle and southern Italy during 1985-1999 with 1 km NOAA AVHRR NDVI data. J. Geophys. Res. Atmos. 2001, 106, 17863–17876.
[CrossRef]

15. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology
using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [CrossRef]

16. Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote
Sens. 2002, 40, 1824–1832. [CrossRef]

17. Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI
time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [CrossRef]

https://doi.org/10.1016/j.devcel.2020.10.012
https://www.ncbi.nlm.nih.gov/pubmed/33290694
https://doi.org/10.1080/01431160310001618761
https://doi.org/10.1016/j.rse.2019.111511
https://doi.org/10.1016/j.rse.2007.04.004
https://doi.org/10.1080/01431161.2015.1137648
https://doi.org/10.3390/rs13234808
https://doi.org/10.3390/rs12193150
https://doi.org/10.1016/j.gloplacha.2016.10.014
https://doi.org/10.1007/s10980-017-0510-2
https://doi.org/10.1038/s41597-019-0075-9
https://doi.org/10.1016/j.isprsjprs.2010.08.004
https://doi.org/10.1007/s12517-021-07440-5
https://doi.org/10.1016/j.rse.2019.02.015
https://doi.org/10.1029/2001JD900166
https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1109/TGRS.2002.802519
https://doi.org/10.1016/j.rse.2004.03.014


Remote Sens. 2024, 16, 1222 18 of 20

18. Viovy, N.; Arino, O.; Belward, A.S. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. Int.
J. Remote Sens. 1992, 13, 1585–1590. [CrossRef]

19. Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R. Mapping agroecological zones and time lag in vegetation growth by means of
Fourier analysis of time series of NDVI images. Adv. Space Res. 1993, 13, 233–237. [CrossRef]

20. Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series
data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [CrossRef]

21. Chen, Y.; Cao, R.; Chen, J.; Liu, L.; Matsushita, B. A practical approach to reconstruct high-quality Landsat NDVI time-series data
by gap filling and the Savitzky–Golay filter. ISPRS J. Photogramm. Remote Sens. 2021, 180, 174–190. [CrossRef]

22. Yan, L.; Roy, D.P. Spatially and temporally complete Landsat reflectance time series modelling: The fill-and-fit approach. Remote
Sens. Environ. 2020, 241, 111718. [CrossRef]

23. Chen, Q.; Liu, W.; Huang, C. Long-Term 10 m Resolution Water Dynamics of Qinghai Lake and the Driving Factors. Water 2022,
14, 671. [CrossRef]

24. Li, X.Y.; Ma, Y.J.; Xu, H.Y.; Wang, J.H.; Zhang, D.S. Impact of land use and land cover change on environmental degradation in
lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land. Degrad. Dev. 2009, 20, 69–83. [CrossRef]

25. Gui-chen, C.; Min, P. Types and Distribution of Vegetation in Qinghai Lake Region. Chin. J. Plant Ecol. 1993, 17, 71–81.
26. Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew,

M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IEEE International Geoscience and Remote
Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 1413, pp. 1414–1418.

27. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118,
83–94. [CrossRef]

28. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow
detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. Interdiscip. J. 2015, 159, 269–277. [CrossRef]

29. Motohka, T.; Nasahara, K.N.; Murakami, K.; Nagai, S. Evaluation of Sub-Pixel Cloud Noises on MODIS Daily Spectral Indices
Based on in situ Measurements. Remote Sens. 2011, 3, 1644–1662. [CrossRef]

30. Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of
MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [CrossRef]

31. Guindin-Garcia, N.; Gitelson, A.A.; Arkebauer, T.J.; Shanahan, J.; Weiss, A. An evaluation of MODIS 8- and 16-day composite
products for monitoring maize green leaf area index. Agric. For. Meteorol. 2012, 161, 15–25. [CrossRef]

32. Wessels, K.J.; Bachoo, A.; Archibald, S. Influence of composite period and date of observation on phenological metrics extracted
from MODIS data. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment: Sustaining the
Millennium Development Goals, Stresa, Lago Magglore, Italy, 4–8 May 2009.

33. Narasimhan, R.; Stow, D. Daily MODIS products for analyzing early season vegetation dynamics across the North Slope of
Alaska. Remote Sens. Environ. 2010, 114, 1251–1262. [CrossRef]

34. McKellip, R.; Ryan, R.E.; Blonski, S.; Prados, D. Crop surveillance demonstration using a near-daily MODIS derived vegetation
index time series. In Proceedings of the Third International Workshop on the Analysis of Multitemporal Remote Sensing Images
(MultiTemp 2005), Biloxi, MS, USA, 16–18 May 2005.

35. Jin, S.; Sader, S.A. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects. Remote
Sens. Environ. 2005, 99, 462–470. [CrossRef]

36. Zeng, L.; Wardlow, B.D.; Hu, S.; Zhang, X.; Wu, W. A Novel Strategy to Reconstruct NDVI Time-Series with High Temporal
Resolution from MODIS Multi-Temporal Composite Products. Remote Sens. 2021, 13, 1397. [CrossRef]

37. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29,
1153–1160. [CrossRef]

38. Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy,
Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [CrossRef]

39. Dong, S. Analysis and Improvenment of Spatial-Temporal Fusion Method of Remote Sensing Image Based on Weight Filtering.
Master’s Thesis, Shandong University of Science and Technology, Qingdao, China, 2019.

40. Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS):
Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Biogeosci. 2006, 111, G4. [CrossRef]

41. Shen, M.; Tang, Y.; Chen, J.; Yang, W. Specification of thermal growing season in temperate China from 1960 to 2009. Clim. Chang.
2012, 114, 783–798. [CrossRef]

42. Zhu, W.; Tian, H.; Xu, X.; Pan, Y.; Chen, G.; Lin, W. Extension of the growing season due to delayed autumn over mid and high
latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 2012, 21, 260–271. [CrossRef]

43. Cao, R.; Chen, J.; Shen, M.; Tang, Y. An improved logistic method for detecting spring vegetation phenology in grasslands from
MODIS EVI time-series data. Agric. For. Meteorol. 2015, 200, 9–20. [CrossRef]

44. Jiang, L.; Shang, S. Comparison of Fitting Curves on the Dynamic of Vegetation Index. J. Irrig. Drain. 2014, 33, 382–384, 403.
45. Madsen, K.; Nielsen, H.B.; Tingleff, O. Methods for Non-Linear Least Squares Problems; Technical University of Denmark: Kongens

Lyngby, Denmark, 2004.

https://doi.org/10.1080/01431169208904212
https://doi.org/10.1016/0273-1177(93)90550-U
https://doi.org/10.1016/j.rse.2018.08.022
https://doi.org/10.1016/j.isprsjprs.2021.08.015
https://doi.org/10.1016/j.rse.2020.111718
https://doi.org/10.3390/w14040671
https://doi.org/10.1002/ldr.885
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.3390/rs3081644
https://doi.org/10.1016/S0034-4257(02)00084-6
https://doi.org/10.1016/j.agrformet.2012.03.012
https://doi.org/10.1016/j.rse.2010.01.017
https://doi.org/10.1016/j.rse.2005.09.017
https://doi.org/10.3390/rs13071397
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.3390/rs10040527
https://doi.org/10.1029/2006JG000217
https://doi.org/10.1007/s10584-012-0434-4
https://doi.org/10.1111/j.1466-8238.2011.00675.x
https://doi.org/10.1016/j.agrformet.2014.09.009


Remote Sens. 2024, 16, 1222 19 of 20

46. Bashir, B.; Cao, C.; Naeem, S.; Joharestani, M.Z.; Bo, X.; Afzal, H.; Jamal, K.; Mumtaz, F. Spatio-Temporal Vegetation Dynamic and
Persistence under Climatic and Anthropogenic Factors. Remote Sens. 2020, 12, 2612. [CrossRef]

47. Zhao, S.; Zhao, X.; Zhao, J.; Liu, N.; Sun, M.; Mu, B.; Sun, N.; Guo, Y. Grassland Conservation Effectiveness of National Nature
Reserves in Northern China. Remote Sens. 2022, 14, 1760. [CrossRef]

48. Liu, R.; Shang, R.; Liu, Y.; Lu, X. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation
growth trajectory, protection of key point, noise resistance and curve stability. Remote Sens. Environ. 2017, 189, 164–179. [CrossRef]

49. Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y.; et al. Divergent shifts in peak photosynthesis
timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [CrossRef]

50. Michel, U.; Jiang, J.; Song, J.; Wang, J.; Xiao, Z.; Civco, D.L.; Ehlers, M.; Schulz, K.; Nikolakopoulos, K.G.; Habib, S.; et al. Combine
MODIS and HJ-1 CCD NDVI with logistic model to generate high spatial and temporal resolution NDVI data. In Proceedings
of the Earth Resources and Environmental Remote Sensing/GIS Applications III, Edinburgh, UK, 24–27 September 2012;
pp. 242–250.

51. Gonsamo, A.; Chen, J.M.; Ooi, Y.W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by
extratropical ecosystems. Glob. Chang. Biol. 2018, 24, 2117–2128. [CrossRef] [PubMed]

52. Miehe, G.; Schleuss, P.M.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerken, T.; et al. The
Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral
alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ. 2019, 648, 754–771. [CrossRef] [PubMed]

53. Miehe, G.; Bach, K.; Miehe, S.; Kluge, J.; Yongping, Y.; Duo, L.; Co, S.; Wesche, K. Alpine steppe plant communities of the Tibetan
highlands. Appl. Veg. Sci. 2011, 14, 547–560. [CrossRef]

54. Li, X. Grassland type and distribution in Qinghai lake drainage area. Qinghai Prataculture 2009, 18, 20–23+19.
55. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational

BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [CrossRef]
56. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
57. Dong, J.; Zhou, Y.; You, N. 30-Meter Annual Maximum NDVI Dataset in China, 2000–2020; [DS/OL]; National Ecosystem Science

Data Center: Beijing, China, 2021; Available online: https://cstr.cn/15732.11.nesdc.ecodb.rs.2021.012 (accessed on 30 March 2023).
[CrossRef]

58. Zhu, X.; Gao, F.; Liu, D.; Chen, J. A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in
Landsat Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 521–525. [CrossRef]

59. Cao, R.; Chen, Y.; Chen, J.; Zhu, X.; Shen, M. Thick cloud removal in Landsat images based on autoregression of Landsat
time-series data. Remote Sens. Environ. 2020, 249, 112001. [CrossRef]

60. Chu, D.; Shen, H.F.; Guan, X.B.; Chen, J.M.; Li, X.H.; Li, J.; Zhang, L.P. Long time-series NDVI reconstruction in cloud-prone
regions via spatio-temporal tensor completion. Remote Sens. Environ. 2021, 264, 112632. [CrossRef]

61. Zhang, Q.; Yuan, Q.; Li, J.; Li, Z.; Shen, H.; Zhang, L. Thick cloud and cloud shadow removal in multitemporal imagery using
progressively spatio-temporal patch group deep learning. ISPRS J. Photogramm. Remote Sens. 2020, 162, 148–160. [CrossRef]

62. Duan, H.; Xue, X.; Wang, T.; Kang, W.; Liao, J.; Liu, S. Spatial and Temporal Differences in Alpine Meadow, Alpine Steppe and All
Vegetation of the Qinghai-Tibetan Plateau and Their Responses to Climate Change. Remote Sens. 2021, 13, 669. [CrossRef]

63. Wang, C.; Guo, H.; Zhang, L.; Liu, S.; Qiu, Y.; Sun, Z. Assessing phenological change and climatic control of alpine grasslands in
the Tibetan Plateau with MODIS time series. Int. J. Biometeorol. 2015, 59, 11–23. [CrossRef] [PubMed]

64. Li, L.; Zhang, Y.; Wu, J.; Li, S.; Zhang, B.; Zu, J.; Zhang, H.; Ding, M.; Paudel, B. Increasing sensitivity of alpine grasslands to
climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [CrossRef]
[PubMed]

65. Lehnert, L.W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J. Climate variability rather than overstocking causes recent large
scale cover changes of Tibetan pastures. Sci. Rep. 2016, 6, 24367. [CrossRef]

66. Gao, X.; Huang, X.; Lo, K.; Dang, Q.; Wen, R. Vegetation responses to climate change in the Qilian Mountain Nature Reserve,
Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [CrossRef]

67. Yang, X.; Ma, L.; Zhang, Z.; Zhang, Q.; Guo, J.; Zhou, B.; Deng, Y.; Wang, X.; Wang, F.; She, Y.; et al. Relationship between the
characteristics of plant community growth and climate factors in alpine meadow. Acta Ecol. Sin. 2021, 41, 3689–3700.

68. Xue, X.; Guo, J.; Han, B.; Sun, Q.; Liu, L. The effect of climate warming and permafrost thaw on desertification in the Qinghai–
Tibetan Plateau. Geomorphology 2009, 108, 182–190. [CrossRef]

69. Zhang, Z.; Li, M.; Wen, Z.; Yin, Z.; Tang, Y.; Gao, S.; Wu, Q. Degraded frozen soil and reduced frost heave in China due to climate
warming. Sci. Total Environ. 2023, 893, 164914. [CrossRef] [PubMed]

70. Jin, H.; He, R.; Cheng, G.; Wu, Q.; Wang, S.; Lü, L.; Chang, X. Changes in frozen ground in the Source Area of the Yellow River on
the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett. 2009, 4, 045206. [CrossRef]

71. Wang, X.; Gao, B. Frozen soil change and its impact on hydrological processes in the Qinghai Lake Basin, the Qinghai-Tibetan
Plateau, China. J. Hydrol. Reg. Stud. 2022, 39, 100993. [CrossRef]

72. Li, X.; Yuan, Q.; Song, X. Anthropogenic Changes and Impacts in the Qilian Mountains; Science Press: Beijing, China, 2022; p. 159.

https://doi.org/10.3390/rs12162612
https://doi.org/10.3390/rs14071760
https://doi.org/10.1016/j.rse.2016.11.023
https://doi.org/10.1016/j.rse.2019.111395
https://doi.org/10.1111/gcb.14001
https://www.ncbi.nlm.nih.gov/pubmed/29271095
https://doi.org/10.1016/j.scitotenv.2018.08.164
https://www.ncbi.nlm.nih.gov/pubmed/30134213
https://doi.org/10.1111/j.1654-109X.2011.01147.x
https://doi.org/10.1016/S0034-4257(02)00091-3
https://doi.org/10.1016/S0034-4257(02)00096-2
https://cstr.cn/15732.11.nesdc.ecodb.rs.2021.012
https://doi.org/10.12199/nesdc.ecodb.rs.2021.012
https://doi.org/10.1109/LGRS.2011.2173290
https://doi.org/10.1016/j.rse.2020.112001
https://doi.org/10.1016/j.rse.2021.112632
https://doi.org/10.1016/j.isprsjprs.2020.02.008
https://doi.org/10.3390/rs13040669
https://doi.org/10.1007/s00484-014-0817-5
https://www.ncbi.nlm.nih.gov/pubmed/24682528
https://doi.org/10.1016/j.scitotenv.2019.04.399
https://www.ncbi.nlm.nih.gov/pubmed/31075588
https://doi.org/10.1038/srep24367
https://doi.org/10.1016/j.gecco.2021.e01698
https://doi.org/10.1016/j.geomorph.2009.01.004
https://doi.org/10.1016/j.scitotenv.2023.164914
https://www.ncbi.nlm.nih.gov/pubmed/37327898
https://doi.org/10.1088/1748-9326/4/4/045206
https://doi.org/10.1016/j.ejrh.2022.100993


Remote Sens. 2024, 16, 1222 20 of 20

73. Man, Z.; Xie, C.; Jiang, R.; Che, S. Freeze-thaw cycle frequency affects root growth of alpine meadow through changing soil
moisture and nutrients. Sci. Rep. 2022, 12, 4436. [CrossRef]

74. Zhou, H.; Yang, X.; Zhou, C.; Shao, X.; Shi, Z.; Li, H.; Su, H.; Qin, R.; Chang, T.; Hu, X.; et al. Alpine Grassland Degradation and
Its Restoration in the Qinghai–Tibet Plateau. Grasses 2023, 2, 31–46. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-022-08500-w
https://doi.org/10.3390/grasses2010004

	Introduction 
	Study Area and Materials 
	Study Area 
	Materials 

	Methods 
	Data Preprocessing 
	Landsat NDVI Time Series Reconstruction 
	Denoising of MODIS Daily NDVI 
	Generating Simulated Landsat NDVI 
	S-Logistic Model Fitting 

	Evaluation of Reconstruction Method Accuracy 
	Trend Analysis 

	Results 
	Validation of the Reconstructed Landsat NDVI 
	Vegetation Growth Fitting under Different Coverage Types 
	Spatial and Temporal Patterns of Landsat NDVI Annual Maxima 

	Discussion 
	Advantages and Limits of Reconstructed Landsat NDVI 
	Reasons for Spatial Characteristics and Variations in Vegetation NDVI 

	Conclusions 
	References

