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Abstract: Xylella Fastidiosa has been recently detected for the first time in southern Italy, representing
a very dangerous phytobacterium capable of inducing severe diseases in many plants. In particular,
the disease induced in olive trees is called olive quick decline syndrome (OQDS), which provokes
the rapid desiccation and, ultimately, death of the infected plants. In this paper, we analyse about
two thousands pixels of MODIS satellite evapotranspiration time series, covering infected and
uninfected olive groves in southern Italy. Our aim is the identification of Xylella Fastidiosa-linked
patterns in the statistical features of evapotranspiration data. The adopted methodology is the
well-known Fisher–Shannon analysis that allows one to characterize the time dynamics of complex
time series by means of two informational quantities, the Fisher information measure (FIM) and
the Shannon entropy power (SEP). On average, the evapotranspiration of Xylella Fastidiosa-infected
sites is characterized by a larger SEP and lower FIM compared to uninfected sites. The analysis
of the receiver operating characteristic curve suggests that SEP and FIM can be considered binary
classifiers with good discrimination performance that, moreover, improves if the yearly cycle, very
likely linked with the meteo-climatic variability of the investigated areas, is removed from the data.
Furthermore, it indicated that FIM exhibits superior effectiveness compared to SEP in discerning
healthy and infected pixels.

Keywords: MODIS; satellite; evapotranspiration; Fisher–Shannon; vegetation

1. Introduction

The rapid evolution of climate change over time and the intensification of global
interconnections are catalysts for the onset of biological invasions [1,2], fostering the estab-
lishment of highly hazardous phytopathogens, as exemplified by Xylella Fastidiosa [3]. The
transmission of this bacterium involves various vectors, such as the sap-sucking leafhopper
Homalodisca vitripennis, native to the southeastern United States and northeastern Mexico [4].
Xylella Fastidiosa adversely impacts plants, leading to diverse infections, including Pierce’s
disease in grapevines [5], olive quick decline [6], bacterial leaf scorch [7], and phony peach
disease [8], resulting in significant economic losses in agriculture.

In 2013, Xylella Fastidiosa was initially detected in the Salento Peninsula (Apulia) in
southeastern Italy, where it rapidly devastated Olea Europaea [9], and subsequently, it spread to
several other European countries (France, Spain, Portugal, Germany, and Switzerland), posing
a genuine phytosanitary emergency [10]. Xylella Fastidiosa has been listed as a quarantine
organism in many countries across the globe, but the risk level of its establishment mainly in
the Mediterranean basin remains very high due to the unintentional transport of insect vectors
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(through equipment as a commodity contaminant or vehicle “hitchhiker”) or movement of
infected asymptomatic plants or through unknown hosts. Since Xylella Fastidiosa is one of the
greatest threats to agricultural production not only in Europe but in many countries across the
globe, there is an urgent need to devise ad hoc analyses and monitoring.

The initial investigation into Xylella Fastidiosa was conducted by Krugner et al. [11],
who identified Xylella Fastidiosa subsp. multiplex in olive trees exhibiting leaf scorch and
branch dieback. However, their laboratory experiments failed to replicate the same symp-
toms observed in field-infected olive trees. Following the detection of Xylella Fastidiosa in
olive groves in southeastern Italy, a comprehensive study on the bacterium was under-
taken in Argentina and Brazil. In these regions, symptomatic olive trees were found to
harbor Xylella Fastidiosa subsp. pauca [12,13], the same subspecies identified in Italian olive
trees [14].

Strona et al. [15] discovered that the extensive distribution of olive groves in Apu-
lia (southeastern Italy) and the abundance of Philaenus spumarius L., the vector of this
bacterium, may have facilitated the establishment of Xylella Fastidiosa in this region.

For Xylella Fastidiosa infecting olive trees in Salento, Italy, the initial genetic investi-
gation of this alien parasite revealed the presence of a previously undescribed sequence
type identified as ST53 code [16]. This sequence type was previously only known to be
present in various areas of North, Central, and South America. ST53, identified in southern
Apulia, Italy, appears to have been introduced relatively recently from Costa Rica [14,17].
Furthermore, it has been identified in other European regions, including France (Provence-
Alpes-Côte d’Azur and Corsica), Spain (Balearic Islands and Madrid), and Portugal (Porto
metropolitan area) [18]. The ability to trace and understand the movement and impact of
such parasites across different regions underscores the importance of comprehensive and
collaborative research efforts.

As there is still no identified treatment enabling the recovery of infected trees, the
primary strategy to contain the epidemic involves the removal of infected trees. Thus, mini-
mizing the risk of infection spread hinges on early identification, whether of asymptomatic
trees or those displaying visible symptoms of desiccation. Detecting these trees early on is
pivotal. Visual inspection remains the most widely used method due to its speed, simplicity,
and cost-effectiveness. However, its accuracy relies heavily on the subjective assessment of
disease severity. Moreover, a limitation arises from the fact that collected samples must
undergo laboratory analysis. This turns visual inspection into a time-consuming, expensive,
and intrusive detection method for Xylella Fastidiosa [19].

Earth observation (EO) technologies are widely acknowledged as potent instruments
for the analysis, comprehension, and surveillance of Earth’s dynamic processes, spanning
from a global to a local scale. The availability of long satellite time series has proven to be
an invaluable resource, extensively utilized to discern regions undergoing deforestation or
reforestation (https://www.globalforestwatch.org/) on a global scale down to a landscape
level. Furthermore, appropriately processed and analyzed satellite time series empower
us to glean insights into vegetation health, identifying areas susceptible to degradation or
destruction. Satellite imagery is instrumental in monitoring the spread of invasive species,
aiding in pinpointing regions where containment efforts are feasible. Additionally, this
technology facilitates the detection and monitoring of plant diseases, thereby mitigating
the likelihood of outbreaks and disease spread [20].

Notwithstanding the widely acknowledged potential of Earth observation (EO) tech-
nologies in general and satellite time series in particular, a significant and persistent
challenge remains—the disconnect between the vast amount of available data and effective
methodologies for extracting valuable information to enhance knowledge and facilitate
long-term site monitoring. A primary hurdle lies in the fact that typical time series, such
as those related to vegetation indices, inherently comprise three overlapping components:
(i) seasonality (periodic behavior linked to plant phenology, driven by cover types, and
modulated by weather artifacts such as temperature, rainfall, etc.); (ii) long-term trends,
that is, gradual changes such as, for example, those linked to land degradation induced by

https://www.globalforestwatch.org/
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inter-annual climate variability (e.g. trends in mean annual rainfall, plant disease, parasite
attacks, or change in land management, etc.), and (iii) residuals coupled with noise and
linked, for example, to atmospheric scatter and cloud effects.

Over the years, various approaches have been developed to disentangle and quantify
these overlapping components, each offering unique insights that may be of interest
depending on the specific research focus [21].

In the characterization of forest disturbances, all of the diverse components (seasonal,
abrupt, and gradual) may be of high interest because, according to the drivers [22] , the
disturbance may induce both variation in the “normal” seasonality and phenology as well
anomalous trends.

The case of alien parasites like Xylella Fastidiosa is paradigmatic, since the specific
characteristics, behavior, and potential impact on vegetation, as well as the extent of
induced damage, may be unknown due to their ability to adapt their biology and effects to
specific ecosystems, vegetation species, and climatic conditions. For such cases, a timely
and systematically updated characterization of the parasite’s impact on vegetation is crucial
for effectively countering its diffusion.

In Italy, Xylella Fastidiosa was initially detected in an area encompassing approximately
8000 ha in the province of Lecce. It rapidly disseminated to most of the Apulian provinces,
including Bari, Barletta, Andria, and Trani, posing a threat to an expansive surface area
of about 750 thousand ha. This region accounts for nearly a third of the national olive
production. Xylella Fastidiosa induces a swift decline in olive orchards, manifesting as leaf
scorching and desiccation of twigs and branches, typically occurring at the uppermost part
of the canopy. This progression can extend to the death of the tree, particularly affecting
the most ancient century-old trees of the Cellina di Nardo and Ogliastra Salentina cultivars,
which are among the most severely impacted varieties.

To counteract the diffusion of the parasite, it is imperative to thoroughly characterize
its biology, potential variations, as well as its manifestations and effects on vegetation.
This necessitates a comprehensive approach that combines in situ analyses with rou-
tinely conducted large-scale investigations, such as those facilitated by Earth observation
(EO) technologies.

In contributing to this endeavor, our paper focuses on analyzing satellite MODIS-
based evapotranspiration time series. This analysis spans both Xylella Fastidiosa-infected
and -uninfected olive trees in Apulia and Basilicata. The aim is to assess and characterize
the impact of Xylella Fastidiosa on the inner behavior of olive trees. The significance of this
objective lies in the timely acquisition of baseline information crucial for understanding the
disturbance caused by the parasite to olive tree change and dynamics. Such information is
vital for supporting the formulation of effective attack strategies. Importantly, the proposed
approach is versatile and can be promptly applied to detect vegetation disturbances and
diseases induced by any parasite or degradation phenomenon.

2. Data and Study Area

The primary visible indication of infection by Xylella Fastidiosa in olive trees is the
rapid desiccation of branches [17]. To identify these signs of disease presence, we carried
out an analysis using moderate resolution imaging spectroradiometer (MODIS) evapo-
transpiration (ET hereafter) data. These data have the capability to monitor the water
status of plants, allowing us to detect such disease-related symptoms. The data have a
spatial resolution of 500 m and an 8-day sampling rate. They are freely available online
(https://lpdaac.usgs.gov) and in the Google Earth Engine (GEE) cloud database.

The ET is calculated by summing up soil evaporation (Es), canopy evaporation (Ec),
and canopy transpiration (Tc):

ET = Es + Ec + Tc (1)

with

https://lpdaac.usgs.gov


Remote Sens. 2024, 16, 1242 4 of 19
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S
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a
)

. (4)

where fc is the canopy cover, fw is the pixel wet surface fraction, RH is the relative humidity,
∆ is the gradient of the saturation vapor pressure—temperature, As and Ac are the available
energy to the soil and canopy, respectively, γ is the psychrometric constant, βsm is a
parameter related to the soil moisture constraint, rs

s and rs
a are the surface and aerodynamic

resistance for the soil surface, rwc
s and rwc

a are the surface and aerodynamic resistance for
the wet canopy evaporation, and rt

s and rt
a are the surface and aerodynamic resistance for

the canopy transpiration [23].
For our research aimed at identifying patterns associated with Xylella Fastidiosa in

statistical features of evapotranspiration data, we carefully selected both infected and
uninfected areas along with their respective MODIS pixels. Specifically, we pinpointed
the infected areas based on in situ analysis and official online sources, dating back to
October 2013, when Italian authorities notified the Commission of the initial outbreak
of Xylella Fastidiosa subspecies pauca in southern Apulia, specifically in the Province of
Lecce. Furthermore, the Apulia Region made reports, maps, and scientific papers publicly
accessible through dedicated websites. These resources are regularly updated to provide
current information. Specifically, the infected areas examined in this paper are those
identified through:

(i) European reports, available online since 2013, where Xylella Fastidiosa is regularly
addressed in discussions with relevant authorities from EU member countries. These
discussions occur during the monthly meetings of the Standing Committee on Plants,
Animals, Food and Feed, specifically within the plant health section [24];

(ii) official data from the Apulia region, available online, based on surveillance
activities [25,26];

(iii) independent investigations, such as those conducted by the Joint Research Cen-
ter [27];

(iv) systematic field surveys conducted by the authors since 2018.
The uninfected areas were chosen from the Apulia and Basilicata regions, which are

situated at a considerable distance from the infected areas. Such uninfected areas have
undergone systematic field investigations conducted by the authors of this paper since
2007 and continue to be monitored.

To select the areas covered by olive trees, we used the Corine land cover map, which
has a specific class for cultivated areas planted with olive trees [28]. For the purpose of our
investigation, within the infected zone (see Figure 1), we only selected the MODIS pixels
covering the most homogeneous areas planted with olive trees. However, according to the
Corine land cover nomenclature guidelines, and therefore for both infected and uninfected
areas, the class olive tree can also include a percentage of vines or fruit plants intermixed
with olives, bare soil or herbaceous vegetation among olive trees, scattered patches of
semi-natural vegetation (greenery), interspersed annual crops, and irrigation ponds. None
of these vegetation typologies are affected by Xylella Fastidiosa; therefore, it is reasonable to
assume that in the absence of land use and land cover changes (which are systematically
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updated in the Corine land cover, as for example, in the case of fire), the main variations
observed are likely due to ecosystem disturbances such as the impact of Xylella Fastidiosa.

Figure 1. (a) Study area. (b) Left: areas (pink) marked as infected according to official data from the
Apulia region. Right: the protocol implemented by the Apulia region for delineating infected areas
involves the establishment of a 1 km boundary (illustrated by the red box of 1000 m) around the
primary source of infection; additionally, a 400 m buffer zone (depicted by the green box of 400 m) is
included when the source of infection has persisted in the investigated area for three years [29]. The
image has been reworked by the authors.

The analysis of ET data encompasses the southeastern region of Italy, as depicted in
Figure 1 that displays the areas identified as infected according to the official data updated
as of December 2022 by the Apulia region [29]. The dataset spans from 2010 to 2022, and
each pixel’s time series has a length of 575 samples, with missing data comprising less than
25%. Our investigation covers areas both infected and uninfected with Xylella Fastidiosa. In
the infected region, we examined 989 pixels, while in the uninfected area, 1011 pixels were
analyzed. It is worth noting that these two types of areas, the infected and the uninfected,
are geographically distinct and do not overlap or adjoin one another. The selection of these
areas was guided by their homogeneity in terms of topography and climate conditions.
These regions exhibit relatively flat terrain, especially in the southeastern part of Apulia
(where infected olive trees have been identified) and in the northeastern part of Apulia, as
well as along the Ionian coast of Basilicata (where no evidence of Xylella Fastidiosa has been
reported to date). In contrast, the northeastern part of Basilicata features hilly topographical
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features and is characterized by a typical Mediterranean climate with cold winters and hot,
dry summers.

We employed MODIS ET, as recommended by NASA, as a proxy indicator associated
with vegetation water status, following the approach outlined in [30–32]. This choice was
made due to the recognized utility of MODIS products in estimating ET, as indicated in [33].

3. Methods
3.1. The Singular Spectrum Analysis

There are several techniques for decomposing a time series into a certain number of
independent components; among these, singular spectrum analysis (SSA) [34] represents
an efficient and well-known decompositional method that is based on phase-lagged copies
of the series. The independent components obtained by applying the SSA can be easily
recognized as a slowly changing trend, oscillatory components, and structureless noise [35].

Let us consider a time series yi (i = 1, . . . , N) and a lag M; then, the Toeplitz lagged
correlation matrix can be constructed:

cij =
1

N − |i − j|

N−|i−j|

∑
k=1

ykyk+|i−j|, 1 ≤ i, j ≤ M (5)

Sorting its eigenvalues λk in decreasing order, the corresponding eigenvectors Ekj
where j and k vary from 1 to M are used to calculate the k-th principal component i,
0 ≤ i ≤ N − M:

aik =
M

∑
j=1

yi+jEjk for 0 ≤ i ≤ N − M (6)

and the k-th reconstructed component of the time series:

Rk =
1
M

M

∑
j=1

ai−j,kEjk for M ≤ i ≤ N − M + 1 (7)

Since the eigenvalue λk represents the fraction of the total variance of the original series
explained in the k-th reconstructed component Rk, the decreasing order of the eigenvalues
also reflects the decreasing order of the reconstructed components by the fraction of the
total variance of the series [36]. SSA requires that the lag M is properly selected. Khan and
Poskitt [37] calculated the maximum M = (log N)c, 1.5 ≤ c ≤ 2.5.

3.2. The Fisher Information Measure and the Shannon Entropy

The Fisher–Shannon analysis relies on the computation of two informational quantities:
the Fisher information measure (FIM) and Shannon entropy (SE). These metrics gauge the
local and global characteristics, respectively, of the probability distribution function of the
time series. FIM serves as an indicator of order and organization [38], whereas SE serves as
an indicator of uncertainty or disorder in the series [39]. Their definitions are as follows:

FIM =
∫ +∞

−∞

(
∂

∂x
f (x)

)2 dx
f (x)

(8)

SE =
∫ +∞

−∞
fX(x)log( fX(x))dx (9)

where f(x) is the distribution of the series’ values x. The Shannon entropy power NX, which
is always positive, is generally used instead of SE:

NX =
1

2πe
e2SE. (10)
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The Fisher information measure and NX are interconnected through the isoperimetric
inequality expressed as FIM · NX ≥ D [40], where D represents the dimension of the space
(which is 1 for time series). In the so-called Fisher–Shannon Information plane (FSIP) the
axes are FIM and NX, and it can be employed to graphically represent time series data as
points constrained to the domain FIM · NX ≥ 1. Notably, the minimum value of FIM · NX
is 1, which occurs only for series with a Gaussian distribution. As a result, the FSIP, by
combining the global and local characteristics of SE and FIM, offers a valuable approach to
differentiate between various temporal dynamics within time series data [40].

3.3. The ROC Analysis

Receiver operating characteristics (ROC) analysis is employed to assess classifier
performance. In binary classification scenarios, instances are categorized as either “positive”
or “negative”, and a classifier assigns these instances to predicted classes.

When evaluating a classifier against an instance, four potential outcomes exist. The
instance may be categorized as follows: true positive (TP) if it is positive and correctly
classified as positive; false negative (FN) if it is positive but incorrectly classified as negative;
true negative (TN) if it is negative and correctly classified as negative; or false positive (FP)
if it is negative but inaccurately classified as positive [41]. We can define the following
ratios: the true positive rate (TPr) and the false positive rate (FPr)

TPr =
Number o f TP
Total positives

, (11)

FPr =
Number o f FP
Total negatives

. (12)

An ROC curve is a graphical representation consisting of the TPr on the y-axis and
the FPr on the x-axis. In ROC space, the point (0, 1) signifies perfect classification, and
one point is considered better than another if it lies to the northwest of the first point. The
diagonal line, represented by the equation y = x, corresponds to random classification,
while an effective classifier is represented by a point located in the upper region of the
ROC space.

Certain classifiers provide a score, which is a numeric value indicating the degree to
which an instance belongs to a class. A scoring classifier can be used with a threshold to
transform it into a binary classifier. Depending on the relationship between the output score
and the threshold, the classifier assigns instances as positive or negative. Each threshold
value generates a point in ROC space; by varying the threshold across a range of values, a
curve can be traced through ROC space, and this curve is called the ROC curve. The area
under the ROC curve (AUC) is commonly used to quantify the classifier’s performance.

Every point on the ROC curve represents a TPr/FPr trade-off associated with a specific
threshold. Typically, to maximize this trade-off, the point on the ROC curve closest to (0, 1)
is selected, and the corresponding threshold is used for classification.

4. Results

After normalizing the data (i.e., scaling to obtain a mean of 0 and a standard deviation
of 1), we applied the Fisher–Shannon method to the time series of each pixel. Figure 2
displays the distributions of FIM and SEP for infected and uninfected sites, as well as
FSIP, respectively. The distributions of FIM and SEP for the infected sites are both more
peaked and narrower compared to those for the uninfected sites. On average, the FIM
of the infected site’s ET time series is smaller, while the SEP is larger than that of the
uninfected sites. Additionally, the distributions of FIM and SEP for the uninfected sites
exhibit more skewness compared to those for the infected sites. When examining FSIP, it
becomes evident that the ET time series of the uninfected sites deviate more significantly
from Gaussianity in comparison to those of the infected sites.
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We analyzed the receiver operating characteristic (ROC) curve for both FIM and SEP
to assess their ability to discriminate between infected and non-infected sites. ROC curves
are widely recognized for evaluating the performance of binary classifiers [41] based on
the relationship between the true positive rate (TPR) and false positive rate (FPR).
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Figure 2. Distribution of FIM (a) and SEP (b) for infected and unifected sites. (c) Fisher–Shannon
information plane for infected and uninfected sites.
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The construction of the ROC curve proceeds as follows: First, all the values of the
chosen parameter (FIM or SEP) are arranged in ascending order. A threshold F is selected
within the range of values, from the minimum to the maximum. Since the average value of
SEP/FIM for the infected pixels is larger/smaller than that of the uninfected pixels, a TP is
an SEP/FIM value from an infected pixel that is above/below F, while a FP is a SEP/FIM
value from an uninfected pixel that is above/below F. An FN is an SEP/FIM value from an
infected pixel that is below/above F, and a TN is an SEP/FIM value from an uninfected
pixel that is below/above F. Thus, for each value of the threshold F within the range of
minimum to maximum, the TPr and FPr can be calculated, yielding one point on the ROC
curve. By varying the threshold value across the entire range and repeating this process, the
complete ROC curve is generated. Following the construction of the ROC curve, the optimal
threshold value corresponds to the point on the ROC curve closest to the coordinates (0, 1).
Figure 3 displays the ROC curves for the FIM and SEP of the original ET time series. The
optimal thresholds for FIM and SEP are found to be 2.45 and 0.81,, respectively. Notably,
the TPr for FIM is slightly higher than that for SEP, while the FPr is lower. The AUC for
FIM is relatively high at 0.81, indicating better discriminatory performance compared to
SEP, which has an AUC of 0.69.

The ET time series exhibit oscillating variability attributed to annual and six-month
cycles, reflecting phenological vegetation cycles correlated with meteorological and climatic
oscillations. To investigate the intrinsic temporal dynamics of vegetation that are not
influenced by meteorological and climatic oscillations, we filtered out the annual and
six-month cycles and analyzed the resulting residuals. To filter out these two cycles, we
applied singular spectrum analysis to each pixel time series. SSA is well-suited to finding
oscillatory components in short time series that are also affected by gaps, as is the case in
our study.

The singular spectrum analysis requires that the lag M be properly selected. Due to
the 8-day sampling time, we selected a lag of M = 46, which guarantees the detection of
annual and sub-annual components; furthermore, this value fulfills Khan and Poskitt’s
criterion [37]. We applied SSA to each pixel time series for the infected and uninfected
areas. Figure 4 illustrates, as an example, the steps of the SSA method applied to a pixel
time series of the infected area. After normalizing the time series (Figure 4a), we calculated
the eigenvalues (Figure 4b) that, when sorted in decreasing order, correspond to the
components whose contribution to the total variance of the series decreases with the order
of the eigenvalues. The major contribution to the variance of the series comes from the first
four components; the first and second components represent the yearly cycle (Figure 4c),
contributing to the total variance by about 24% each, while the third and fourth components
represent the 6-month cycle (Figure 4d), contributing to the total variance by about 16%
each. After removing the yearly cycle (subtracting the first and second components from
the original normalized time series), we obtain the residual (Figure 4e), and after removing
the third and fourth components as well, we get the residual (Figure 4f). We calculated
the FIM and SEP for each residual time series (both those obtained after eliminating just
the annual component and those obtained after also removing the 6-month components).
Figure 5 shows the comparison between the FSIPs of the original and residual series.
The informational pattern observed in the original data is also reflected in the residual
data. The residual ET time series of the uninfected sites deviate significantly more from
Gaussianity compared to those of the infected sites. Furthermore, there is a tendency for
the SEP to decrease from the original case to that with the yearly component removed
and further to that with the 6-month component also removed, while the FIM, on the
contrary, tends to increase. Since the FIM can be considered as describing the “locality” of
the distribution of the data, meaning that it quantifies its sensitivity to local fluctuations
(while the SEP describes the “globality” of the distribution, quantifying its sensitivity to
global variations), the obtained FSIP pattern could suggest that the distribution of the
residual data is more sensitive to local variations, which are overwhelmed by the dominant
annual and semi-annual cycles in the original data.
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Figure 3. Receiving operating characteristic curve of FIM (a) and SEP (b) for the original data.

Figure 6 shows the distribution of FIM and SEP, along with their respective ROC
curves, for the residual obtained after removing the annual cycle. Figure 7 shows the same
for the residual obtained after removing both the annual and 6-month cycles. The values
of the optimal threshold, TPr, FPr, and AUC are displayed in Tables 1 and 2. Comparing
the results, we observe that the best performance among the two classifiers is achieved
with the residuals obtained after removing just the annual cycle. For the FIM, using an
optimal threshold of 2.96 yields the highest TPr (0.83), the lowest FPr (0.22), and the largest
AUC (0.87). Regarding the SEP, while the TPr for the threshold 0.43 is not the highest (0.72
compared to 0.74 when both cycles are removed), it still yields the lowest FPr (0.16) and the
largest AUC (0.86).
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Figure 4. Steps of the SSA applied to a pixel time series for the infected area: (a) Normalized
pixel time series. (b) Spectrum of the obtained eigenvalues; the first two eigenvalues correspond
to the annual components (shown in (c)), while the third and fourth eigenvalues correspond to the
6-month components (shown in (d)). (e) Residual time series after removing the first two components
corresponding to the annual cycle. (f) Residual time series after removing the first four components
corresponding to the annual and 6-month cycles.
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Figure 6. Distribution of FIM (a) and SEP (c) for infected and uninfected sites and (b,d) their receiving
operating characteristic curves after filtering out the annual components.
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Table 1. Results of the ROC analysis for FIM from each dataset. The AUC is the area under the ROC
curve. The threshold, TPr, and FPr correspond to the point of the ROC curve closest to (0, 1).

Data Threshold TPr FPr AUC

Original 2.45 0.77 0.27 0.81

1-year component removed 2.96 0.83 0.22 0.87

1-year and 6-month components removed 5.81 0.76 0.34 0.74
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Figure 7. Distribution of FIM (a) and SEP (c) for infected and uninfected sites and (b,d) their receiving
operating characteristic curves after filtering out the annual and 6-month components.

Table 2. Results of the ROC analysis for SEP of each dataset. The AUC is the area under the ROC
curve. The threshold, TPr, and FPr correspond to the point of the ROC curve closest to (0, 1).

Data Threshold TPr FPr AUC

Original 0.80 0.70 0.39 0.69

1-year component removed 0.43 0.72 0.16 0.86

1-year and 6-month components removed 0.20 0.74 0.42 0.65
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5. Discussion

The evapotranspiration process is influenced by several factors, including plant species,
canopy characteristics, plant population, degree of surface cover, plant growth stage, irriga-
tion management, soil physical, hydraulic and chemical characteristics, disease pressure,
and geographic location including elevation, latitude, and longitude. Among all of the
aforementioned factors, ET is primarily driven by climatic conditions and plants’ conditions
(plant health and soil–water status) and interactions with the climate [42]. The two main
processes governing evapotranspiration are the soil evaporation and canopy transpiration,
whose contribution to the evapotranspiration has been calculated with slightly different
results depending on the type of crop vegetation, period of observation, etc. For instance,
Wang et al. [43] for a maize crop found that soil water evaporation and crop transpiration
had average values of 0.9 and 4.0 mm/d, respectively, with a relative dominance of the
transpiration over the soil evaporation. López–Olivari et al. [44] evaluated the partitioning
of actual evapotranspiration in soil evaporation and transpiration over a superintensive
drip-irrigated olive orchard in Cile and found that ratios of transpiration and soil evapora-
tion to actual evapotranspiration ranged ranged between 0.64–0.74 and 0.26–0.36. Tezza
et al. [45] measured and modelled soil evaporation in olive orchards in Portugal and found
that, during a typical summer, the ratio between soil evaporation and canopy transpiration
was 0.3 on average, and the ratio between soil evaporation and evapotranspiration ranged
between 0.3 and 0.15. However, they also asserted that “the complexity of the canopy
geometry with variable positional shadings along the days and seasons, overlapping with
the individual geometry of the wet surfaces and variable turbulence, makes it very difficult
to generalize models for evaporation below crowns”; in other words, the canopy plays
an important role in the evapotranspiration process. In fact, Imark [42] highlighted that
soil evaporation has a maximum during the early vegetation growing season and then
gradually decreases as the leaf area increases, reaching the minimum when the canopy
completely shades the soil surface; as the crop canopy develops and covers the soil surface,
evaporation from the soil surface decreases and transpiration increases. In the cases ex-
amined in our study, the canopy of infected olive trees is almost absent since the effect of
Xylella is to dry up the leaves of the tree. Therefore, this effect leads to lower evaporation
and transpiration of the canopies of infected trees compared to those of the healthy ones
and to relatively higher soil evaporation in the infected area compared to the healthy one.

Timely baseline information for comprehending the impact of parasite disturbances
on olive tree change and dynamics is essential for supporting the formulation of effective
strategies to address and combat such attacks. This is particularly relevant for Xylella
Fastidiosa, as, since its initial identification in Apulia, it has infected approximately 4 million
trees in the outbreak area [6]. The bacterium has resulted in, and continues to cause,
substantial economic losses in terms of olive trees and oil production. It has also led to
dramatic transformations in the Mediterranean landscape, where olive trees represent a
deeply ingrained aspect of cultural heritage and a significant component of the flourishing
tourism industry. Considering only the Apulia area, Xylella Fastidiosa could potentially
inflict damages exceeding 5.2 billion euros over the next 50 years if the epidemic is not
effectively managed with appropriate control measures and the replacement of infected
plants [6]. The rapid spread of the pathogen and its evident high polyphagy suggest a
concerning potential for extension into other regions across Europe and the Mediterranean.
Additionally, there is the possibility of an expanded range of host species, leading to
variations in the epidemiology and manifestations of its pathogenicity.

Thus, the characterization of the impact of this parasite on olive vegetation is extremely
important in order to counteract its diffusion, and the MODIS ET data seems to enable us
to better characterize and discriminate olive orchard areas infected by Xylella Fastidiosa
from the uninfected ones.

The potential use of ET data for monitoring pest and parasite attacks at both landscape
and field scales has been investigated by Telesca et al. [46,47], who showed the effectiveness
of MODIS ET and other vegetation indices in assessing the deterioration of pine tree
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vegetation caused by the parasite Toumeyella Parvicornis. Furthermore, the application of
multifractal detrended fluctuation analysis at MODIS ET time series has suggested the
employment of this satellite product as a good indicator of pathogenic status induced by
Xylella Fastidiosa in olive trees [20,48].

According to Ciervo et al. [49], Xylella Fastidiosa is not the primary cause of the rapid
desiccation of olive trees, since it damages plants that have already been weakened by
environmental stressors such as reduced rainfall, excessive use of chemical herbicides, and
soil organic matter depletion. These critical factors collectively favor those critical environ-
mental conditions for the plants, diminishing their vigor and increasing vulnerability to
parasites and infections, like those caused by Xylella Fastidiosa.

Certainly, the use of ET appears promising for characterizing and capturing the impact
of Xylella Fastidiosa infection on plants. Given that one of the noticeable effects of this
infection is the rapid desiccation and death of the plant, ET proves to be well-suited for
providing insights into the water status of plants. It serves as an indirect measure of the
loss of water content in vegetation. Therefore, considering that the primary symptom of
Xylella Fastidiosa-induced disease is rapid desiccation, ET is a valuable tool for detecting the
presence of this bacterium.

The application of the Fisher–Shannon method to pixels encompassing both healthy
and Xylella Fastidiosa-infected olive groves in southern Italy has yielded insights into
the temporal dynamics of ET data. On average, the ET time series of infected sites are
characterized by a greater SEP and a lower FIM compared to those of healthy sites (Figure 8).
Given that FIM and SEP relate to the local and global properties of the ET distribution,
respectively, the larger SEP in infected sites suggests that global variations dominate
their distribution. Conversely, the distribution of ET series for healthy sites is implied
to be dominated by local variations. Figure 9 shows the distributions of the original
normalized ET data for infected and uninfected pixels. The ET distributions of uninfected
sites display a more prominent peaked behavior than those of infected sites, leading to a
greater sensitivity to local variations in the ET distributions of non-infected pixels compared
to the infected ones.

The observed disparity in informational response between the two types of sites may
be linked to distinct nutritional processes, particularly the significant damage inflicted
on the nutritional system in infected trees. The plant’s nutritional system is based on
mechanisms governing the flux of water and nutrients from the roots to the stem and leaves.
Consequently, a healthy tree is characterized by a complex nutritional system that engages
in dynamic interactions with the environment; therefore, a healthy tree would exhibit
greater efficiency in reacting to local environmental factors. This heightened adaptability
implies a higher resilience to external influences, resulting in increased heterogeneity,
reflected in a larger FIM or a lower SEP (Figure 8).

The ROC analysis indicates the good performance of the two informational parame-
ters (FIM and SEP) in distinguishing between healthy and Xylella Fastidiosa-infected sites
(Figure 3). However, it suggests that FIM is more effective than SEP for detecting signs
of Xylella Fastidiosa infection. The findings confirm and, in fact, enhance the outcomes
observed in [20,48], where Fourier filtering of seasonal patterns was applied to the dataset.

In all of the examined sites, whether infected or uninfected, there is an observed cyclic
component in the time variability of evapotranspiration (ET), and this is likely associated
with meteorological and climatic seasonal cycles. Two distinct periodicities have been
identified, specifically the annual and semi-annual cycles. Figure 10 shows the monthly
means of the original ET series averaged over all the pixels for the uninfected and infected
sites. The semi-annual periodicity is more pronounced in the infected pixels compared to
the uninfected ones; in fact, the monthly means exhibit two distinct peaks in April and
October. The heightened semi-annual pattern observed in infected sites is likely attributed
to the varying vegetation status between uninfected and infected trees. A pixel covering an
olive grove comprises not only olive trees but also background vegetation. Consequently,
both olive trees and background vegetation contribute to the ET of a pixel. Until April/May,
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the ET in both infected and uninfected olive groves rises in a similar manner, primarily
due to the flowering of the background vegetation, which plays a predominant role in
contributing to the overall ET. In summer, the background vegetation begins to dry, leading
to a decrease in ET. However, this decline is more pronounced in infected sites. This is
attributed to the lower contribution of olive canopies to the overall ET in infected sites
compared to uninfected sites. Consequently, this disparity contributes to the emergence
of a second peak in October, likely triggered by a re-flowering of background vegetation
following rainfall. The distinct vegetational dynamics observed in infected and uninfected
olive groves account for the enhanced FIM/SEP performance of ET in distinguishing
between infected and uninfected trees after retaining the six-month cycle while eliminating
only the annual cycle (see Tables 1 and 2).
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Figure 8. Averages of the FIM (a) and SEP (b) of the normalized ET for infected (blue) and uninfected
(red) areas. The labels A, B, and C respectively indicate the original series, the series with the one-year
cycle removed, and the series with both one-year and six-month cycles removed.
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Figure 9. Distribution of normalized ET for uninfected (a) and infected (b) sites.
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Figure 10. Monthly ET means averaged over the analysed pixels for the uninfected (a) and infected
(b) sites.

6. Conclusions

Our study aimed to distinguish between healthy and Xylella Fastidiosa-infected pixels
covering olive groves in southern Italy using the Fisher–Shannon analysis, an informational
method of analysis of time series. On average, the ET time series of Xylella Fastidiosa-
infected sites exhibited a larger SEP compared to those of uninfected sites; conversely,
the FIM was lower on average. This pattern is attributed to the distribution of ET values
for both classes of pixels, with uninfected sites showing a more peaked distribution than
infected ones. This behavior can be explained by the greater sensitivity of ET in uninfected
sites to local distribution variations compared to that in infected sites.

The ROC analysis highlighted the good performance of the two informational pa-
rameters (FIM and SEP) in discerning between healthy and Xylella Fastidiosa-infected sites.
Nonetheless, it indicated that FIM exhibits superior effectiveness compared to SEP in
detecting symptoms of Xylella Fastidiosa infection.

As a concluding remark, our findings emphasize the importance of ET as a valuable
indicator for diagnosing the extent of vegetation deterioration resulting from pest and
parasite attacks. This underscores the critical role of ET as one of the most useful vege-
tation indices in assessing and monitoring the impact of such ecological challenges. Its
importance has already been acknowledged across diverse fields, including climate change
investigations, environmental monitoring, risk estimation, land management, agricultural
practices, and food security. Consequently, these findings contribute to the development
of operational tools for monitoring the biophysical parameters of vegetation status. This
broader application reinforces the versatility and practical utility of ET in assessing and
managing various aspects of ecological and agricultural systems.
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