
Citation: McLaren, K.; Sedman, J.;

McIntyre, K.; Prospere, K. Long-Term

Spatial Pattern Predictors (Historically

Low Rainfall, Benthic Topography,

and Hurricanes) of Seagrass Cover

Change (1984 to 2021) in a Jamaican

Marine Protected Area. Remote Sens.

2024, 16, 1247. https://doi.org/

10.3390/rs16071247

Academic Editor: Jaroslaw Tegowski

Received: 22 February 2024

Revised: 15 March 2024

Accepted: 29 March 2024

Published: 31 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Long-Term Spatial Pattern Predictors (Historically Low Rainfall,
Benthic Topography, and Hurricanes) of Seagrass Cover Change
(1984 to 2021) in a Jamaican Marine Protected Area
Kurt McLaren 1,*, Jasmine Sedman 1, Karen McIntyre 2 and Kurt Prospere 3

1 Department of Geography and Environmental Sciences, Northumbria University, Ellison Place,
Newcastle upon Tyne NE1 8ST, UK; jasmine.sedman@hotmail.co.uk

2 CL Environmental Co., Ltd., Kingston 10, Jamaica; karenvironment@yahoo.com
3 Caribbean Biodiversity Fund, Cheshire WA14 2DT, UK; kprospere@caribbeanbiodiversityfund.org
* Correspondence: kurt.mclaren@northumbria.ac.uk

Abstract: Climate change and other anthropogenic factors have caused a significant decline in
seagrass cover globally. Identifying the specific causes of this decline is paramount if they are to
be addressed. Consequently, we identified the causes of long-term change in seagrass/submerged
aquatic vegetation (SAV) percentage cover and extent in a marine protected area on Jamaica’s southern
coast. Two random forest regression (RFr) models were built using 2013 hydroacoustic survey SAV
percentage cover data (dependent variable), and auxiliary and 2013 Landsat 7 and 8 reflectance data
as the predictors. These were used to generate 24 SAV percentage cover and benthic feature maps
(SAV present, absent, and coral reef) for the period 1984–2021 (37 years) from Landsat satellite series
reflectance data. These maps and rainfall data were used to determine if SAV extent/area (km2) and
average percentage cover and annual rainfall changed significantly over time and to evaluate the
influence of rainfall. Additionally, rainfall impact on the overall spatial patterns of SAV loss, gain,
and percentage cover change was assessed. Finally, the most important spatial pattern predictors of
SAV loss, gain, and percentage cover change during 23 successive 1-to-4-year periods were identified.
Predictors included rainfall proxies (distance and direction from river mouth), benthic topography,
depth, and hurricane exposure (a measure of hurricane disturbance). SAV area/extent was largely
stable, with >70% mean percentage cover for multiple years. However, Hurricane Ivan (in 2004)
caused a significant decline in SAV area/extent (by 1.62 km2, or 13%) during 2002–2006, and a second
hurricane (Dean) in 2007 delayed recovery until 2015. Additionally, rainfall declined significantly by
>1000 mm since 1901, and mean monthly rainfall positively influenced SAV percentage cover change
and had a positive overall effect on the spatial pattern of SAV cover percentage change (across the
entire bay) and gain (close to the mouth of a river). The most important spatial pattern predictors
were the two rainfall proxies (areas closer to the river mouth were more likely to experience SAV
loss and gain) and depth, with shallow areas generally having a higher probability of SAV loss and
gain. Three hurricanes had significant but different impacts depending on their distance from the
southern coastline. Specifically, a hurricane that made landfall in 1988 (Gilbert), resulted in higher
SAV percentage cover loss in 1987–1988. Benthic locations with a northwestern/northern facing
aspect (the predominant direction of Ivan’s leading edge wind bands) experienced higher SAV losses
during 2002–2006. Additionally, exposure to Ivan explained percentage cover loss during 2006–2008
and average exposure to (the cumulative impact of) Ivan and Dean (both with tracks close to the
southern coastline) explained SAV loss during 2013–2015. Therefore, despite historic lows in annual
rainfall, overall, higher rainfall was beneficial, multiple hurricanes impacted the site, and despite
two hurricanes in three years, SAV recovered within a decade. Hurricanes and a further reduction in
rainfall may pose a serious threat to SAV persistence in the future.
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1. Introduction

Seagrasses are a group of flowering plants that can exist fully submersed in a marine
environment [1,2]. However, seagrasses are largely found in shallow areas with clear waters
due to their dependence on light for photosynthesis and because there is greater light
attenuation with increased depth and turbidity [3]. They provide key ecological services
including sediment stabilization, organic carbon production and distribution, nutrient
cycling, and many other services in the marine environment [1]. They are one of the most
productive ecosystems in the world, as they provide shelter and food to communities of
animals [2,4,5]. When compared with adjacent bare substrata, a larger number and a greater
diversity of fish are generally found in dense seagrass beds [4,6]. Seagrass meadows are
therefore an important nursery habitat for many commercially important fish species [5];
as a result, they are vital for commercial fisheries, as they support the productivity of 20%
of the biggest fisheries in the world [2,5].

Seagrasses are, however, being significantly impacted by anthropogenic activities in
coastal zones and by climate change [1,2,7]. As a result, globally, seagrass extent/area is
largely declining [8]. There is therefore a need to implement effective conservation and man-
agement strategies to stymie the loss of these important marine ecosystems and to restore
their functionality [2,9]. One commonly used/implemented strategy is the establishment of
marine protected areas (MPAs). But establishing MPAs alone may not be sufficient, as some
of the threats to seagrasses are terrestrial in origin [2]. Addressing these threats will re-
quire integrated land–sea or ridge-to-reef conservation planning [10–12], but this is seldom
incorporated in MPA management/conservation efforts [10]. Moreover, the frequency of
high-intensity storms [1,13,14], the duration, frequency, and intensity of droughts [15], and
rainfall variability [16] have increased due to climate change. As a result, in some tropical
areas, and in the Caribbean in particular, tropical storms, cyclones/hurricanes [17–21],
droughts [19,21], and extreme rainfall events [22] are increasingly becoming important
threats to the persistence of seagrass beds, as they can result in increased stress, catastrophic
losses/die off, and degradation despite added protection.

Effective management and conservation of seagrasses affected by climate change
and anthropogenic disturbances is contingent on the availability of baseline data on their
cover, distribution, and dynamics [20] and the impact of threats. These data can be used
to inform or guide conservation/management strategies, but they are rarely available [7].
Also, there is a need for improved spatial assessments of seagrasses, and this should be
complemented by a more extensive assessment of seagrass health and threats, so that
management or conservation actions can be implemented to reverse their impacts [2].
Remote sensing, particularly optical remote sensing, can provide frequent data on sea-
grass distribution over a wide range of temporal and spatial scales. Maps generated from
optical remote sensors are often used to assess and document changes due to natural
hazards [17,20] and anthropogenic activities [23,24]. These maps can be used to inform
management, conservation, and planning decisions or actions pertaining to the implemen-
tation of a management plan [25]. However, optical remote sensors are primarily used
to produce categorical/thematic maps, which are essentially binary measures/indicators
of seagrass presence/absence [26]. Percent cover is generally considered to be a better
measurement parameter than presence/absence [26], as it is a good, accurate, sensitive,
and responsive measure or indicator of spatial and temporal changes in seagrass condition
and abundance [21]. Additionally, quantifying the continuous heterogeneity in seagrass
cover will enhance our capacity to describe real landscapes and increase our understanding
of seagrass spatial dynamics [26].

Generating maps of percentage cover from optical sensor data will require extra data
and/or analysis [27–29], or alternatively, active remote sensors, such as single- or multibeam
sonars (SBES or MBES) can be used [26,30,31]. The increased availability of active remote
sensors, particularly SBES, has increased our ability to acquire and/or generate spatially
explicit datasets of seagrass percentage cover (and height) and benthic topography cost-
effectively [30]. In addition, hydroacoustic percentage cover data can be combined with
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passive remote sensors to produce maps of seagrass percentage cover [31]. Moreover, GIS
data layers of the spatial extent and/or the magnitude of threats or possible predictors
of seagrass change can also be obtained and inputted into statistical spatial or spatio-
temporal regression models together with other predictors (benthic topography) and maps
of seagrass dynamic change (loss, gain, or percentage cover change) and used to identify
spatial pattern predictors or predictors of spatial change [24]. Spatial pattern predictors
or spatial pattern causes/drivers are one of several groups of factors that are generally
used within the land use and landcover change (LULC) framework to explain the cause
or drivers of change [32]. These factors generally represent the biophysical characteristics
of a landscape that are neither the root cause nor direct human actions that lead to land
change, but instead they determine where changes will occur [32,33]. If applied to seagrass
changes within a marine environment, they can be used to represent biophysical factors
(such as benthic topography, climate, and extreme weather/climatic events (sensu [33])
that are similarly neither the root cause nor direct human actions that can determine where
changes will occur on the benthos. This will help to increase our understanding of the
patterns and causes of changes and can be used to inform reasonable and specific planning
for sustainable management [34].

Despite increased protection globally, climate change and other anthropogenic factors
have caused a significant decline in seagrass cover. Consequently, it is important to deter-
mine how these factors influence seagrass cover change so that they are to be addressed.
The focus area of our study was the Bluefields Bay Special Fish Conservation Area (BBS-
FCA), an MPA found on the southwestern coast of Jamaica. Despite being protected, the
site was impacted by past hurricanes, and there is evidence that a river that drains into the
bay might also be impacting seagrass cover [30]. Therefore, the aim of this study was to
identify the most important predictors of SAV spatial pattern change in the MPA. To meet
our stated aim, we (1) built random forest models that can predict SAV percentage cover
over time (37 years) using a method outlined in [31] and data from the Landsat satellite
series and (2) determined how rainfall, benthic topographic parameters, and hurricanes
influenced seagrass change. The results of this study can be used to inform management,
conservation, and planning decisions/actions.

2. Materials and Methods
2.1. Study Site

The study area is the Bluefields Bay Special Fish Conservation Area (BBSFCA) (18◦10′02′′N,
78◦02′02′′W). It is an MPA that was established on 28 July 2009, and it is found on the south-
west coast of Jamaica in the parish of Westmoreland, in southwestern Jamaica (Figure 1a,b).
It is 13.82 km2 in size [30] and a large percentage of the shoreline/intertidal zone comprises
mangrove stands (41.7%), followed by sandy beach (35.5%), and the remaining shoreline
consists of naturally occurring limestone bedrock and cliffs or manmade structures includ-
ing rip rap, sea walls, and boulder/rubble (22.8%) [35]. The predominant benthic features
in the bay include seagrass beds dominated by Thalassia testudinum and a smaller area
dominated by Halodule wrightii, unconsolidated bare sediment with sparse algal cover,
including Halimeda sp., unconsolidated bare sediment, and coral reef [30]. There were three
hurricanes that may have affected Bluefields Bay during the study period. These included
Hurricanes Gilbert, Ivan, and Dean. Hurricane Gilbert made landfall on 12 September 1988,
and had an average windspeed of 204–213 km h−1. Hurricanes Ivan and Dean passed at a
distance of 40.3 km and 40.9 km, respectively, from the eyes of the two hurricanes to the
closest point along the southern coastline of Jamaica on 11 September 2004, and 20 August
2007, respectively, and had an average windspeed of 241–250 km hr−1 and 231 km h−1,
respectively [36] (Figure A4).
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Figure 1. Maps showing (a) the Caribbean region, (b) the location of the Bluefields Bay Special
Fish Conservation Area (BBSFCA) on the southwestern coast of Jamaica, (c) location of reference
samples used for accuracy assessments, and (d) the hydroacoustic survey tracks. Blue box indicates
the location of Jamaica and the study site.
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2.2. Satellite Imagery

In total, 27 satellite images of the study site from 1984 to 2021 (37 years) were down-
loaded from the United States Geological Survey (USGS) website (https://earthexplorer.
usgs.gov/; accessed on 12 February 2023) (Table A1). We only chose images with no
turbidity. Also, we tried as much as possible to include images that were collected during
the same time of the year, corresponding to the first (January–mid-April) or the second
dry season (July to August) to ensure consistency, but several images used were collected
during the major rainy season (September–December). Nevertheless, comparisons between
and among images from different years can be improved if the atmospheric conditions at
the time when the images were captured are accounted for or removed. As such, Landsat
Collection 2 Level 2 images, derived from an atmospherically corrected surface reflectance
image product, were downloaded and used. The image bands were stacked and reprojected
to the local datum, JAD 2001. The 2006 and 2013 Landsat 7 images had missing data (SLC
off) and therefore, the mosaic function in ArcGIS Pro (2.5.1) was used to merge two 2006
and 2013 images that were collected three and five months apart (see Table A1), respectively,
to fill in the gap of these missing data.

2.3. Hydroacoustic Auxiliary Data

Processed hydroacoustic survey data from [30,35] were used in this study. The hy-
droacoustic survey was conducted during the period July 26–2 August 2013 and the data
were collected using a 206 kHz Biosonics DT-X split-beam side-mounted transducer [30].
The transducer had a beam width of 7◦, which approximated to a footprint size of 0.01 to
0.05 m2 at a depth of 1–2 m [30] and it was multiplexed to allow for simultaneous sampling
of macrophytes (0.4 m/s pulse duration) and other benthic features [30]. During the survey,
horizontal positioning data (±0.30 m) were obtained from a Fugro Starfix HP Differential
GPS and the survey was conducted along predefined transect tracks with 50 m spacings,
covering 294.178 km [30] (Figure 1d). The hydroacoustic data were processed using two
software packages: Visual Bottom Typer (VBTTM, Version 1.12; Biosonics Inc., Seattle, WA,
USA), which was used to derive depth values that were spatially referenced and were sub-
sequently corrected for tidal differences and reprojected to the local datum, and EcoSAVTM

(v1.0, Biosonics Inc., Seattle, WA, USA), which was used to derive percentage seagrass or
submerged aquatic vegetation (SAV) cover data that were also spatially referenced [30].

The spatially referenced, reprojected, and tide-corrected depth data points were in-
terpolated using universal kriging to create a bathymetric surface model (BSM) [30], from
which a bathymetric position index (BPI) and a rugosity map were created. The BPI map
was created after applying the “Land Facet Corridor Designer Tools” for ArcGIS 10 [37]
to the BSM layer [31]. The BPI map data have continuous values that change from nega-
tive to positive; this represents a transition from valleys to slopes and then to ridge tops.
“Block Statistics” was used to create the rugosity map in ArcGIS 10.6 [31]. Grey Level
Co-Occurrence Matrix (GLCM) maps were generated in the R programming language
environment versions 4.2.1 and 4.3.1 [38,39] using the “glcm” package [40]. The package
was used to calculate texture statistics (mean and variance) derived from grey-level co-
occurrence matrices (GLCMs) for bands 1, 2, and 3 for Landsat 4–5 and 7 images, and bands
1, 2, 3, and 4 for Landsat 8 images. Specifically, average GLCM textures in all directions
were calculated using shifts of 45 degrees for the image bands, and these were outputted as
maps of mean and variance GLCM textural measures.

2.4. Random Forest Models and Model Validation

SAV percentage cover maps were produced by integrating the spatially referenced
SAV data with Landsat image reflectance data and auxiliary data using random forest
regression (RFr) models following [31]. Before the SAV maps were produced, the SAV data
were split into training (78% or 107,076 data points) and validation (12% or 14,853 data
points) data. The validation data/transects were evenly distributed across the bay. They
were selected using a random start, with every tenth data point transect selected and used

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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as a validation transect (16 transects in total), together with transects running perpendicular
to the shoreline (4 in total) [30,35]. Additionally, before the RFr models were built, the
coordinates of the track points of the SAV percentage cover data were generated. These
were used to extract data from maps of the auxiliary data (BSM [depth] and BPI) and band
reflectance and GLCM mean and variance data from the images for the year 2013 (bands
1–3 for the composite Landsat 7 image with the missing data filled in and bands 1–4 for
Landsat 8 image). Images from the year 2013 were used because the hydroacoustic survey
was conducted during this time. Two RFr models were built using the “randomForest”
package [41] in R, both of which included SAV percentage cover data at each track point as
the dependent variable and BSM and BPI as predictors. One of the two models included
the extracted 2013 composite Landsat 7 band reflectance and GLCM data as additional
predictors, and the other RFr model included the 2013 Landsat 8 band reflectance and
GLCM data as additional predictors. After each model was built and run, the predicted
SAV cover at each validation data point was generated by the models. These were then
compared to the observed SAV cover at each validation data point, and the following
validation criteria were generated: mean absolute percentage error (MAPE), root mean
squared error (RMSE), mean absolute error (MAE), mean squared error (MSE), bias (a
measure of consistent under- or over-forecasting; BIAS), relative bias (rBIAS), and relative
mean separation (rMSEP). See [42] for the formulations. Small values of MSE, RMSE, MAE,
rBIAS, and rMSEP (lower values or values close to zero) imply that the model is suitable for
making predictions, robust, and that predicted values are very similar to observed values.
Also, for the MAPE, values close to 0 represent the most accurate predictions; however, all
values of MAPE below 100% represent accurate predictions.

Following validation, the most accurate model was then chosen. For the Landsat
8 model, this included all the predictors, whereas for the Landsat 7 model, this included the
top 5 predictors (Figure A1; Table A2). A polygon shapefile of the BBSFCA was converted
to a 2 m gridded raster, and then to a point shapefile. These data points were used to
extract data from the auxiliary maps and reflectance and GLCM mean and variance maps
for the Landsat 4–5, 7 (1984–2010), and 8 (2015–2021) images and for the 2013 images
used for modelling. The RFr model for each Landsat series was then used to predict SAV
cover at each point of the point grid for each year of a particular Landsat series using the
predictors extracted for each point. For example, the Landsat 7 RFr model was used to
predict SAV cover using reflectance data from Landsat 4–5 and 7 images plus the auxiliary
data. Similarly, the Landsat 8 RFr model was used to predict SAV cover using reflectance
data from Landsat 8 images plus the auxiliary data. No Landsat 4–5 images could be found
close to the year of the hydroacoustic assessment (the closest was 2011). Moreover, the
wavelength intervals/bandwidth for the Landsat 7 bands were the same as the Landsat
4–5 bands; therefore, the Landsat 7 RFr model was used to predict SAV coverage using
Landsat 4–5 image data. The predictions were exported as a 2 m gridded raster, and a
single SAV percentage cover map was produced for each year (24 maps in total).

2.5. Benthic Habitat Maps and Accuracy Assessments

Several binary maps for each of the percentage cover maps generated using the 2013
Landsat 7 and 8 series image data were created using different threshold values in raster
calculator in ArcGIS Pro 3.0.1. The thresholds used were 23%, 25% 28%, 30%, 35%, 38%, and
40% for the 2013 Landsat 7 and 8 derived SAV percentage cover maps. Values above these
thresholds would be used to map SAV presence. The range of values used was previously
found to generate the most accurate binary maps [31]. The binary maps created were
added to a coral reef map that was generated using a threshold of 0.23 for the rugosity map,
also in raster calculator (following [31]). From this, maps with three classes, SAV present,
SAV absent, and coral reef, were produced for the maps derived from the two datasets. A
total of 118 accuracy assessment (AA) reference data points (21, 23, and 74 for coral reef,
vegetation absent, and vegetation present points, respectively), collected by [30] in 2013 at
randomly determined points using georeferenced videos/video camera drops (Figure 1),
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were used to identify the most accurate threshold for each map. The map classes at each
AA location were first determined by using the AA points to extract information from the
maps on the classes found at each location. An accuracy assessment was then conducted in
R using the “asbio” package [43] using the extracted classes and reference data for each
map. The most accurate threshold with the highest overall agreement (OA) was identified
(following [31]) for the two series (Figure A3). However, we chose the threshold with the
second highest OA for the Landsat 4–5 and 7 maps and used it to generate a benthic habitat
map for each year during the period 1984–2010 (30% SAV cover threshold) and we used the
second of two thresholds with the highest OA for the Landsat 8 maps to create maps for
the period 2013–2021 (25% SAV cover threshold). These thresholds were chosen because
they consistently produced maps that closely matched (visually) the unclassified images.

2.6. Assessment of Landscape Scale Change and Predictors of Change in SAV Cover and Area
over Time

Mean SAV percentage cover and SAV total area for each year for the entire bay were
determined and used to assess changes over time and the possible effects of rainfall on SAV
percentage cover and area. Additionally, monthly rainfall data for the site (Bluefields Bay)
for the period 1901 to 1994 were obtained from the Jamaican Meteorological Service. This
dataset did not cover the entire period of this study and as such, this was supplemented
using monthly rainfall data from Savanna-la-Mar, the capital of the parish of Westmoreland,
which is located ≈ 5.6 km away. A generalized additive mixed model (GAMM) with an
autoregressive moving average (ARMA) error structure (used to account for temporal auto-
correlation) and a cubic smoothing spline was used to determine if there was a significant
trend in total annual rainfall over time. For this assessment, only years that included data
for all months were used. A GAMM was also used to determine if there were significant
changes/trends in SAV percentage and SAV total area over the period 1984–2021. The
GAMM was implemented using the “mgcv” package [44–47]. The ARMA error structure
was defined by two parameters: the number of autoregressive (AR) (p), and the number
of moving average (MA) parameters (q) [48]. The autoarima function from the “forecast”
package [49,50] was first used to determine the most suitable number of ARMA parameters
based on AIC, AICc (AIC corrected for finite sample sizes), and BIC (Bayesian information
criterion) values. It was applied to the residuals from a generalized additive model (GAM)
that included the dependent and independent variables with no ARMA error structure.
The ARMA values obtained from the GAM using the autoarima function were used in the
GAMM. Before final models were accepted, the autocorrelation and partial autocorrelation
functions (ACF and PACF, respectively) were used to check the residuals (normalized
for the GAMM) of the models to determine if they were white noise (random and not
autocorrelated). Additionally, the model parameters (GAMM) and the 95% confidence
intervals of the AR and MA were checked to ensure that they did not include zero. This
indicated that there were no problems with the error structure and the model contained an
adequate number of explanatory variables. A generalized linear regression (GLM) with a
Gaussian link function, implemented using the “lme4” package [51], was used to determine
if there was a relationship between monthly SAV percentage cover and area change, and
average monthly rainfall. Monthly values were determined using the number of months
between the dates when two consecutive Landsat images were recorded. For example, for
the 1984 (9 October 1984) and 1985 (2 March 1985) images, the number of months between
the two dates was determined (4.8), and the total rainfall, the change in percentage SAV
cover, and the change in total area of SAV between the two dates were divided by the
number of months. This was repeated for the other image dates. The R-squared values for
the GLMs were generated using the “MuMIn” package [51].

2.7. The Spatial Pattern Predictors of SAV Change

Pixel-based regressions were used to assess the effects of rainfall on the spatial pattern
of SAV loss and gain and changes in percentage cover over the period 1984–2021. First,
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maps of binary (1 for loss or gain and 0 for no change) and percentage cover change were
generated by subtracting one image year from the subsequent year. A total of 23 maps
for each category of assessment, that is, binary loss, gain, and percentage cover change,
were therefore produced. A logistic GLM implemented using the “lme4” package with
a quasibinomial distribution (to account for under- or over-dispersion) and a logit link
function was then used to model the relationship between the binary map values (1 or 0)
at each pixel and total monthly rainfall. The relationship between the percentage cover
change per month map values (change divided by the time (months) between consecutive
maps) at each pixel and rainfall was modelled using a linear regression. The outputs from
the regressions, particularly the marginal (for the logistic GLM) or adjusted (for the linear
regression) R-squared, gradient estimate, and p-value at each pixel, were represented as
maps. These maps highlighted locations on the ground that were directly influenced by
rainfall positively or negatively over the study period.

We then assessed the influence of proxies to rainfall, that is, proximity/Euclidian
distance and cardinal direction from the mouth of the main river that empties into the bay,
and other possible predictors such as topographic features, including aspect and slope,
and depth and exposure to past hurricanes or exposure vulnerability (EV) (Figure A3), on
the spatial patterns of SAV loss, gain, and percent cover change between successive time
periods (i.e., 1984–1985, 1985–1986, etc.). EV is a unitless measure that has been previously
used to link the heterogeneity of hurricane exposure to responses shown by terrestrial
vegetation at sites that experienced hurricane disturbance [52]. Although EV maps have
primarily been used and validated in a terrestrial context, they were used in this study to
determine if they can also explain changes in SAV cover and extent due to damage caused
by/changes induced by hurricanes (to seagrass beds) in a nearshore marine environment.
For this assessment, EV maps were generated following the method outlined in [36,52]
and in the Supplementary Material. A single EV map of each hurricane was generated
(Figure A3), and additionally, the EV maps for Ivan and Dean were averaged. Average EV
of multiple hurricanes can also be an important predictor of vegetation response over time
when two or more hurricanes impacted a site [36,52].

2.8. Hierarchical Bayesian Modelling Framework Used to Identify Spatial Pattern Predictors of
SAV Change

The SAV loss, gain, and percent cover change maps were converted to point shapefiles,
appended with the X and Y coordinates at each point, and used to extract values of the
predictors at each point. The relationship between SAV loss, gain, and percent cover change
and the predictors at each point for successive years was then evaluated. These datasets
were large and spatially autocorrelated, and there are very few methods that can efficiently
handle such datasets. As such, we used a Bayesian approach based on the Integrated
Nested Laplace Approximation (INLA), implemented using the ‘INLA’ package [53–57]
due to its flexibility and ability to efficiently handle large spatial data [55,58]. We developed
Hierarchical Bayesian models with a spatial random effect that were formulated according
to a spatially explicit generalized linear mixed model (GLMM) framework. Therefore, the
response variable at each successive period or overall and plot location was assumed to
follow a distribution from an exponential family. Consequently, appropriate distributions
and link functions were chosen for the response variables such as a zero-inflated binomial
Type 1 (ZIB.1) or a binomial (if the model failed to converge) distribution with a logit link
function for the binary loss and gain data and a Gaussian distribution for the percentage
change data. The chosen exponential family parameters (ø) were linked to a structured
additive predictor η by their link function g(·), so that g(ø) = η and the linear predictor was
defined as:

η = β0 + β1 × a + β2 × b + f (s),

where η was the linear predictor for the response variables, β0 was the intercept, and β1
and β2 were the (linear) regression coefficients for the predictors a and b. The random
effect (spatial) was introduced using the semiparametric function f (·) [55]. f (s) represented
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a spatially structured (s) random effect. The spatial location of each transect point (the X,
Y coordinates) was used as the basis of the spatial random effect. The Stochastic Partial
Differential Equation (SPDE) approach of [54] was used to model the spatially structured
random effect as a Gaussian random field (GRF). The SPDE method subdivides the domain
or the area of interest into non-intersecting triangles, creating an index mesh instead of a
regular grid [54]. Linear combinations of basis functions, defined on the locations of the
set of vertices, are used in triangulation process [54]. Please see [54] for a more detailed
explanation of the SPDE approach. In this study, the area of the MPA was used as the
domain to approximate the spatial fields. To reduce boundary effects (where the variance
is twice as large as inside the domain), the mesh did not extend beyond the study area.

The default and recommended priors, that is, vague priors or estimations of non-
informative priors [59], were used to develop the models. Additionally, the penalized
complexity prior (PC-prior) framework of [60] was adopted to remove or avoid overfitting,
particularly for the spatially structured effect, which was found to be operating at a smaller
(but neither at a similar nor higher) spatial scale than the covariates or predictors of the
models [61]. When this occurred, the spatial effect explained the data better than the
covariates and the model was meaningless [61]. Additionally, model accuracy and the
marginal R-squared were inflated, while the Deviance Information Criterion (DIC) was
deflated, and as a result, they could not be used for model selection. To correct this, a
weakly informative PC-prior derived by [60] was used to define the model parameters
for the SPDE model as the practical range and the marginal standard deviation. The PC-
prior penalized complexity by shrinking the range to infinity and the marginal variance to
zero [60]. Several values for the range were used (starting with half the distance between
the furthest points), until there was no overfitting.

Before the statistical tests were performed, the Spearman’s rho statistic and test were
used to identify significantly correlated independent variables (with a correlation of >0.55).
Additionally, a Deviance Information Criterion (DIC) computed in R-INLA, which is
analogous to the Akaike Information Criterion (AIC) but it is more suitable for hierar-
chical Bayesian models [62], was generated for each model. This was used to compare
the goodness-of-fit of the models; specifically, models with the lowest DIC values were
generally considered as the best. The marginal R-squared (following [63]) was also used to
assess model fit. It was calculated as follows:

100 × (1 − (∑t
t=1 ∑n

n=1 (depend − f itted)2/∑t
t=1 ∑n

n=1 (depend − mean(depend))2)),

where t is time when n subjects were considered, depend is the response variable, and fitted
represents the values predicted by the model. Model validation was conducted using
a k (five)-fold cross-validation using the validation criteria used previously for the Rfr
models. A receiver operating characteristic (ROC) curve value (AUC) was calculated for the
SAV loss and gain models using the “pROC” package [64] in R and used as an additional
measure of model accuracy.

We scaled all our models so that they had a generalized variance equal to 1 and
to ensure that the precision parameters for different covariates or intrinsic models were
comparable or had the same interpretation [65]. In general, it is usually difficult to identify
the ‘best’ parsimonious model, because competing models can often describe the same
data just as well [66]. We therefore applied stringent model selection criteria, but we
prioritized the use of the validation criteria, and model selection included several steps. We
first determined the most suitable type of regression, that is, either a linear or polynomial
(and the order of the polynomial) regression, for modelling the relationship between each
predictor and the dependent variable. All the orders of a polynomial regression must
be important (the Bayesian equivalent to a significant frequentist relationship) before it
is accepted if it is found to be more suitable (based on the DIC and marginal R-squared
values). The linear form of the predictor was used during model selection if the relationship
(linear or polynomial) between the predictor and the dependent variable was not important.
All possible combinations of predictors were then evaluated, and we used the DIC and
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marginal R-squared values to choose the best 2 to 8 models. For the chosen models, all
predictors had to be important and uncorrelated (with a correlation coefficient of ≤0.55,
and they were not linearly or monotonically correlated). A 5-fold cross-validation was then
used to validate the best models and the AUC was calculated for each model. The final
parsimonious model, which yielded the most accurate predictions and had uncorrelated
predictors at each successive period, was then selected. The final models included the most
important predictors for each period, but they may not have had the lowest DIC or the
highest marginal R-squared and AUC, as again, model accuracy was prioritized for model
selection. In addition to reporting the best model, we reported the top 2 to 8 most accurate
parsimonious models and their accuracies (Tables S1–S3).

3. Results

The RFr models used to generate SAV percentage cover maps from the Landsat 4–5 and
7 and the Landsat 8 satellite series data explained 62.7% and 69.8% of the variance in the data
and were reasonably accurate, with an MAE of 19.2% and 17.7%, respectively, a very low or
marginal bias, and an RMSE of 25.6% and 24.4%, respectively (Table A2). Importantly, the
MAPE was less than 100%, indicating that the models were ideal for predicting (Table A2).
The most important predictor was BPI, followed by reflectance data for bands 1 and 4 for
the Landsat 4–5 and 7 and Landsat 8 series models, respectively (Figure A1). The chosen
thresholds had an OA of 78% and 75% for the Landsat 7 and Landsat 8 three class maps,
respectively (Figure A2). Map accuracy/uncertainty for the years before and after 2013
was not quantified because it would be difficult to assess past accuracies without in situ
reference data for each year. The percentage cover and binary maps with coral reef class
added in (benthic feature map) are presented in Figures 2 and 3. Percentage cover varied
across the bay over time, with an area close to the mouth of the river consistently having
the lowest SAV percentage cover, and this area was largely classified as SAV absent in the
benthic features maps, when the thresholds were applied (Figures 2 and 3). For the years
1990, 1999, 2000, 2013, 2015, and 2019, most of the bay (>70%) had a percentage cover of
>80% (Figure 2). For 1993, most of the bay had a percentage cover of ≤60%, but generally,
for all other years, there was a higher SAV percentage cover found across the bay (up to
80%) (Figure 2). A notable shift in the pattern of SAV presence/absence occurred in 2006,
with the area of the SAV absent class around the mouth of the river increasing, and this
class was found extensively across the south of the bay for the first time (Figure 3). This
change was attributed to the impact of Hurricane Ivan in 2004.

3.1. Landscape Scale Changes and Predictors

The total area of SAV changed significantly over time (Table 1), with a significant re-
duction in SAV occurring in 2006 (Figures 3 and 4a), which was the largest recorded decline.
Recorded loss for the period was 1.62 km2, or a 13% decline at a rate of −0.04 km2 month−1.
Recovery after 2006 was not complete until 2015 (Figures 3 and 4a). The change in extent
between 2002 and 2006 coincided with the year when Hurricane Ivan passed by the is-
land (2004) and during the subsequent period (2006–2008), Hurricane Dean passed close
by the island (Figure A4). The extent of SAV loss in 2006 occurred over a larger area
(Figures 2 and 3), but in general, SAV change (loss and gain) mainly occurred close to the
river, as this was an area of active change (Figure 3). Average percentage cover for the
entire bay did not change significantly over time, and there were 11 years with an average
of >70% percentage cover, with the lowest being 49.8% in 1993. Percentage cover change
over successive years was influenced by rainfall (Figure 4b; Table 1), with higher positive
percentage cover change occurring when rainfall was higher. Despite the importance of
higher rainfall, annual rainfall at the site during the study period was significantly lower
than at the start of the 20th century (approximately 1000 mm lower on average), as there
was a significant decrease in annual rainfall (Figure 4c; Table 1).
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Conservation Area (BBSFCA), Westmoreland, Jamaica that were produced/predicted by Landsat 7
and 8 random forest regression models for the period 1984–2021.
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Figure 3. Maps of benthic features in the Bluefields Bay Special Fish Conservation Area (BBSFCA),
Westmoreland, Jamaica for the period 1984–2021 that were produced by applying a threshold to
submerged aquatic vegetation (SAV) percentage cover maps generated from the SAV random for-
est regressions.
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Table 1. Results obtained from a generalized additive model (GAM), a generalized additive mixed
model (GAMM) with an autoregressive moving average (ARMA) error structure, and a generalized
linear model (GLM) used to assess the trend in total (annual) rainfall over time (1901–2021), the
trend in total area of submerged aquatic vegetation (SAV) over the study period (1984–2021), and
the relationship between monthly SAV percentage (perc.) cover change and rainfall over the study
period, respectively, for Bluefields Bay, Jamaica.

Models and Correlation Structure Parameter Value L 95% CI U 95% CI S.E. t/F p Adj. R2/R2

Rainfall (mm) × Year (GAM) Intercept 1943.6 42.4 45.9 <0.001 34.7%

s(Year) 50.5 † <0.001

SAV total area (km2) × Year (GAMM) Intercept 11.9 0.02 686.5 <0.001 69.5%

ARMA (2, 0) s(Year) 71.7 † <0.001

Phi 1 −0.76 −1.25 −0.26

Phi 2 −0.43 −0.77 0.02

SAV perc. cover change (month−1) Intercept −1.28 0.43 −2.95 0.0077 28.9%

× Rainfall (mm month−1) (GLM) Rainfall 0.012 0.004 2.99 0.007

L = lower; U = upper; CI = confidence interval; S.E. = standard error; adj. R2 = adjusted R2; Phi = autoregressive
coefficient; s() = cubic smoothing spline; t = t distribution; F and † = F distribution.
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Figure 4. Observed and predicted values obtained from our analyses using (a) a generalized additive
mixed model (GAMM) with an autoregressive moving average (ARMA) error structure to assess
change in total area of SAV over time in the Bluefields Bay Special Fish Conservation Area (BBSFCA),
Westmoreland, Jamaica, (b) a generalized linear regression (GLM) with a gaussian link function used
to determine the influence of monthly rainfall on SAV percentage cover change in the BBSFCA, and
(c) a generalized additive model (GAM) used to assess the changes in total annual rainfall from
1901 to 2021 over time for Savanna-la-mar, the capital of Westmoreland, and the BBSFCA. Grey
shadow/shade = standard error.

3.2. Spatial Pattern Predictors

The pixel-based regression was used to determine if rainfall influenced the spatial
patterns of SAV loss, gain, and percentage area change. For loss and gain, this was found
to be confined largely to a small area, which was close to the mouth of the main river
towards the northwestern section of the bay (Figure 5). The influence of rainfall on both
loss and gain was negative and positive, that is, SAV probability of loss or gain increased
or decreased with an increase in monthly rainfall (Figure 6). There were more locations
with a probability of SAV loss declining or the SAV gain increasing as rainfall increased
than areas with the opposite trend (Figure 5). Rainfall influenced SAV percentage cover
change over a larger area of the bay (when compared with SAV loss and gain), and these
were interspersed with areas that were not affected (Figure 5). Also, rainfall had both a
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positive and negative effect on percentage cover change, with the predominant effect being
positive (Figures 5 and 6).
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Figure 5. Results obtained from the pixel-based regression used to assess the influence of monthly
rainfall on the spatial pattern of (a–c) SAV loss, (d–f) gain, and (g–i) percentage cover change in the
Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica. The outputs from
the regressions are presented as maps and include the p-value (top row), the sign (+ or −) of the
regression slope (middle row), and the R2 values.

We identified the most important spatial pattern predictors of SAV cover loss, gain, and
percentage cover change to determine other possible influences on change. All final models
that included the most important predictors had an AUC of >0.6. Marginal R-squared values
for important predictors of SAV loss ranged from 0.2 to 19.2%, with the highest value being
obtained during the 2008–2010 period (Figure 7). The third (2002–2006) highest R-squared
value (15.5%; Figure 7) was obtained during the period when SAV loss was highest after
the passage of a single hurricane in 2004. A single predictor of SAV loss was found to be
important during 13 of the 23 periods assessed, whereas multiple predictors were important
for the remaining periods (Figure 8). Like the pixel-based regression results, the important
predictors had a positive or a negative effect on SAV loss (Figures 8 and 9a–c), and the
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relationship between SAV loss and the predictors were either linear (SAV loss increased or
decreased with an increase in BSM, aspect, slope, distance, direction, or EV) or they were
better explained by a polynomial regression (Figures 8 and 9a–c), indicating that their effects
varied across a range of predictor values. The most frequent important predictors of SAV
loss were direction (eleven intervals) and distance (seven intervals) from the mouth of the
river, followed by aspect, BSM, slope, and then average EV (six, six, two, and one intervals,
respectively) (Figure 8). This highlighted the importance of rainfall (which influences river
outflow), as the probability of SAV loss declined significantly as distance from the river mouth
increased (Figure 9c); for six of seven intervals, it was important (the parameter estimates
were (largely) negative (Figure 8)). Moreover, nearly all the relationships with direction from
river (10 of 11), were positive, indicating that the highest probability of loss occurred largely to
the southwest to northwest of the river mouth (Figure A3). Only during the 2002–2006 period
was the probability of loss higher to the east of the river mouth as well as the southwest to
the northwest (Figure 9b). Additionally, SAV loss was more likely to occur in shallow areas
(four of the six intervals), that is, there was a positive relationship with BSM. BSM values are
negative (Figure A3); therefore, a positive relationship indicates a greater probability of loss in
shallow areas (Figure 8). The results also highlighted the possible impact of two hurricanes.
Aspect was an important predictor of the probability of loss during the period when Ivan
passed by the island (2002–2006). Aspect is used in the calculation of EV and is a proxy to
the predominant direction of exposure to hurricane winds [36,52]. Our results show that
SAV loss was greatest at benthic locations with a northwestern and a northern facing aspect
(Figure 9g,h), and this corresponded with the prevailing wind direction of the leading edge of
the outer wind bands of Ivan (Figure A4). Also, during this period, the probability of loss for
the first time was higher to the east and southwest–northwest of the river mouth (therefore,
loss occurred in more than one direction) (Figures 9b and A3). Furthermore, average EV (for
Ivan and Dean) was an important predictor during the 2010–2013 period, where SAV loss was
positively associated with higher average EV (Figures 8 and 9a).

Marginal R-squared values for the predictors of SAV cover gain ranged from 0.04 to
37.2%, with the highest value being obtained during the 2010–2013 period (Figure 7) when
SAV cover was recovering following the passage of two hurricanes. A single predictor of
SAV gain was found to be important during eight of the twenty-three periods assessed,
whereas multiple predictors were important for the remaining periods (Figure 10). Addi-
tionally, there were no important predictors for SAV gain during one period (1986–1987).
Also, the most important predictors had a positive or a negative effect on SAV gain, and
the influences of the predictors were best explained by linear or polynomial relationships
(Figures 9d–f and 10). Like SAV loss, SAV gain was most frequently predicted by direction
and distance (eleven and nine intervals, respectively), followed by BSM, aspect, slope, and
Hurricane Ivan EV (eight, six, six, and one intervals, respectively) (Figure 10). These results
again highlighted that proximity to the mouth of the river influenced dynamic changes.
Specifically, SAV gain was positively related to the direction from the river mouth for nine
of eleven periods when the latter was important, and like SAV loss, this indicated that
the highest probability of gain occurred largely to the southwest to northwest of the river
mouth. Also, SAV loss was higher closer to the river mouth during five of nine intervals.
The probability of SAV gain was highest at shallow locations (six of eight periods; Figure 9f)
than at greater depths (only two periods) (Figure 9). Moreover, there was greater SAV gain
where Hurricane Ivan EV was highest during the period (2006–2008) (Figures 9d and 10)
that followed the passage of Ivan in 2004, indicating that SAV cover was recovering at sites
that were impacted by Ivan but not by Dean.
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Figure 6. Examples of observed and predicted values for negative (in left column) and positive (in
the right column) relationships identified by the pixel-based regressions that were used to assess
the influence of monthly rainfall on the spatial pattern of SAV loss (top row), gain (middle row),
and percentage cover change (bottom row) in the Bluefields Bay Special Fish Conservation Area
(BBSFCA), Westmoreland, Jamaica. Grey shadow/shade = standard error. Black arrows = pixel
location for the graphs.
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Figure 7. Marginal R-squared values calculated for the final parsimonious Bayesian Integrated Nested
Laplace Approximation (INLA) models that included the most important spatial pattern predictors
of SAV loss, gain, and percentage cover change in the Bluefields Bay Special Fish Conservation Area
(BBSFCA), Westmoreland, Jamaica for 23 successive 2-to-4-year periods between 1984 and 2021.
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Figure 8. Individual plots of the mean of the parameter estimate (represented as closed (black)
squares, and the values are presented in rectangles) for the most important spatial pattern predictors
of SAV loss in the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica
for 23 successive 1-to-4-year periods between 1984 and 2021. The values were generated from the
final parsimonious Bayesian Integrated Nested Laplace Approximation (INLA) models. dist and
dir = distance and direction from the mouth of the main river that empties in the bay; EV = average
exposure vulnerability for two hurricanes (Ivan and Dean).
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Figure 9. Observed and predicted values obtained from Bayesian Integrated Nested Laplace Approxi-
mation (INLA) models that included several important predictors of SAV loss and gain (probability) in
the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica. These include
SAV loss and (a) average exposure vulnerability (EV) for Ivan and Dean (2010–2013), (b) cardinal
direction from river mouth (2002–2006), and (c) distance from river mouth (2006–2008). Also included
is SAV gain and (d) Hurricane Ivan EV (2006–2008), (e) distance from river mouth (2010–2013) and
(f) depth (2006–2008), and (g,h) SAV loss and two different ranges of aspect (degrees) values to
highlight peak aspect values. Grey shadow/shade = standard error.
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Figure 10. Individual plots of the mean of the parameter estimate (represented as closed (black)
squares, and the values are presented in rectangles) for the most important spatial pattern predictors
of SAV gain in the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica
for 23 successive 1-to-4-year periods between 1984 and 2021. The values were generated from the
final parsimonious Bayesian Integrated Nested Laplace Approximation (INLA) models. dist and
dir = distance and direction from the mouth of the main river that empties in the bay; Ivan = exposure
vulnerability for Hurricane Ivan.

Marginal R-squared values for the predictors of percentage cover change ranged from
8.3 to 54.7%, with the highest value being obtained during the 2015–2016 period (Figure 7).
Also, multiple predictors were largely found to be important (Figures 11 and 12). The
most common relationship was polynomial, indicating that the influence of the predictors
varied across the range of values for the predictors, and again the relationships can either be
positive or negative (Figures 11, 12 and 13a–f). The most frequent important predictors were
distance and direction from the river mouth (21 and 19 intervals, respectively). This was
followed by BSM, slope, aspect, and EV (twelve, five, five, and three intervals, respectively).
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Unlike SAV loss and gain, percentage cover change may have been influenced by hurricanes
three times (Figures 11, 12 and 13a,b). Hurricane Gilbert EV negatively influenced SAV
percentage cover change during the period when Gilbert made landfall (1987–1988), but
this changed to a positive relationship during the period after the hurricane (1988–1990),
indicating the recovery of SAV cover in high-EV areas (Figures 11 and 13a,b). Hurricane
Ivan EV had a negative influence when other predictors influenced SAV percentage cover
change during the period after the hurricane passed the island (2006–2008), which is
possibly a lag effect (Figure 11).
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Figure 11. Individual plots of the mean of the parameter estimate (represented as closed (black)
squares, and the values are presented in rectangles) for the most important spatial pattern predictors
of SAV percentage cover change in the Bluefields Bay Special Fish Conservation Area (BBSFCA),
Westmoreland, Jamaica for 12 successive 1-to-4-year periods between 1984 and 1999. The values were
generated from the final parsimonious Bayesian Integrated Nested Laplace Approximation (INLA)
models. dist and dir = distance and direction from the mouth of the main river that empties in the
bay; Gilbert = exposure vulnerability for Hurricane Gilbert.
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Figure 12. Individual plots of the mean of the parameter estimate (represented as closed (black)
squares, and the values are presented in rectangles) for the most important spatial pattern predictors
of SAV percentage cover change in the Bluefields Bay Special Fish Conservation Area (BBSFCA),
Westmoreland, Jamaica for 11 successive 1-to-4-year periods between 1999 and 2021. The values were
generated from the final parsimonious Bayesian Integrated Nested Laplace Approximation (INLA)
models. dist and dir = distance and direction from the mouth of the main river that empties in the
bay; Ivan = exposure vulnerability for Hurricane Ivan.
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Figure 13. Observed and predicted values obtained from Bayesian Integrated Nested Laplace Approx-
imation (INLA) models that included several important predictors of SAV percentage cover change
(monthly) in the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica.
These include SAV percentage cover change and (a,b) Hurricane Gilbert exposure vulnerability
(EV) (1987–1988 and 1988–1991, respectively), (c) distance from river mouth (1984–1985), (d) depth
(2006–2008), (e) distance from river mouth, and (f) cardinal direction from river mouth (2006–2008).
Grey shadow/shade = standard error.

4. Discussion

In this study, we identified various factors that influenced SAV extent and percentage
cover over a period of 37 years. We used data and maps generated from a random forest
regression model that used 2013 hydroacoustic data to predict SAV percentage cover from
reflectance data from 24 Landsat satellite images that were collected during the period
1984–2021. Our assessments were based on several assumptions. We used level 2 processed
images with atmospheric correction, which should standardize the reflectance data for
each image. This is important, as we were not able to determine the accuracy of the SAV
percentage cover maps generated for the years before or after 2013. Because the images
were standardized, it is expected that the reflectance values would fall within a similar
range, and therefore, the SAV percentage cover maps should have similar accuracies. We
also made this assumption when using/applying thresholds for converting SAV percentage
cover to binary, that is, the thresholds would produce maps with similar accuracies to our
2013 thematic maps. Nevertheless, we were able to use the resulting maps/data from the
maps to identify how several factors influenced seagrass cover change at our study site.
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4.1. Spatial Pattern Predictors of SAV Change

There have been reported declines in seagrass cover due to a variety factors in-
cluding natural hazards such as single [18] or multiple storms/cyclones/hurricanes [17],
droughts [21], a combination of droughts and storms/cyclones/hurricanes [21,67], a com-
bination of storms and cyclones and above average rainfall [68], and due to anthropogenic
activities, despite protection [23]. However, several studies have reported stable SAV
cover [69] or an expansion/increase in SAV area due to increased protection [9] or despite
the impacts of multiple storms [20]. We found that seagrass percentage cover and extent in
the BBSFCA were largely stable over the 37-year period and SAV loss and gain for several
periods were explained by proximity to the mouth of a river. The spatial pattern analysis
using the pixel-based regression and the spatial Bayesian INLA models confirmed that
an area of active/dynamic change can be found close to the mouth of the river, towards
the western side of the bay. We found that annual rainfall was at historic lows and higher
monthly rainfall had a positive influence on seagrass percentage cover. The pixel-based
regression confirmed the latter, specifically that overall, higher rainfall largely had a posi-
tive influence on SAV gain and percentage cover change. This is contrary to the findings of
several studies that have reported that higher rainfall results in increased surface runoffs or
outflows from rivers into bays, and this is generally associated with increased turbidity
and nutrients, which increases SAV stress and reduces extent or cover ([70]) and vertical
growth [71]. Flood outflows can increase these impacts significantly (2–3-fold increases in
turbidity and nutrients), resulting in an even greater decline in seagrasses [72]. Droughts
can result in increased evaporation of water and salinity (creating hypersaline conditions)
and bottom-water anoxia, leading to a reduction in SAV cover and extent [19], particularly
during low tides in intertidal areas [73]. Also, seasonal rainfall is associated with lower and
higher SAV percentage cover/extent during the wet and dry seasons, respectively [70,74].
Our result is therefore unusual, and even after reviewing studies of freshwater SAVs [75],
higher rainfall has not been reported to be associated with an increase in SAV percentage
cover and/or extent. Higher rainfall does result in increased turbidity in the BBSFCA, as we
were not able to use images collected during several years because of high turbidity around
the mouth of the river, or across most of the western half of the bay. Also, the predominant
sediment type found in the persistently bare area to the west of the bay (and the mouth of
the river) and close to the coastline is silt [30], indicating that there is a constant input of
terrigenous sediment. However, we did not examine the effects of monthly rainfall using
seagrass cover data collected every month [70]. Instead, we calculated monthly rates of
percentage cover change, and recorded SAV loss and gain using images captured over a
minimum period of 4 months to a maximum period of 46 months, due to the unavailability
of suitable images. Also, rainfall in Jamaica and on the south coast is seasonal; therefore,
we likely captured the overall response of SAVs to rainfall irrespective of season, that is,
before, after, or during one or more wet and/or dry seasons. Nevertheless, seagrass mead-
ows/beds have been found to be nutrient-limited [76,77], and therefore, moderate increases
in nutrients are beneficial [78]; high inputs, however, are detrimental, as it promotes the
growth and dominance of competing macroalgae [78,79]. Additionally, although there
have been reported declines in seagrass percentage cover during wet seasons, this can be
followed by rapid recovery during the following dry season [70]. Furthermore, nutrients
that are brought by outflows or runoffs during the rainy season are thought to contribute
to the recovery of seagrass percentage cover during the dry season that follows the rainy
season [70]. This can perhaps be used to explain our results. That is, over time, SAV in
the bay benefitted from higher overall inputs of nutrients from outflows during the rainy
season. Moreover, the bay is currently receiving < 1000 mm of the total annual rainfall
it received at the turn of the 20th century, yet SAV extent was largely maintained, and
percentage cover in most of the bay was >80%, six out of the twenty-four times it was
mapped, the most recent being in 2019. It is conceivable that the bay might be receiving less
nutrients than it did over 100 years ago, especially during periods of low rainfall. However,
there has been extensive agricultural (along the river course) and coastal developments,
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and perhaps this is compensating for a reduction in nutrient inputs. We are currently
investigating whether the positive effect of rainfall is maintained when images with higher
temporal and spatial resolutions are used.

There was a significant decline in SAV area/extent during one period, 2002–2006,
when the island was impacted by Hurricane Ivan. The effects of Ivan may have been
compounded by a second hurricane (Dean) three years later (Figure A4). As a result, SAV
extent/area did not fully recover until the 2013–2015 period, or 9–11 years after the impact
of the first hurricane. The identified important spatial pattern predictors can be used as
evidence for the impact of Ivan and Dean; specifically, direction from the mouth of the
river and aspect were the most important predictors of SAV loss during the 2002–2006
period. For the first of the two predictors, this was the first time that the probability of SAV
loss was equally high on both sides of or multiple cardinal directions from the mouth of
the river (southeast and southwest to the northwest; Figures 8 and A3), indicating that
there was a higher than usual outflow from the river. This may have influenced SAV loss,
due to exceedingly high rainfall during hurricane events, which can be detrimental to
seagrass beds [80]. The net effect was an increase in the extent of the SAV absent class
around the mouth of the river, which for the first time extended from the southwest and
west to the southeast of the river mouth (Figure 3). Also, percentage cover around the
river fell to ≤20% for the first time (Figure 2). Following the hurricanes, direction or
distance from the river mouth was an important predictor of SAV loss for every period
until 2013–2015, during which the size of the SAV absent class close to the river increased
(Figures 3 and 8). SAV did not recolonize the newly transformed SAV absent areas until
2015 (Figures 3 and 8). The second important predictor, aspect, was used in the calculation
of EV, and it is a proxy to the predominant direction of exposure to hurricane winds [36,52].
It can also confound the influence of EV, as it can be a more important predictor of hurricane
damage if the impact of a hurricane is strong in a given/particular direction, because the
winds are moving predominantly in that direction [52]. Our results showed that SAV loss
was greatest in areas on the benthos that had a northwestern to northern facing aspect
(Figure 9g,h and Figure A3). This corresponded with the prevailing wind direction of
the leading edge (the most destructive/strongest winds) of the outer wind bands of Ivan
(Figure A4). Several studies that have employed the use of wave models have reported
similar directional impacts of storms on seagrass beds/meadows; these impacts were also
associated with the prevailing direction of the storm winds [81,82]. Also, seagrass declines
following storms are usually associated with persistent changes in seawater quality and
burial [83]. Greater exposure to the direction of the prevailing winds of a storm was one
of two factors that explained the depth of burial of seagrasses found along the Spanish
Mediterranean coast (higher exposure to storm winds increased burial depths) that were
impacted by Storm Gloria in 2020 [82]. Burial may have been the main impact of Ivan, as
there were several bare sand patches present during the 2006–2013 period (Figure 3), one of
which was described as a “sand bar” by [30]. These bare patches were not present in the
maps of benthic classes before 2006 or after 2013 (Figure 3). The “sand bar” first appeared
in the south-eastern section of the bay in 2006, in an area previously covered by seagrass
(Figure 3). By 2015, however, the “sand bar” and all the bare sand patches were recolonized
and were no longer visible in the benthic feature maps (Figure 3).

We also found evidence of the cumulative impact of two hurricanes that follow
similar tracks. The first evidence was that there was SAV gain/recovery and positive
SAV percentage cover change at some sites on the benthos during 2006–2008 which were
exposed to Hurricane Ivan in 2004, and this recovery/change preceded a complete recovery
of all impacted areas/sites in 2015. These were likely to be sites/locations that were
impacted by Ivan in 2004, but not by Dean in 2007, and were recovering during this period,
while other areas impacted by both hurricanes continued to experience a loss up until 2013.
Moreover, the cumulative effects of Ivan and Dean (average EV) explained (although the
marginal R-squared was low) the pattern of SAV loss (higher average EV was associated
with a higher probability of loss) during 2010–2013, 9 and 6 years after Ivan and Dean,
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respectively, which impacted our study site. This likely contributed to the (relatively) long
period it took for SAV extent/area to recover (close to decade). The cumulative negative
impacts of storms have been reported elsewhere. For example, on the southwestern coast
of Korea, the cumulative effects of three consecutive typhoons in two months resulted in a
seagrass meadow completely dying off, despite previous (single) typhoons having little
or no impact [17]. The contrasting impacts of previous single typhoons versus the three
consecutive typhoons also indicate that the damage caused by storms, hurricanes, cyclones,
or typhoons can be very variable and range from no damage to complete degradation,
die-off, or habitat destruction [20,83]. We also found that the impacts of different hurricanes
on SAV in the BBSFCA can vary. While Ivan and Dean impacted SAV extent, Hurricane
Gilbert did not have a similar impact, but instead may have reduced seagrass percentage
cover during the period 1987–1988, and it recovered immediately during the period that
followed (1988–1990). Similarly, the short-term impacts of a cyclone on seagrasses in
southwestern Madagascar included a decline in percentage cover and height [18]. Our
observed differences in impact may be explained by the tracks of the hurricanes (and
distance of the eye from the island). The strongest winds or leading edge of hurricanes
with a track close to the south of Jamaica will cover most of the island, tend to have a
predominantly northern wind direction, and will have a greater impact on the south coast
(Figure A4). Hurricane Gilbert made landfall and as such, the proxy hurricane indicated
that the leading edge of the hurricane would have been largely offshore to the north of the
island, with only the trailing weaker wind bands affecting the BBSFCA on the south coast
(Figure A4). These patterns of impact mirror the impacts of hurricanes on forest ecosystems
in Jamaica, where the track and distance of the eye of a hurricane from the island (and
whether they pass to the south, north, or make landfall) can be used to determine the
sites/locations that experienced the greatest impacts [36].

Depth and benthic topography have been previously reported as being important
predictors of seagrass presence, density, or percentage cover, but there is a paucity of studies
on how they influence dynamic changes. Seagrasses were found to colonize a gentle slope
with an inclination of 0.0 to 56.6 degrees along the coast of Giglio Island, Italy [24]. Also,
seagrass cover increased with higher slope values and depth in shallow areas [24]. Shoot
density decreased non-linearly with depth, with peak densities being found at intermediate
depths in a fringing-reef lagoon in the Mexican Caribbean [84]. Additionally, seagrass
distribution in shallow water can be limited by exposure to wind and wave, or where
exposure to waves is greater, whereas in deeper water, they are limited by light [84,85]. As
stated previously, aspect can give an indication of directional impact or areas predominantly
exposed to a specific wave/wind direction. For the BBSFA, the average slope percentage,
aspect, and depth were 0.8% (or equivalent to 0.4 degrees), 206 degrees, or a predominant
southwestern facing aspect, and 4.2 m (range: 0.05–9.3 m), respectively. SAV was present
across the entire bay over our study period and therefore was not limited by depth or
benthic topography. However, we found that the probability of SAV loss and gain was
higher in shallow areas, mainly around the mouth of the river, indicating that these were
areas of dynamic change in the BBSFCA. High sediment input and greater exposure to
wave action and wind may have influenced dynamic changes in these areas. Some shallow
areas, however, may have been impacted by anthropogenic activities, as there was a large
beach and other smaller public beaches and several beaches associated with lower-impact
coastal developments (small higher-end resorts) found in shallow areas along the coast.
Slope and aspect were the least selected benthic topographic predictors of spatial pattern
change. Topographic variation was subtle in this bay, and this perhaps can explain the low
importance of slope and aspect. Nevertheless, aspect was an important indicator of/proxy
to Hurricane Ivan impact.

4.2. Implications for Management

SAV cover was stable before and continued to be stable after the BBSFCA was es-
tablished. Consequently, the BBSFCA is working, that is, it is helping to maintain SAV
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cover. The main area of dynamic change was around the mouth of the main river that
drains into the bay, with one area towards the west end of the bay being consistently bare.
Under normal circumstances, we would recommend that the BBSFCA managers integrate
land–sea or ridge-to-reef conservation planning [10–12] to address the threat posed by high
terrigenous sediment load in river outflows. But this might be beyond the of the remit of
the present managers. Additionally, rainfall, and hence river outflow, may be important
due to its positive impact on SAV loss, gain, and percentage cover change, and given the
significant reduction in annual rainfall. Moreover, hurricanes pose the greatest threat to the
maintenance of SAV cover. We showed that the cumulative impacts of two hurricanes that
followed a similar track to the south of the island can reduce SAV extent for an extended
period. Even a single hurricane that made landfall and had less of an impact (Hurricane
Gilbert) can reduce percentage cover. The island was impacted by four hurricanes in 8 years
(Hurricanes Ivan (2004), Dennis (2005), Dean (2007), and Sandy (2012)), but only two of
the four hurricanes passed to the north of the island. In the future, successive hurricanes
that pass to the south of the island will have the capacity to substantially reduce SAV cover.
Depth was found to be an important predictor of SAV dynamic change, and although this
was primarily limited to shallow areas around the river mouth, loss may also be occurring
in shallow areas with high anthropogenic activity (beaches and coastal developments).
This, however, will need to be verified, and there is also a need to further verify the positive
effect of rainfall using data with higher temporal and spatial resolutions. If the latter is
found to be important, a further reduction in rainfall will also have serious implications
for management.

5. Conclusions

We were able to document changes in SAV extent and percentage cover in the BBSFCA
over a period of 37 years using data from 24 percentage cover and benthic features maps.
These maps were generated by first building a random forest regression model with 2013
percentage cover hydroacoustic data (dependent variable) and reflectance data from 2013
Landsat 7 and 8 satellite images and auxiliary data as the predictors and then using the
model to predict percentage cover using data from the Landsat satellite series. A threshold
was applied to the percentage cover maps to generate the benthic features maps. We
demonstrated that SAV cover was quite stable and possibly quite healthy, with several
years with >80% percentage cover over most of the bay. There was a significant loss in
SAV area between 2006 and 2013, with a subsequent recovery in 2015. We found that this
loss may have initially occurred due to the impact of Hurricane Ivan in 2004, and this was
compounded by a second hurricane (Dean) in 2007, which may have delayed the recovery
of SAV extent until a decade after Ivan. Rainfall, and by extension outflow from the main
river that drains into the bay, had an overall positive effect and is contributing significantly
to SAV loss, gain, and percentage cover change, despite annual rainfall being approximately
1000 mm less on average than it was at the turn of the 20th century. We surmised that a loss
of nutrient input caused by reduced outflows may have been supplemented by increased
nutrient loads from agricultural and coastal developments. Shallow areas around the river
mouth, and possibly areas close to coastal developments and beaches, were also active
areas of change. An increase in the frequency of high-intensity hurricanes and an increase
in the variability of rainfall in Jamaica, which can perhaps explain a reduction in annual
rainfall at the BBSFA, will impact the site in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16071247/s1, Table S1: Validation criteria for finals models
that included the most important predictors of the probability of submerged aquatic vegetation
(SAV) loss in the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica,
for 23, 2–4-year periods, generated using a 5-fold cross validation of spatial Bayesian Integrated
Nested Laplace Approximation (INLA) generalized linear mixed models. The validation criteria used
included: mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), bias (a measure of consistent under- or over-forecasting;

https://www.mdpi.com/article/10.3390/rs16071247/s1
https://www.mdpi.com/article/10.3390/rs16071247/s1
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BIAS), relative bias (rBIAS), and relative mean separation (rMSEP). Also included are the calculated
values for the receiver operating characteristic (ROC) curve (AUC), deviance information criterion
(DIC), and marginal R-squared (mR2); Table S2: Validation criteria for finals models that included
the most important predictors of the probability of submerged aquatic vegetation (SAV) gain in the
Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica, for 23, 2–4-year
periods, generated using a 5-fold cross validation of spatial Bayesian Integrated Nested Laplace
Approximation (INLA) generalized linear mixed models. The validation criteria used included:
mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), bias (a measure of consistent under- or over-forecasting; BIAS),
relative bias (rBIAS), and relative mean separation (rMSEP). Also included are the calculated values
for the receiver operating characteristic (ROC) curve (AUC), deviance information criterion (DIC),
and marginal R-squared (mR2); Table S3: Validation criteria for finals models that included the
most important predictors of submerged aquatic vegetation (SAV) percentage cover change in the
Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica, for 23, 2–4-year
periods, generated using a 5-fold cross validation of spatial Bayesian Integrated Nested Laplace
Approximation (INLA) generalized linear mixed models. The validation criteria used included: mean
squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), bias (a measure of consistent under- or over-forecasting; BIAS), relative
bias (rBIAS), and relative mean separation (rMSEP). Also included are the calculated values for the
deviance information criterion (DIC), and marginal R-squared (mR2). References [86–88] are cited in
the Supplementary Materials.
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Appendix A

Table A1. List of Landsat satellite images that were used in this study.

Name of File Landsat Series Path Row Date

LT05_L2SP_012047_19841009_20200918_02_T1 Landsat 4–5 12 47 9 October 1984

LT05_L2SP_012047_19850302_20200918_02_T1 Landsat 4–5 12 47 2 March 1985

LT05_L2SP_012047_19860217_20200918_02_T1 Landsat 4–5 12 47 17 February 1986

LT05_L2SP_012047_19870628_20201014_02_T1 Landsat 4–5 12 47 28 June 1987

LT04_L2SP_012047_19880926_20200917_02_T1 Landsat 4–5 12 47 26 September 1988

LT05_L2SP_012047_19900503_20200915_02_T1 Landsat 4–5 12 47 3 May 1990

LT04_L2SP_012047_19930111_20200914_02_T1 Landsat 4–5 12 47 11 January 1993

LT05_L2SP_012047_19940223_20200913_02_T1 Landsat 4–5 12 47 23 February 1994

LT05_L2SP_012047_19950330_20200912_02_T1 Landsat 4–5 12 47 30 March 1995

LT05_L2SP_012047_19960316_20200911_02_T1 Landsat 4–5 12 47 16 March 1996

LT05_L2SP_012047_19970404_20200910_02_T1 Landsat 4–5 12 47 4 April 1997
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Table A1. Cont.

Name of File Landsat Series Path Row Date

LT05_L2SP_012047_19991019_20200907_02_T1 Landsat 4–5 12 47 19 October 1999

LE07_L2SP_012047_20000131_20200918_02_T1 Landsat 4–5 12 47 31 January 2000

LE07_L2SP_012047_20021120_20200916_02_T1 Landsat 7 12 47 20 November 2002

LE07_L2SP_012047_20060304_20200914_02_T1 Landsat 7 12 47 4 March 2006

LE07_L2SP_012047_20060421_20200914_02_T1 Landsat 7 12 47 21 April 2006

LT05_L2SP_012047_20080520_20200829_02_T1 Landsat 4–5 12 47 20 May 2008

LT05_L2SP_012047_20100118_20200825_02_T1 Landsat 4–5 12 47 18 January 2010

LE07_L2SP_012048_20130510_20200907_02_T1 Landsat 7 12 48 10 May 2013

LE07_L2SP_012047_20131017_20200907_02_T1 Landsat 7 12 47 17 October 2013

LC08_L2SP_012047_20131126_20200912_02_T1 Landsat 8 12 47 26 November 2013

LC08_L2SP_012047_20150116_20200910_02_T1 Landsat 8 12 47 16 January 2015

LC08_L2SP_012047_20160220_20200907_02_T1 Landsat 8 12 47 20 February 2016

LC08_L2SP_012047_20170222_20200905_02_T1 Landsat 8 12 47 22 February 2017

LC08_L2SP_012047_20190111_20200830_02_T1 Landsat 8 12 47 11 January 2019

LC08_L2SP_012048_20200318_20200822_02_T1 Landsat 8 12 48 18 March 2020

LC08_L2SP_012047_20210422_20210430_02_T1 Landsat 8 12 47 22 April 2021
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Figure A1. Random forest predictor importance plots for random forest regressions that were used
to model the relationship between hydroacoustic submerged aquatic vegetation (SAV) percentage
cover training data (78% of the SAV data or 107,076 data points) and several predictors including
bathymetric position index [BPI] data and band reflectance and Grey Level Co-Occurrence Matrix
(GLCM) mean (glcm_mean) and variance (glcm_var) data from Landsat images for the year 2013, for
(a) bands 1 (Band 1 or B1) and 3 (Band 3 or B3) from a composite Landsat 7 image with the missing
data filled in and (b) bands 1–4 (Band 1. . .Band 4 or B1. . .B4) for a Landsat 8 image. The randomForest
package uses %IncMSE and IncNodePurity in a regression tree analysis to rank predictor importance.
The %IncMSE is the percentage increase in mean square error (MSE) of predications, estimated
using the out of bag coefficient of variation. A higher %IncMSE value represents a higher variable
importance (large percentage increase in MSE if the variable is removed) and conversely, lower
importance indicates small changes in MSE when the predictor is added or removed. IncNodePurity
is the increase in data partition homogeneity.
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Table A2. Measures of accuracy calculated for two random forest regression models (RFr) that
were used to model the relationship between hydroacoustic submerged aquatic vegetation (SAV)
percentage cover data and several predictors including bathymetric position index [BPI] data and
band reflectance and Grey Level Co-Occurrence Matrix (GLCM) mean and variance data from Landsat
images for the year 2013, for bands 1 and 3 from a composite Landsat 7 image with the missing data
filled in and bands 1–4 for a Landsat 8 image. The testing data accounted for 12% of the SAV data or
14,853 data points. Accuracy measures include mean squared error (MSE), root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), bias (BIAS), relative
bias (rBIAS), and relative mean separation (rMSEP). Var (%) = percentage variance explained by
the model.

RFr Models Var (%) MSE RMSE MAE MAPE BIAS rBIAS rMSEP

SAV × BPI + Landsat 7 reflectance and GLCM data 62.7 656.5 25.6 19.2 39.1 1.3 0.0202 0.4

SAV × BPI + Landsat 8 reflectance and GLCM data 69.8 595.2 24.4 17.7 37.7 0.1 0.0008 0.4
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Figure A2. Plots of overall agreement/accuracies obtained from accuracy assessments of benthic
habitat maps for the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica,
with (submerged aquatic vegetation present and absent and coral reef) created using different SAV
percentage cover threshold increments (23%, 25% 28%, 30%, 35%, 38% and 40%). The maps were
created using a (1) random forest (Rf) regression of acoustic SAV data points (dependent variable)
and independent (auxiliary [aux]) data that included a bathymetric position index, band reflectance
and Grey Level Co-Occurrence Matrix (GLCM) mean and variance data from either a Landsat-7
(2 bands) or Landsat 8 (2 bands) images.
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Figure A3. Maps of predictors used as predictors in the spatial Bayesian Integrated Nested Laplace
Approximation (INLA) generalized linear mixed models to identify the best spatial pattern predictors
of submerged aquatic vegetation (SAV) loss, gain and percentage cover change in the Bluefields Bay
Special Fish Conservation Area (BBSFCA), Westmoreland, Jamaica. Value = min/max values. For
aspect a value of −1 = flat areas.
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Figure A4. Tracks of (top right) the three hurricanes Gilbert—1988, Ivan-2004, and Dean-2007 that 

made landfall or passed by the island of Jamaica and influenced subaquatic vegetation (SAV) extent 

and  percentage  cover  in  the  Bluefields  Bay  Special  Fish  Conservation Area  (BBSFCA), West-

moreland, Jamaica (location highlighted by the yellow box (the hurricanes move from right to left). 

Figure A4. Tracks of (top right) the three hurricanes Gilbert—1988, Ivan-2004, and Dean-2007 that
made landfall or passed by the island of Jamaica and influenced subaquatic vegetation (SAV) extent
and percentage cover in the Bluefields Bay Special Fish Conservation Area (BBSFCA), Westmoreland,
Jamaica (location highlighted by the yellow box (the hurricanes move from right to left). Also, a
map of Jamaica overlaying processed ultra-high-resolution images of hurricane winds created from
QuikSCAT scatterometer satellite data (source http://www.scp.byu.edu/data/Quikscat/HRStorms.
html; accessed on 3 September 2023), which contain information on wind speed (color coded) for the
circular wind bands of hurricanes and information on wind direction (as wind flags). The leading
edge wind direction is shown. The hurricane images include a proxy hurricane for Gilbert centered
on one of three track points used to calculate exposure vulnerability, and an image of Ivan as it
passed by the island, that was dragged and centered on a track point some distance to the east of the
island and used to calculate EV for the hurricane before it passed by the island. Also, an image of
Hurricane Dean over open water was dragged and centered on three track points close to Jamaica
(one is shown).

http://www.scp.byu.edu/data/Quikscat/HRStorms.html
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