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Abstract: The unmanned aerial vehicle (UAV)-borne video synthetic aperture radar (SAR) possesses
the characteristic of having high-continuous-frame-rate imaging, which is conducive to the real-time
monitoring of ground-moving targets. The real-time imaging-processing system for UAV-borne
video SAR (ViSAR) requires miniaturization, low power consumption, high frame rate, and high-
resolution imaging. In order to achieve high-frame-rate real-time imaging on limited payload-carrying
platforms, this study proposes a miniaturization design of a high-integration UAV-borne ViSAR
real-time imaging-processing component (MRIPC). The proposed design integrates functions such as
broadband signal generation, high-speed real-time sampling, and real-time SAR imaging processing
on a single-chip FPGA. The parallel access mechanism using multiple sets of high-speed data buffers
increases the data access throughput and solves the problem of data access bandwidth. The range-
Doppler (RD) algorithm and map-drift (MD) algorithm are optimized using parallel multiplexing,
achieving a balance between computing speed and hardware resources. The test results have verified
that our proposed component is effective for the real-time processing of 2048 × 2048 single-precision
floating-point data points to realize a 5 Hz imaging frame rate and 0.15 m imaging resolution,
satisfying the requirements of real-time ViSAR-imaging processing.

Keywords: video synthetic aperture radar; real-time imaging; field-programmable gate array; range-
Doppler algorithm; map-drift algorithm

1. Introduction

Owing to its unique characteristics, such as its full-time capabilities, being all-weather,
and having a long operating range and high resolution, synthetic aperture radar (SAR) has
become a new means of real-time ground detection technology. In contrast to conventional
SAR systems that have a longer accumulation time using a synthetic aperture and a lower
imaging frame rate [1], video SAR (ViSAR) is capable of conducting continuous detection on
a ground imaging area, which can form high-continuous-frame-rate images while achieving
real-time imaging detection and tracking of ground targets. For airborne ViSAR, when
data are transmitted to a ground station for imaging processing, the imaging time-sensitive
targets may result in failure, posing great challenges to both the flow of imaging algorithms
and the platforms of imaging processing [2–4].

In the miniaturization of airborne SAR systems, significant progress has been found
in existing research. In 2008, the United States successively developed micro-SAR and
nano-SAR systems. The former system has a weight of 2 kg, a resolution of 1 m, and
an operating range of 0.7 km. Compared to the former, the latter has improved system
integration, possessing a lighter weight and longer operating range [5,6]. Based upon the
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nano-SAR, in 2013, Nano SAR_ B and Nano SAR_ C emerged consecutively, which have
been improved not only in resolution and operating range but also in functions that are
more comprehensive and versatile in contrast to the original nano-SAR system [7]. In
2022, Wiehle et al. integrated the image formation and processing of an airborne SAR
system into a multiprocessor system-on-a-chip (MPSoC) and ported the high-complexity
computation of the system onto a field-programmable gate array (FPGA), and the low-
complexity computation on a SAR processing system, by which the first airborne SAR
system was realized on a single hardware platform [8].

The imaging algorithms of SAR can mainly be classified into two categories, i.e., time-
domain algorithms and frequency-domain algorithms. Among them, the most commonly
used ones in the field of ViSAR imaging processing include the time-domain back-projection
(BP) algorithm, frequency-domain range-Doppler (RD) algorithm, and polar coordinate
format algorithm (PFA). The BP algorithm executes a point-wise traverse to obtain precisely
focused images, which requires a considerable amount of computation and thus limits its
applicability [9,10]. Both the RD and PFA are fundamental and representative imaging
algorithms with low computational complexity, which can be easily ported and further
developed. However, the interpolation process of the PFA algorithm not only increases
the computational complexity but also has a high time loss, which is inapplicable to real-
izing the real-time imaging processing of airborne ViSAR [11,12]. According to different
domains of signal processing, the RD algorithm can be executed in the time domain or
frequency domain [13]. Specifically, the frequency-domain RD algorithm uses Fresnel
approximation in calculations, which can greatly minimize the computational complexity
while making it more suitable for realizing high-frame-rate real-time imaging in the air-
borne miniaturization design of a high-integration unmanned aerial vehicle (UAV)-borne
ViSAR real-time imaging processing component (MRIPC). In addition, for airborne ViSAR,
the Doppler parameters of airborne radar (including the Doppler center and frequency
modulation) constantly vary with time due to the changes in aircraft velocity and airflow.
Therefore, motion error compensation is required for the results of RD imaging to realize
high-frame-rate real-time high-quality imaging. The commonly used motion error com-
pensation algorithms include the map-drift (MD) algorithm [14] and the phase-gradient
autofocus (PGA) algorithm. Despite the fact that the PGA algorithm exhibits high accuracy
and excellent stability, it needs to execute a large amount of computation and is not fea-
sible for implementing on the FPGA. The MD algorithm is a motion error compensation
algorithm based on sub-aperture processing. Compared to such algorithms, full-aperture
processing can avoid the grating lobe and image-stitching problems caused by sub-aperture
processing [15]. In 2023, Chen et al. proposed a parametric motion error compensation
algorithm based on full-aperture processing to address the severe motion error challenges
encountered in state-of-the-art airborne microwave photonic SAR systems, demonstrating
superior quantitative performance compared to the alternative full-aperture motion error
compensation methods [16]. Comparatively, the MD algorithm has lower computational
complexity and is more suitable for application in ViSAR imaging scenarios.

The high integration of ViSAR real-time imaging processing components also puts
higher demands on the computing power of hardware platforms. Currently, the research on
onboard real-time processing mainly involves three commonly used platforms, i.e., digital
signal processing (DSP) [17], graphic processing unit (GPU) [18–20], and FPGA [21–25]. In
2022, Wang et al. reported a terahertz SAR imaging processing system based on a multi-core
DSP. The reported system can complete the processing of a 2K × 2K image in 0.755 s in
range and azimuth directions and is capable of outputting five high-quality images with
a 1K resolution at an imaging rate of five frames per second [17]. However, due to its
serial processing mode, the DSP is inapplicable for the high-frame-rate real-time imaging of
ViSAR. In 2023, our previous work on the real-time imaging processing of ViSAR was based
on an embedded GPU platform [20]. However, the embedded GPU serves solely as a data
processing platform, while a complete ViSAR imaging system involves numerous interfaces
and entails higher complexity. Subsequently, Mota et al. proposed a high-performance
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and energy-efficient hardware kernel for the configurable BP algorithm in 2023. They
performed the optimized BP algorithm on the images of 512 × 512 and 1024 × 1024 pixels
on FPGA, which consumed 0.14 s and 1.11 s, respectively [25], verifying the feasibility of
adopting the FPGA platform for real-time ViSAR processing.

In this study, we proposed a miniaturized design of a highly integrated real-time imag-
ing processing component for the UAV-borne ViSAR (MRIPC). This component reduces
system complexity while satisfying the requirements for UAV-borne ViSAR imaging. The
key contributions of our work can be formulated as follows.

Firstly, we proposed a solution for the ViSAR real-time imaging processing component
based on a single large-scale FPGA chip, which integrates the functions of broadband
signal generation, high-speed real-time sampling, and real-time SAR imaging processing,
achieving parameterized SAR signal generation, acquisition, control, and storage.

Secondly, we adopted a concurrent access mechanism with multiple sets of high-speed
data buffers to increase the data access throughput, thereby solving the problem of data
access bandwidth. By flexibly allocating the DDR3 storage unit, the computation speed
of the RD algorithm was improved. We also doubled the working frequency of the sub-
block processing unit and divided the data block into seven sub-blocks in the azimuth
direction. By reusing four-way sub-block parallel processing units, the seven-way fully
parallel processing scheme was replaced, thereby balancing the computation speed of the
MD algorithm and hardware resources.

Thirdly, we validated the performance of the ViSAR real-time imaging processing
component using measured data. The experimental results have proven that the real-
time imaging processing component of ViSAR takes only 0.2 s to process the data of
2048 × 2048 points to produce a one-frame image with a resolution of 0.15 m. The results
have also validated the effectiveness of this component on 2048 × 2048 single-precision
floating-point data, which can achieve real-time imaging at a high frame rate of 5 Hz,
thereby verifying the reliability and effectiveness of the high-integration UAV-born ViSAR
real-time imaging processing component while satisfying the requirements of ViSAR real-
time imaging processing.

The remainder of this paper is organized as follows. Section 2 introduces the RD and
MD algorithms. Section 3 outlines the design of our proposed MRIPC component, focusing
on the methods of implementing and optimizing RD and MD algorithms at a high frame
rate on a single FPGA. Section 4 validates the effectiveness of our proposed method using
measured data and conducts resource consumption analysis. Section 5 summarizes the
conclusions of this study.

2. ViSAR Imaging Algorithms Based on RD and MD
2.1. RD Algorithms

The rationale of the RD algorithm is to decompose two-dimensional (2D) processing
into one-dimensional (1D) processing, i.e., to process in the range direction and azimuth
direction separately. After preprocessing the raw data, 2D results in the frequency domain
can be obtained by conducting fast Fourier transform (FFT) on the range direction and
azimuth direction. In the 2D frequency domain, the above results can be converted into
2D time-domain results by multiplying them with coefficients, such as the 2D decoupling
term and range pulse compression term. Then, we performed a dechirp operation in
the azimuth time domain to ultimately output the imaging results in the range time and
azimuth frequency domains [26,27]. The specific steps of the above operation are presented
as follows.

Step 1. Perform range FFT on the preprocessed single frame of raw data collected by
the component and transform the data into the range direction in the frequency domain
and azimuth direction in the time domain. Use the data collected by the inertial navigation
system (INS) to compensate for motion errors.

Step 2. Perform azimuth FFT on the data that are compensated with the linear phase
function, then transform the obtained result into a range–azimuth frequency domain.
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Step 3. Conduct quadratic range pulse compression and use the range cell migration
correction (RCMC) function in the range–azimuth frequency domain to complete the range
compression, quadratic range pulse compression, and range migration correction.

Step 4. Perform inverse FFT (IFFT) in the range direction and use a matching function
to compensate for the result in the azimuth direction.

Step 5. Perform IFFT with respect to the above result, transforming the signal into a
time domain.

2.2. MD Algorithms

Under normal circumstances, the images that have been processed by the above
imaging processing operations still have certain geometric deformations. Therefore, after
performing some geometric corrections, the imaging processing can be accomplished to
obtain a one-frame image.

In actual ViSAR imaging systems, the motion platform will inevitably generate non-
ideal motions, under which circumstances the phase of the radar echo signal will vary,
resulting in motion errors. The schematic diagram demonstrating those motion errors
is shown in Figure 1. The dashed trajectory represents the ideal motion trajectory of
the platform, while the actual trajectory is similar to the motion state described by the
solid trajectory.
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Figure 1. Schematic diagram of motion errors in airborne ViSAR.

In order to solve the problems of Doppler frequency shift and image defocusing caused
by motion errors, this study mainly adopts the MD algorithm based on data-driven motion
error estimation and compensation to achieve autofocus in real-time ViSAR imaging [28,29].
The core idea of the MD algorithm can be formulated by the following steps. For the MD
algorithm, we have made certain improvements to enhance its applicability on FPGA.

The improved MD algorithm first divides the data processed by the RD algorithm into
seven sub-blocks of 2048 × 512 points with an azimuthal overlap rate of 50%. Secondly,
the algorithm subdivides these data blocks into 14 sub-sub-blocks of 2048 × 256 points.
Then, conduct zero-padding in the azimuth direction, FFT operation, and azimuth modulus
calculation on these sub-sub-blocks.
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Subsequently, perform pairwise cross-correlation processing on these 14 sub-sub-
blocks and estimate the Doppler frequencies of seven cross-correlated matrices based on
the energy distribution of the cross-correlation data. Then, the azimuth frequency of each
sub-block is calculated using the method of phase differential differentiation. Finally,
concatenate the seven motion errors and perform differential differentiation and least
squares fitting to obtain the complete motion error.

The improved MD algorithm is summarized as shown in Algorithm 1.

Algorithm 1: Improved MD Algorithm.

Input:
RD processed data : g(x, y), size : N × N; Number o f sub− blocks : N1
Distance stereo coe f : H1; Size o f sub− blocks : N × N2
Size o f sub− sub− blocks : N × N3
1: for i← 1 to N1 do
2: t(x, y)← g(:, (i− 1)× N3 + (1 : N2)) · H1
3: t1(x, y)← t(:, 1 : N3)
4: t2(x, y)← t(:, N3 + [1 : N3])
5: m← (N/N3 − 1)/2
6: for j← 1 to 2 do
7: t′j(x, y)← [zeros(N, m× N3), tj(x, y), zeros(N, m× N3)]

8: rj(x, y)← FFT(abs(FFT(t′i(x, y), dim = 2)), dim = 2)
9: end
10: R(x, y)← FFT(abs(IFFT(r1(x, y) · conj(r2(x, y)), dim = 2)), dim = 2)
11: A1 ← sum(R(x, y), dim = 1)
12: A2[i, :]← A1, t0 ← 0, t1 ← −1, t2 ← 1, n2 ← N/2
13: pos← max(A1, dim = 2)
14: ϕ(0,1,2) ← A1(pos + t(0,1,2))
15: n1 ← pos− (ϕ2 − ϕ1)/(2 · (ϕ1 + ϕ2 − 2 · ϕ0))
16: n← (n1 − n2)/(2×m + 1)
17: p1[i, :]← −n× π × ((−N3 : N3 − 1)/N3)

2

18: p2[i, :]← n× (N1 + 1)
19: s← DIFF(−1/(N1 + 1)× π × ((−N3 : N3 − 1)/N3)

2)
20: end
20: phas_err1 ← DIFF(p1, 1, dim = 2)
21: phas_err2 ← p2 · (ones(N1, 1) · s)
22: phas_err ← Least Squares Fitting(phas_err1, phas_err2)
25: f (x, y)← IFFT(IFFT(win(g(x, y) · phas_err), dim = 1), dim = 1);
Output:
MD processed data : f (x, y), size : N × N

The abovementioned processing flow of the high-frame-rate ViSAR real-time imaging
algorithm is illustrated in Figure 2.
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3. Implementing MRIPC on FPGA
3.1. Designing MRIPC Components

The MRIPC component mainly includes a signal generation module, signal processing
module, signal acquisition module, data recording module, and control module. The
component adopts one high-performance FPGA as the core processor (Model: XC7VX690T
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from Xilinx). The high-speed analog-to-digital converter (ADC) and digital-to-analog
converter (DAC) chips adopt AD9129 and AD9684, respectively. In order to satisfy the
requirement of a 1 GHz bandwidth signal for ViSAR, the transmitting end adopts a 2.4 GHz
DAC sampling rate that is generated by double interpolation. The receiving end receives a
signal with dechirp modulation, and the bandwidth of the received signal depends on the
width of the scene. As for our proposed design in this study, the receiving bandwidth is
less than 160 MHz, and the ADC sampling rate is 480 MHz.

With respect to the SAR imaging algorithms, multiple operations require a large
amount of data caching, transposition, etc. Unfortunately, the limited block RAM resources
within FPGA hinder the fast computation of high-speed data. Particularly when performing
parallel computing, efficient access and interaction of the data to be processed have become
the bottleneck that restricts the performance of the MRIPC. In response to the above
situation, our proposed FPGA architecture in this study, therefore, adopts a design of four
sets of 64-bit width DDR3, thereby improving the data access throughput of the MRIPC
while providing a larger cache capacity.

Specifically, the physical dimensions of our proposed MRIPC are 145 mm× 95 mm× 6 mm,
and its weight is merely 143 g, which is capable of satisfying the requirements of miniaturization
and is lightweight for the ViSAR real-time imaging processing components. Figure 3 demonstrates
the architecture diagram and the physical image of our proposed MRIPC.
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Figure 3. Architecture diagram and physical images of the proposed MRIPC: (a) the architecture
diagram of the MRIPC; (b) the physical image of the MRIPC.

3.2. Implementing High Frame Rate Real-Time Imaging Algorithms on FPGA
3.2.1. Implementing RD Algorithm on FPGA

The implementation process of the RD algorithm on the FPGA primarily involves
the range direction and azimuth direction processing, parameter computation and its
compensation, as well as data matrix transposition. Figure 4 demonstrates the overall
processing flow of the RD algorithm implemented on the FPGA.

When performing FFT and IFFT in the azimuth direction, multiple transposition oper-
ations must be conducted with respect to the data matrix. To ensure that the arrangement
order of the data flow processed by the RD algorithm remains unchanged, matrix transposi-
tion operations must be performed, which will take advantage of the flexibility of the DDR3
storage units, including sequential write and cross-address read, as well as cross-address
write and sequential read methods, thereby transposing the matrix.

The FFT operations in the azimuth and range directions underlie the key of the RD
algorithm, to which the process of implementing the algorithm on a FPGA is presented
as follows.
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Step 1. Perform FFT in the range direction. When the data of one frame of
2048 × 2048 single-precision floating-points are preprocessed, perform FFT with respect to
it in the range direction, during which all of the FFT operations adopt a pipeline parallel
computation mode to improve the computation efficiency. Then, the processed data matrix
is sequentially written into the DDR3 storage. In this study, all the DDR3 cache units used
adopt a ping-pong design, which thus trades off the storage resources for processing speed
to satisfy the requirements of pipeline processing.

Step 2. Correct the range cell walk values and compensate for INS errors. Use a DSP48
multiplier to perform a matrix dot product on the data matrix to which the FFT operations
have been conducted in the range direction with the INS compensation parameters and
with range cell walk correction parameters to obtain the compensated data, and then write
it sequentially into the DDR3 storage unit.

Step 3. Perform FFT in the azimuth direction. Use the DDR3 storage unit for cross-
address read and write. When the data matrix is transposed, conduct FFT in the azimuth
direction with respect to the processed data matrix.

Step 4. Perform IFFT in the range direction. The data matrix that has been compensated
by the functions of quadratic range pulse compression and range curvature correction
is written into the DDR3 storage unit across addresses in the azimuth direction. Then,
sequentially read the written data in the range direction, transpose the data matrix again,
and conduct IFFT in the range direction on the matrix. The data to which the IFFT is
conducted in the range direction are then compensated with the azimuth matching function
by means of pipeline processing.

Step 5. Perform IFFT in the azimuth direction. After being compensated by the az-
imuth matching function, the data matrix is first sequentially written into the DDR3 storage
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unit and then read out across addresses to realize transposition, thereby transforming them
from the range direction to the azimuth direction.

All the FFT operations are provided by exclusively designed FFT_IP cores that are
configured in a pipeline processing mode to divide the computational tasks into a series
of independent operations, thereby achieving synchronous execution of multiple tasks
while effectively improving the overall computing speed. Considering the limitations of the
hardware resources and memory, the processing unit that performs FFT and IFFT processing
in the azimuth direction is organized into a parallelized operation group consisting of eight
independent IP cores, which can provide eight-way parallel FFT and IFFT operations. It
completes the compensation processing of the quadratic range pulse compression function
and range correction function through the same parallel computation.

3.2.2. Implementing MD Algorithm on FPGA

Despite that, the frequency-domain RD imaging algorithm possesses the advantage
of low computation complexity; however, defocusing occurs to the image obtained after
being processed by the RD algorithm in the frequency domain, for which reason motion
error estimation and compensation are required.

When the data processed by the RD algorithm enters into the motion error estimation
and compensation unit, the data will be divided into two separate ways. One way the
data is used is for motion error estimation, while the other is used as raw data for motion
error compensation. The sub-block segmentation module subdivides the data matrix into
seven sub-blocks in the azimuth direction to facilitate the estimation of Doppler frequency
modulation. The sub-block processing module contains seven independent processing
components for processing the segmented sub-blocks, which can generate seven sets
of Doppler frequency modulation. The motion error estimation module estimates and
concatenates seven sets of motion error data and fits them into one set of motion error
data. As for the motion compensation module, it is primarily used to compensate for the
estimated motion error in the data processed by the RD algorithm, thereby eliminating the
Doppler motion error in the data.

During the implementation process of the MD algorithm on the FPGA, we adopted
a parallel design to deal with the sub-blocks. If a seven-way fully parallel processing
scheme is adopted, 14 sub-block processing operations are to be executed on the FPGA,
involving 28 FFT processing cores in the azimuth direction. In addition, after performing
azimuth cross-correlation processing in the azimuth direction on the sub-blocks in the
frequency domain, it is necessary to perform IFFT operations in the azimuth direction on
the cross-correlated data blocks and then to transform the resultant data back into the time
domain. During this process, the extra seven IFFT processing cores in the azimuth direction
are required. It must be noted that adopting the seven-way parallel processing scheme will
result in a high occupancy rate of FPGA resources, which not only increases the synthesis
difficulty for the FPGA but also lowers the wiring efficiency and makes it difficult to satisfy
the internal timing constraints of the FPGA.

In order to strike a balance between computing speed and hardware resources, the
proposed scheme in this study improved the working frequency of the sub-block processing
unit of the MD algorithm to twice that of the RD processing unit, divided the data into seven
sub-blocks in the azimuth direction, and replaced the seven-way fully parallel processing
scheme by reusing four sub-block parallel processing units. Meanwhile, for the purpose of
saving hardware resources, the proposed scheme reused the processing modules.

Since the overall working frequency of the RD processing unit is 120 MHz, the sub-
block parallel processing unit designed in this study shall have a working frequency of
240 MHz in the MD algorithm. When sub-block processing is accomplished, data con-
catenation is performed, and the subsequent processing speed should regress to 120 MHZ
Since the increased working frequency of the sub-block processing unit is 240 MHz, which
is twice that of the RD processing unit, the real-time design requirements are thus satisfied,
like the seven-way fully parallel processing scheme.
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When implementing the MD algorithm on the FPGA, the first step is to utilize FPGA
logic to segment the 2048 × 2048 points data processed by the RD algorithm into seven
sub-blocks with 2048 × 512 points, with an overlap rate of 50% between each adjacent
sub-block. Then, four groups of sub-blocks with 2048 × 256 × 5 points are input into
the sub-block processing unit. Meanwhile, the remaining three sets of sub-blocks with
2048 × 256 × 3 points are stored in the DDR3. Finally, after processing the first four groups
of sub-block data, they are cached in the concatenation processing unit for processing.
Before these data completely enter into the pipeline parallel processing unit, the last three
groups of sub-block data are then sent to the parallel processing unit for processing.

In the motion error estimation and compensation unit, the data block is first segmented
from 2048 × 2048 points into seven sub-blocks of 2048 × 512 points with an overlap rate of
50% between each adjacent block. Then, each of the above sub-blocks is further subdivided
into two sub-sub-blocks of 2048 × 256 points, to which zero-padding is conducted in the
azimuth direction to make the size of each sub-sub-block size 2048 × 2048 points. The
above process can be directly implemented through FPGA logic without requiring DDR3
cache resources.

The processing steps for these 14 sub-sub-blocks are formulated as follows.
Step 1. Perform FFT, respectively, on the 14 sub-sub-blocks in the azimuth direction to

obtain the result of 2048 points in the azimuth direction, then take the modulus value of
the result.

Step 2. Perform frequency-domain cross-correlation processing on each of the final results
of the above step to obtain seven cross-correlated data blocks with 2048 × 2048 points.

Step 3. Perform IFFT on each cross-correlated data block in the azimuth direction,
transforming the data into a time domain to obtain seven time-domain cross-correlated
data blocks.

Step 4. Perform summation on each of the above time-domain cross-correlated data blocks
in the range direction to obtain seven real cross-correlated data blocks with 1× 2048 points.

Step 5. Find the maximum value of each of the above data blocks in the azimuth
direction, expand the data block to seven data blocks with 1 × 512 points, and concatenate
these seven data blocks.

Step 6. Perform differential differentiation and least squares fitting on the concatenated
data block to obtain the motion error-compensated data with 2048 × 2048 points.

Step 7. Perform windowing and IFFT on the above-compensated data in the range
direction and then compensate it to the data processed by the RD algorithm to complete
the imaging processing.

Since the entire process of data processing is conducted in the azimuth direction, only
one DDR3 storage unit is required for sub-block multiplexing and parallel processing,
whereas other processing units are not required to be cached in the DDR3 storage.

The specific processing flow of implementing the MD algorithm on the FPGA is
demonstrated in Figure 5.

In order to verify the advantage of our proposed four-way parallel multiplexing
processing scheme, we performed the RD and MD algorithms using a seven-way fully
parallel scheme and four-way parallel multiplexing scheme, respectively, on a single-
chip FPGA and recorded the resource utilization rates under the two processing schemes.
Figure 6 demonstrates the comparison results of the utilization rates of the main resources
under the two schemes.



Remote Sens. 2024, 16, 1273 10 of 15Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 17 
 

 

2048×2048 points  

2048×256×5 points 
DDR3

2048×256×3 points 

X1
2048×256 

points  

X2
2048×256 

points 

X4
2048×256 

points 

Cross read

2048 points 
azimuth FFT

Abs

2048 points azimuth IFFT

Range Summation

Azimuth Search for Maximum

Data
Registration

Differential 
differentiation

Range window

2048 points
range IFFT

2048 points 
azimuth FFT

2048 points 
azimuth FFT

2048 points 
azimuth FFT

Cross read Cross read

2048 points 
azimuth FFT

2048 points 
azimuth FFT

2048 points 
azimuth FFT

2048 points 
azimuth FFT

Least squares 
fitting  

Figure 5. The processing flow of implementing the MD algorithm on FPGA. 

In order to verify the advantage of our proposed four-way parallel multiplexing 

processing scheme, we performed the RD and MD algorithms using a seven-way fully 

parallel scheme and four-way parallel multiplexing scheme, respectively, on a single-chip 

FPGA and recorded the resource utilization rates under the two processing schemes. 

Figure 6 demonstrates the comparison results of the utilization rates of the main resources 

under the two schemes. 

Figure 5. The processing flow of implementing the MD algorithm on FPGA.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 6. Comparison results of resource utilization rates of the two processing schemes. 

It can be observed from Figure 6 that under the seven-way fully parallel scheme, both 

the LUT resources and BRAM occupancy rates exceed 90%, which can hardly be realized 

during the layout and wiring, not to mention the tight timing. Meanwhile, the LUTRAM 

and Flip-Flop resources also confronted great pressure. In contrast, our proposed four-

way parallel multiplexing processing scheme regulates the resource occupancy within a 

relatively reasonable range. This architecture optimizes the balance between the hardware 

resources and processing speed, allowing a single FPGA chip to efficiently execute real-

time ViSAR imaging algorithms. 

4. Verification of MRIPC and Analysis 

4.1. Processing Result of MRIPC 

In order to verify the processing result of the proposed MRIPC in this study, we 

conducted real-time ViSAR imaging processing using measured data. The airborne radar 

operated in the strip-map mode, and we replayed multiple frames of radar data collected 

at an echo rate through a data recorder, after which these data were processed on the 

MRIPC platform. The design of the above procedure aims to simulate airborne real-time 

processing conditions, through which we can conduct an effective performance evaluation 

under conditions similar to actual application scenarios. Figure 7 shows the real-time 

imaging results of nine consecutive frames. 

      

(a)                        (b)                         (c) 

 

Figure 6. Comparison results of resource utilization rates of the two processing schemes.

It can be observed from Figure 6 that under the seven-way fully parallel scheme, both
the LUT resources and BRAM occupancy rates exceed 90%, which can hardly be realized
during the layout and wiring, not to mention the tight timing. Meanwhile, the LUTRAM
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and Flip-Flop resources also confronted great pressure. In contrast, our proposed four-
way parallel multiplexing processing scheme regulates the resource occupancy within a
relatively reasonable range. This architecture optimizes the balance between the hardware
resources and processing speed, allowing a single FPGA chip to efficiently execute real-time
ViSAR imaging algorithms.

4. Verification of MRIPC and Analysis
4.1. Processing Result of MRIPC

In order to verify the processing result of the proposed MRIPC in this study, we
conducted real-time ViSAR imaging processing using measured data. The airborne radar
operated in the strip-map mode, and we replayed multiple frames of radar data collected at
an echo rate through a data recorder, after which these data were processed on the MRIPC
platform. The design of the above procedure aims to simulate airborne real-time processing
conditions, through which we can conduct an effective performance evaluation under
conditions similar to actual application scenarios. Figure 7 shows the real-time imaging
results of nine consecutive frames.
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Figure 7. Real-time imaging results of ViSAR based on the proposed MRIPC: (a) The first frame
image; (b) the second frame image; (c) the third frame image; (d) the fourth frame image; (e) the fifth
frame image; (f) the sixth frame image; (g) the seventh frame image; (h) the eighth frame image; and
(i) the ninth frame image.

Figure 7 shows the proposed MRIPC real-time imaging results of nine consecutive
frames, processed with respect to the provided 2048 × 2048 single-precision floating-point
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data, where the slowly emerging farmland is highlighted in red boxes. The total time for
processing nine consecutive frames of data is 1.8 s, and the imaging time for each frame
of data is 0.2 s. The test results satisfy the requirement of a real-time imaging frame rate
of 5 Hz. In actual testing, the proposed MRIPC scheme can satisfy the requirement of
continuous imaging without losing scenes.

On the proposed MRIPC platform, through BackPressure, we regulated that the pro-
cessing of one frame of 2048 × 2048 single-precision floating-point data can be completed
within 200 ms. This mechanism ensures that when the rate of input data is too high, the
flow control logic can pause the input data until the RD and MD algorithms have completed
processing and are ready to accept new data. The adoption of this approach avoids data
accumulation and guarantees that for each frame of data, the image processing can be
completed within 200 ms by adaptively adjusting the data input rate.

4.2. Processing Performance of MRIPC

In order to verify the processing performance of our proposed MRIPC, we used a
data recorder to replay the collected measured data for processing. The original data
are 2048 × 2048 points of single-precision floating-point data, which were processed
on the MRIPC platform using single-chip FPGA reconstruction-accelerated RD and MD
algorithms. Meanwhile, we used MATLAB 2023a software to run the traditional RD and
MD algorithms to process the same data. The two different processing methods were used
to obtain one frame of ViSAR imaging results, as shown in Figure 8.
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To study the visual quality variations in the ViSAR imaging frames during the real-time
processing of the proposed MRIPC, we used two indicators, i.e., the peak signal-to-noise
ratio (PSNR) and the structure similarity index measure (SSIM), to compare the image
quality before and after accelerated processing. We also compared the proposed processing
scheme with research related to ViSAR, to which the results are listed in Table 1. It can be
seen that, compared with the previous related studies, our proposed processing scheme
exhibits a shorter processing time and higher imaging quality.

Table 1. Comparison results of processing schemes.

Work Platform Image Size Algorithm Time
(s)

Operating
Frequency Imaging Quality

[30] Xilinx XC7VX690T 900 × 900 BP 1.10 s 200 MHz PSNR = 27.26 dB
SSIM = 0.8652

[31] Xilinx Zynq
UltraScale + FPFA 2048 × 2048 CS 0.48 s 235 MHz PSNR = 33.43 dB

SSIM = 0.947
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Table 1. Cont.

Work Platform Image Size Algorithm Time
(s)

Operating
Frequency Imaging Quality

[32] Jetson AGX Orin 2048 × 2048 RD + MD 0.135 s 1.30 GHz PSNR = 48.1308 dB
SSIM = 0.9652

Ours Xilinx XC7VX690T 2048 × 2048 RD + MD 0.20 s 200 MHz PSNR = 37.64 dB
SSIM = 0.954

5. Conclusions

The UAV-borne ViSAR imaging systems exhibit characteristics of high data throughput
and high frame-rate imaging, imposing considerable demands on the real-time processing
capabilities of signal processing systems. Furthermore, to satisfy the requirements of
UAV integration, higher integration, miniaturization, and lower power consumption are
also necessary. Currently, onboard research regarding UAV-borne ViSAR systems mainly
focuses on the DSP, embedded GPU, and FPGA platforms. The DSP platform adopts a serial
processing approach, which is not suitable for high-frame-rate real-time imaging in ViSAR
systems. In comparison to the FPGA, although embedded GPUs can realize higher imaging
efficiency and higher image quality, they are limited by the GPU interfaces and cannot
directly communicate with ADCs and DACs. They require FPGAs or similar chips for
radar waveform generation and signal acquisition interface conversion. Furthermore, data
transmission through the PCIe limits the real-time processing capability of ViSAR imaging
on embedded GPU platforms. In addition, the flexibility and scalability of embedded GPUs
are low, making it difficult to effectively increase integration while reducing the system’s
size and weight.

In response to the above problems, this study proposed a miniaturized design of a
highly integrated real-time imaging processing component for the UAV-borne ViSAR. Firstly,
aiming at realizing the goals of miniaturization, high data throughput, and real-time imag-
ing processing, the proposed component integrates the main functions of a ViSAR system
within a single large-scale FPGA chip, thereby realizing a miniaturized ViSAR module with
145 mm× 95 mm× 6 mm physical dimensions and a 143 g weight. Secondly, our proposed
component adopts a parallel access mechanism with multiple sets of high-speed data buffers
to improve the data access throughput. Thirdly, we adopted a parallel multiplexing strategy
to optimize the RD and MD algorithms, by which a single FPGA chip can efficiently execute
real-time ViSAR imaging algorithms. The test results have verified the effectiveness of our
proposed component in real-time processing of 2048× 2048 points single-precision floating-
point data, achieving a 5 Hz imaging frame rate and 0.15 m imaging resolution. Compared to
previous studies on GPUs and the FPGA, our proposed component takes the shortest time to
generate a ViSAR image with a higher PSNR and SSIM. In addition, combining the advantages
of miniaturization and high data throughput, our proposed component provides an effective
alternative solution for UAV-borne ViSAR real-time imaging processing components.

Despite that, adopting the FPGA platform can significantly improve system integra-
tion; however, FPGA programming and debugging still remain great challenges, let alone
its long development cycle. However, in order to achieve a high integration of ViSAR
systems on a single chip, the FPGA stands out as a favorable option. In addition, due to
limited FPGA resources, the processing efficiency of complex ViSAR imaging algorithms
performed on FPGA can hardly be improved.

ViSAR technology is developing towards miniaturization and software, and there are
currently heterogeneous chips similar to the RFSoC that can improve the overall perfor-
mance and real-time performance of imaging processing components. Our future research
interest will be focusing on this integrated architecture to design real-time imaging process-
ing components for the UAV-borne ViSAR, which can improve processing performance
while reducing costs. Meanwhile, our proposed component merely designs motion error
estimation and compensation methods based on the RD imaging algorithm and MD algo-
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rithm. Our future work will focus on the implementation of various imaging algorithms for
ViSAR, including but not limited to the BP algorithm, PFA algorithm, and PGA algorithm.
In the case of PGA algorithms with high computational complexity, we will be planning
to employ a hybrid approach utilizing an embedded GPU in conjunction with the FPGA.
This approach involves porting computationally intensive operations to embedded GPUs
to fully leverage their respective strengths, enhancing the real-time imaging efficiency
for ViSAR. Concurrently, potential application scenarios for the ViSAR system will be
thoroughly explored, with the aim of successful implementation in various complex envi-
ronments, in which the scalability of the system will be rigorously tested and evaluated to
fully demonstrate the practical value and applicability of the proposed system.
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