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Abstract: The self-supervised learning (SSL) technique, driven by massive unlabeled data, is expected
to be a promising solution for semantic segmentation of remote sensing images (RSIs) with limited
labeled data, revolutionizing transfer learning. Traditional ‘local-to-local’ transfer from small, local
datasets to another target dataset plays an ever-shrinking role due to RSIs’ diverse distribution
shifts. Instead, SSL promotes a ‘global-to-local’ transfer paradigm, in which generalized models
pre-trained on arbitrarily large unlabeled datasets are fine-tuned to the target dataset to overcome
data distribution shifts. However, the SSL pre-trained models may contain both useful and useless
features for the downstream semantic segmentation task, due to the gap between the SSL tasks and
the downstream task. To adapt such pre-trained models to semantic segmentation tasks, traditional
supervised fine-tuning methods that use only a small number of labeled samples may drop out useful
features due to overfitting. The main reason behind this is that supervised fine-tuning aims to map a
few training samples from the high-dimensional, sparse image space to the low-dimensional, compact
semantic space defined by the downstream labels, resulting in a degradation of the distinguishability.
To address the above issues, we propose a class distinguishability-enhanced self-training (CDEST)
method to support global-to-local transfer. First, the self-training module in CDEST introduces
a semi-supervised learning mechanism to fully utilize the large amount of unlabeled data in the
downstream task to increase the size and diversity of the training data, thus alleviating the problem
of biased overfitting of the model. Second, the supervised and semi-supervised contrastive learning
modules of CDEST can explicitly enhance the class distinguishability of features, helping to preserve
the useful features learned from pre-training while adapting to downstream tasks. We evaluate the
proposed CDEST method on four RSI semantic segmentation datasets, and our method achieves
optimal experimental results on all four datasets compared to supervised fine-tuning as well as three
semi-supervised fine-tuning methods.
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1. Introduction

The vast availability of remote sensing images (RSIs) laden with rich information has
opened the door to various Earth observation applications. How to extract information
accurately and automatically from RSIs, especially through semantic segmentation or dense
labeling, is one of the most interesting and long-standing problems [1,2]. This process is
crucial for various applications such as urban planning, disaster monitoring, environmental
protection, and agricultural management [3–5].

In the last decade, deep learning (DL)-based models have revolutionized RSI semantic
segmentation by replacing hand-crafted features with data-driven features, achieving
remarkable performance [6–8]. However, the high performance of these DL models relies on
a critical assumption: the training and testing data should have similar distributions [9,10].
Unfortunately, RSIs obtained from different regions and time phases often exhibit significant
distributional discrepancies [11,12]. In most cases, manual annotation and individual re-
training of the semantic segmentation model is required for each RSI dataset [13].

To solve the inefficiency problem, researchers have developed transfer learning (TL)
methods to adopt the models learned on a labeled dataset (source domain) to other datasets
(target domain) with only a few labeled or even unlabeled samples [9,14]. Among them,
representative methods include feature distribution alignment TL methods and data distri-
bution alignment TL methods. The former type of method focuses on learning invariant
features across domains by integrating the target and source data [15–19]; the latter directly
modifies source or target data to reduce domain differences [20–23]. Although these TL
methods have achieved good results on many public semantic segmentation datasets, this
‘local-to-local’ transfer paradigm suffers from the following major limitations: (1) The
generalization ability and performance of the model are limited due to the inability to
fully utilize large and diverse source datasets. (2) They rely on a high degree of similarity
between the source and the target domains to satisfy the above basic assumption, which is
difficult to guarantee in practical applications.

Recently, a new feature-learning paradigm, self-supervised feature learning (SSFL),
has been widely used in remote sensing [24–26]. SSFL methods can learn abundant visual
features directly from massive unlabeled data [27], which fundamentally shifts the TL
paradigm from ‘local-to-local’ to ‘global-to-local’ [28,29]. The basic pipeline of the second
TL paradigm is ‘pre-training + fine-tuning’ [30]. Specifically, the SSFL method is used to
pre-train the model on a large-scale source domain dataset to learn global features, and
then fine-tune it to adapt to a specific downstream task dataset. The key advantages of
this paradigm are, first, with large and diverse datasets and well-designed SSFL methods,
pre-trained models can learn powerful features with distinguishability, and which are
crucial for a variety of downstream tasks such as semantic segmentation [31–34]. For
example, FALSE [33] uses coarse judgment and fine calibration to construct positive and
negative samples and obtain features that are more beneficial to downstream semantic
segmentation tasks. IndexNet [32] and DenseCL [35] add a dense contrastive module in the
pre-training stage to improve the performance of the semantic segmentation task. Second,
since we can choose a source dataset similar to the target dataset at a low cost for pre-
training, this paradigm can potentially alleviate the domain difference, and thus, ensure the
performance of the learned features in the target RSI semantic segmentation task. However,
due to the gap between the self-supervised pre-training task and the downstream semantic
segmentation task, the pre-training model contains both relevant features that are useful
for the downstream task and features that are irrelevant or even have a negative impact
on the downstream task. Therefore, it is challenging to adapt the pre-trained model to the
downstream task with only a small amount of downstream annotated data.
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Traditional supervised fine-tuning is the most straightforward and most prevalent
method to adapt self-supervised pre-trained models to specific downstream tasks [32,36–39].
However, during supervised fine-tuning, models could easily overfit with few labeled
examples in downstream tasks, which prevents achieving higher semantic segmentation
performance. This problem arises as the model strives to map a few training samples from
the high-dimensional, sparse image space to the low-dimensional, compact semantic space
defined by the downstream labels, resulting in degradation of the distinguishability. Unfor-
tunately, the above mapping process is inherent to the objective of supervising fine-tuning.

To address the problem of overfitting, Chen et al. introduced a semi-supervised fine-
tuning method that incorporates unlabeled data into supervised fine-tuning as a form of
regularization [40]. Semi-supervised methods have been widely studied and can be broadly
classified into consistency regularization-based methods, pseudo-labeling-based methods,
and hybrid methods [41]. First, the basic idea of consistency-based regularization methods
is to constrain various perturbations by using forced consistency loss [42–44]. For example,
the unsupervised data augmentation (UDA) method generates a perturbed version of the
data through data augmentation for unlabeled data, then feeds the data before and after
augmentation into the network, and uses the KL dispersion (Kullback–Leibler divergence)
loss to promote the consistency of the two outputs [44]. Second, the pseudo-labeling-based
method generates pseudo-labels for unlabeled data and uses the high-confidence samples
to guide model learning through filtering or weighting [45]. In such approaches, how to
efficiently filter out reliable pseudo-labels is crucial for improving model performance but
challenging. One representative approach is to build separate teacher and student models
and optimize the label filtering results through iterations [46]. Another representative
idea is to train multiple models and simultaneously generate multiple versions of pseudo-
labels using different views of the data, and then improve the quality of pseudo-labels
by exploiting the complementarity of the models [47]. Finally, hybrid semi-supervised
methods incorporate the previously mentioned semi-supervised methods of consistent
regularization, pseudo-labeling, or some other ideas [45]. For example, FixMatch effectively
fuses the two ideas of consistent regularization and pseudo-labeling in a very concise
manner [48]. Although these approaches help to alleviate overfitting, a larger number of
training data and longer training processes significantly increase the risk of catastrophic
forgetting [49–51], i.e., the model is more likely to completely forget distinguishability
features learned during the pre-training process.

Unlike the above fine-tuning methods, this paper proposes the class distinguishability-
enhanced self-training (CDEST) method for adopting SSL pre-trained models to down-
stream RSI semantic segmentation tasks. CDEST can mine supervisory information from
both labeled and unlabeled data to provide effective guidance for fine-tuning. For labeled
data, the proposed method employs a supervised fine-tuning and supervised contrastive
learning (SCL) module to enhance the distinguishability and invariance of features. For
unlabeled data, we first construct a self-training (ST) module to mine additional super-
vised information from unlabeled data to guide the fine-tuning in a semi-supervised
learning manner, thus overcoming the overfitting problem. Secondly, we also design a
semi-supervised contrastive learning (SSCL) module in the proposed method to further
overcome the above-mentioned catastrophic forgetting problem. Note that the SCL mod-
ule and the SSCL module of the proposed method utilize real labels and pseudo-labels,
respectively, to guide contrastive learning. Compared with typical self-supervised contrast
learning, these two modules can effectively avoid the problem of over-distinguishing be-
tween samples of the same class, thus achieving better inter-class distinguishability and
intra-class invariance. We present experiments conducted on four datasets to demonstrate
the effectiveness of our method.

The main contributions of this paper are as follows:

(1) We propose a novel fine-tuning method to provide effective support for the most recent
global-to-local transfer learning paradigm. By leveraging both labeled and unlabeled
data to enhance the class distinguishability of features, our method can efficiently



Remote Sens. 2024, 16, 1293 4 of 18

maintain useful features in self-supervised pre-trained models while adapting them
to downstream semantic segmentation tasks.

(2) We combine self-training and contrastive learning mechanisms and design three mod-
ules to mine effective supervisory information from both labeled and unlabeled data,
to guide model fine-tuning to overcome overfitting and catastrophic forgetting issues.

(3) We evaluate our proposed method on two public datasets and two realistic datasets.
The experimental results show that our method outperforms both traditional super-
vised fine-tuning and several representative semi-supervised fine-tuning methods.

2. Methodology

This section introduces our proposed class distinguishability-enhanced self-training
(CDEST) method for adapting self-supervised pre-trained models to downstream semantic
segmentation tasks. The overall framework of the proposed CDEST method is presented
in Section 2.1. Then, the three important modules of CDEST, the supervised comparative
learning (SCL) module, the self-training (ST) module and the semi-supervised comparative
learning (SSCL) module, are described in Sections 2.2–2.4, respectively.

2.1. The Overall Framework of CDEST

The overall framework of the fine-tuning method CDEST proposed in this paper is
shown in Figure 1. For an encoder–decoder architecture model initialized with pre-trained
weights, CDEST uses a small amount of labeled data and a large amount of unlabeled data
to fine-tune it to the downstream semantic segmentation tasks.

Figure 1. Overview framework of the class distinguishability-enhanced self-training method.

For labeled data, in addition to being used for basic supervised learning, CDEST feeds
it into the SCL module to enhance feature distinguishability. Unlike typical contrastive
learning methods [27,52–54], the SCL module has two primary differences: firstly, it selects
individual pixels instead of image patches to construct positive and negative sample pairs,
facilitating the learning of fine-grained features that are more suitable for downstream
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semantic segmentation tasks; secondly, the SCL module treats all samples of the same
class as positive samples and only samples of different classes as negative ones, avoiding
the problem of over-distinguishing between samples of the same class in typical self-
supervised contrastive learning methods [33,55], thus contributes to enhancing the inter-
class distinguishability and intra-class consistency of the learned representations.

The unlabeled data can be utilized by the ST and SSCL modules to provide additional
supervisory information for fine-tuning. The significance of these two modules is to avoid
model overfitting and further improve the semantic segmentation performance. Firstly, the
ST module is crucial for the proposed method to be able to utilize unlabeled data. This
module takes the downstream model initialized with pre-trained weights as the student
model and the supervised fine-tuned version as the teacher model. During self-training,
the teacher model generates pseudo-labels for all unlabeled data to train the student model,
thereby enhancing its semantic segmentation performance. In this process, the teacher
model periodically updates itself with the student model’s parameters instead of relying
on gradient-based parameter optimization. Secondly, SSCL has the same core objectives as
the above SCL module but leverages pseudo-labels instead of manual labels to guide the
construction of positive and negative samples.

2.2. Supervised Contrastive Learning Module with Labeled Data

Enhancing the distinguishability between classes and reducing the variance within
classes of the learned representations are key to improving the performance of RSI clas-
sification [56–58]. Ideally, this goal could easily be achieved by supervised contrastive
learning methods [59] that bring samples of the same class closer and separate samples
of different classes in the representation space. However, supervised contrastive learning
based on RSIs faces two major challenges: first, the redundancy of RSIs (i.e., RSIs containing
massive numbers of almost identical pixels) leads to very low computational efficiency in
contrastive learning. Second, the number of geographic elements in RSIs varies greatly [60],
leading to an extreme class imbalance encountered during contrastive learning. In this case,
the model tends to ignore the samples with small proportions, thus making it difficult to
improve the distinguishability within these categories as well as with other categories [34].

To tackle the issue of computational inefficiency, this paper proposes the SCL module,
which samples pixel-level features in a low-dimensional and compact representation space,
rather than sampling original pixels in the high-dimensional and redundant image space.
To address the problem of class imbalance, the SCL module maintains a dynamic queue
to store massive amounts of pixel features categorically. This ensures that each training
batch for contrastive learning draws samples with balanced categories and positive and
negative ratios. The detailed implementation process of the proposed SCL module for a
small amount of labeled data is detailed below:

(1) Image encoding to generate feature maps

Given a labeled image x, we first feed it into the student semantic segmentation
network to obtain the feature map d(e(x)), which is the output of the previous layer of
the final classification layer. Since we used a self-supervised pre-trained DeepLabV3+
model [61] provided by [31] as the student network in this paper, e(·) and d(·) correspond
to the encoder and decoder of this model, respectively. Inspired by previous work [53,62],
we also utilized a projection head module g(·) for applying a non-linear mapping to
the feature map d(e(x)) before contrastive learning to improve the performance of the
learned representations, where g(·) consists of two 1 × 1 convolutional layers (the first
convolutional layer denoted Conv1, and the second convolutional layer denoted Conv2)
and a ReLU layer (denoted R). The final feature map used to collect samples for contrastive
learning is shown in the following equation:

f map = g(d(e(x))) = Conv2R(Conv1d(e(x))) (1)

(2) Sample queue construction and update
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To address the class imbalance, the SCL module creates a queue Q that stores an
equivalent number of samples from each category for contrastive learning. The size of Q is
C × Nq × K, where C stands for the total number of categories, Nq represents the maximum
number of pixel-level feature vectors retained for each category, and K is the dimensionality
of the feature map f map. In the construction phase of Q, the SCL module randomly samples
the feature vectors of pixels of each image x and adds them to Q by class, where the class
information is obtained from the pixel-level semantic segmentation label y corresponding
to x. To diminish feature redundancy, the maximum number of each class of feature vector
sampled from each image is CMax. In the update phase, the SCL module traverses images
continuously, gathering new feature vectors corresponding to pixels of images in various
classes. These vectors are used to replace the previously stored samples of the same class,
following a first-in-first-out principle. The full queue is perfectly class-balanced since the
maximum number of samples in each category in Q is Nq.

(3) Constructing positive and negative samples

This module aims to enhance the distinguishability between classes and reduce the
variance within classes of the learned representations by supervised contrastive learning
(Figure 2). Since this process is achieved by bringing positive sample features closer and
pushing negative sample features farther away, the way of constructing positive and nega-
tive samples is crucial for the above purpose. Note that either positive or negative samples
are relative concepts, and their baseline samples are usually referred to as anchor samples.

Figure 2. Scheme of supervised contrastive learning module for semantic segmentation.

To achieve balanced classes, we first try to randomly select NA/C pixel-level sample
features as anchor samples for each class based on labels from the current batch of training
data, where NA is a hyperparameter indicating the total number of anchor samples to be
selected and C denotes the number of classes. If a class has fewer than NA/C samples in
the current training batch, we select all those samples and continue to randomly select the
same class of samples from Q as a supplement until obtaining NA/C anchor samples.

Then, for the i-th sample of all NA anchor samples, we select samples from the queue
Q of the same class to construct its positive sample set P(i) and samples of a different class
for the negative sample set N(i). The resulting set of positive and negative samples is
denoted as O(i).

(4) Supervised contrastive loss

Once the anchor samples and positive and negative samples are specified, the model
can be trained by optimizing the supervised contrastive loss function Llbl

con, as defined in
Equation (2):

Llbl
con =

NA

∑
i=1

− 1
|P(i)| ∑

p∈P(i)

(
log

exp(zi · zp/τ)

∑o∈O(i) exp(zi · zo/τ)

)
(2)
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where NA represents the number of anchor samples, while |P(i)| indicate the size of the
positive sample set P(i). Then, zi, zp, and zo denote the feature of the i-th anchor sample,
the p-th positive sample in P(i), and the o-th sample in O(i), respectively.

2.3. Self-Training Module with Unlabeled Data

To mine supervised information from unlabeled data to provide effective guidance
for model fine-tuning, we introduce semi-supervised learning mechanisms including
knowledge distillation [40] and self-training [46,63] to design the ST module.

The core idea of this module is to use unlabeled data and its pseudo-labels as a
medium to transfer knowledge from one model (called the teacher model) to another
model (the student model). During self-training, the predictions of the teacher model are
relatively reliable and used as pseudo-labels since it takes input data with no significant
perturbations applied. At the same time, the student model takes significantly perturbed
data as input and is asked to obtain predictions consistent with the output of the teacher
model. In this way, the useful features in the teacher model that facilitate the semantic
segmentation task are gradually distilled into the student model. Then, when the student
network outperforms the teacher network it is used again as a new teacher network.
Through multiple iterations, the student model is continuously optimized and achieves
better performance in the downstream task of semantic segmentation.

The implementation flow of the ST module is shown in Figure 3. Specifically, for
an unlabeled image xun ∈ Rh×w×3, the ST module firstly utilizes both weak and strong
types of data augmentation to generate two views x1

un and x2
un of xun, respectively. Each

type of augmentation contains two main types of image processing operations: color
augmentation operations (i.e., color distortion, random noise addition, etc.) and spatial
augmentation operations (random rotation, flip, random crop, and zoom, etc.). Compared
to strong augmentation, all operations of weak augmentation are less intense to preserve
more original information of the data. Then, the weakly augmented result x1

un is fed into
the teacher model to obtain high-quality pseudo-labels Yun. The strongly augmented result
x2

un, after significant perturbation, is used as an input to the student model to obtain the
prediction yun. Finally, the ST model uses the cross-entropy loss function to measure the
consistency between the outputs (Yun, yun) of the two models and optimizes the student
model by minimizing the loss value.

Figure 3. The self-training module and semi-supervised contrastive learning module.
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However, Yun and yun are not directly comparable because the spatial augmentation
operations in the above data augmentations break the correspondence of pixels in the
paired results (x1

un, x2
un). To address this issue, we generate the corresponding index label

Ium ∈ Rh×w to record the position encoding of all pixels in xun, following a row-first,
column-second order. Specifically, the values of Ium are in the range [1, h × w]. By having
Ium undergo the same spatial augmentation operation as xun, we can determine the pixel
correspondence between (Yun, yun) based on the two augmented views (I1

um, I2
um) of index

label Ium. Consequently, only labels of pairs of pixels are extracted for calculating the
cross-entropy loss Lun

ce , where the number of pairs of pixels Ny is less than or equal to h × w.

2.4. Semi-Supervised Contrastive Learning Module with Unlabeled Data

Like the SCL module, this module also aims to enhance the distinguishability between
classes and reduce the variance within classes of the learned representations. The frame-
work of the SSCL module is shown in Figure 3, and its workflow includes the following
five main steps:

(1) Generate index labels: Given an unlabeled image xun ∈ Rh×w×3, we generate the
corresponding index label Ium ∈ Rh×w to facilitate the subsequent determination of
pixel correspondences from different augmentation results. The specific details of the
index label are consistent with those described in the ST module above.

(2) Data augmentation: Before feeding the data into the student and teacher models, we
preprocess each pair of data (xun, Ium) with weak and strong types of augmentation to
generate (x1

un, I1
um) and (x2

un, I2
um). The design of the two types of data enhancements

here is consistent with that in the ST module.
(3) Feature map extraction: To obtain the pixel features for contrastive learning, we feed

x1
un into the teacher network to generate feature maps f weak

map and Yun. At the same

time, we feed x2
un into the student model to generate K-dimensional f strong

map . The

specific generation process of f weak
map and f strong

map is consistent with that described by
Equation (1).

(4) Acquisition of pairwise pixel features and their class information: Based on the index
labels I1

um and I2
um, we can determine the correspondence between the pixels on the

feature maps f weak
map , f strong

map , and Yun to obtain all the paired pixels and their labels.
Then, to reduce the redundancy, all paired pixel features are randomly filtered and
only NP pixel features are finally retained.

(5) Loss function for semi-supervised contrastive learning: For each anchor sample
f strong

k , the positive sample is the pixel feature f weak
k paired with it, and its negative

samples A(k) are all the pixel features in the current training batch data that are not
in the same class as f strong

k . The class information of these samples is obtained from
the pseudo-label Yun. The final semi-supervised contrastive learning loss is defined
as follows:

Lunbl
con =

1
Np

Np

∑
k=1

− log
exp( f strong

k · f weak
k /τ)

∑a∈A(k) exp( f strong
k · f a/τ)

(3)

where Np denotes the total number of paired pixel features selected in the whole
batch, A(k) denotes the pixel features of other categories among the Np pixel features
whose pseudo-labeling categories do not belong to the same sample class as f strong

k ,
and τ is a temperature hyperparameter.

2.5. The Complete Loss Function of the CDEST Method

In summary, the complete loss function L of the proposed method consists of four parts:

L = λ1Llbl
ce + λ2Llbl

con + λ3Lun
ce + λ4Lun

con (4)
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where Llbl
ce is the supervised learning loss for labeled data, using the cross-entropy loss

function; Llbl
con is the supervised contrastive learning loss for labeled data, as described in

Equation (2); Lun
ce is the supervised learning loss for unlabeled data, also using the cross-

entropy loss function; Lun
con is the semi-supervised contrastive learning loss for unlabeled

data, as described in Equation (3). In addition, the coefficients λ1, λ2, λ3, and λ4 are
empirical hyperparameters. Since the value of the contrastive learning loss is usually
significantly larger than both supervised and semi-supervised loss values, we set the
coefficients λ2 and λ4 to 0.2 for the former, and the coefficients λ1 and λ3 to 1.0 for the latter.
In this way, the response of different losses to model fine-tuning can be better balanced.

3. Experiments
3.1. Data Description

We evaluated our proposed CDEST and the other compared methods using four
RSI semantic segmentation datasets. Two of these datasets, the International Society for
Photogrammetry and Remote Sensing (ISPRS) Potsdam dataset [64] and the Deep Globe
Land Cover Classification (DGLCC) dataset [65], are publicly accessible. The other two
are real-world datasets collected from Hubei and Xiangtan in China [31], characterized by
the same spatial resolution but varying feature distributions. The details of these diverse
datasets are outlined below.

(1) ISPRS Potsdam Dataset: The Potsdam dataset [64] includes 38 high-resolution (HR)
aerial images with a size of 6000 × 6000 pixels. Each image features a spatial resolution
of 0.05 m, encompassing four spectral bands: red, blue, green, and near-infrared
reflectance (NIR). The dataset is annotated with six categories: low vegetation, trees,
buildings, impervious surfaces, cars, and others. For training purposes, 24 images are
cropped into 13,824 patches as samples, each 256 × 256 pixels in size, with 1% labeled.
For testing, 1500 labeled patches of 256 × 256 size were randomly selected from the
cropped results of the remaining 14 images.

(2) DGLCC Dataset: The DGLCC [65] dataset consists of HR satellite images, each
2448 × 2448 pixels in size. The dataset is annotated with seven categories: urban,
agriculture, rangeland, forest, water, barren, and unknown. For training, we randomly
selected 730 images and cropped them into patches of 512 × 512 pixels, with 1%
labeled. The remaining 73 images were cropped into patches of 512 × 512 pixels and
used as testing samples.

(3) Hubei Dataset: The Hubei dataset consists of images acquired from the Gaofen-2 satel-
lite, covering the province of Hubei, China. These RGB images measure 13,889 × 9259
pixels and have a spatial resolution of 2 m. The dataset includes annotations in ten
categories: background, farmland, urban, rural areas, water, woodland, grassland,
other artificial facilities, roads, and others. We processed 34 images for training and 5
for testing, cropping them into 256 × 256-pixel patches to obtain the final samples.
The number of samples is detailed in Table 1.

(4) Xiangtan Dataset: The Xiangtan dataset consists of images also sourced from the
Gaofen-2 satellite, covering the city of Xiangtan, China. This dataset is annotated
with nine categories: background, farmland, urban, rural areas, water, woodland,
grassland, road, and others. We processed 85 images for training and 21 for testing,
cropping them into 256 × 256-pixel patches to generate the final samples. The number
of samples is detailed in Table 1.
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Table 1. Description of the four datasets used in our experiment.

Datasets Potsdam DGLCC Hubei Xiangtan

Number of categories 6 7 10 9
Sample size (pixels) 256 × 256 512 × 512 256 × 256 256 × 256

Spatial resolution (m) 0.05 0.5 2 2
Number of labeled training samples 138 182 664 160

Number of unlabeled training samples 13,686 18,066 65,807 15,891
Number of testing samples 1500 1825 9211 3815

3.2. Comparison Experiments and Baseline

To verify the effectiveness of the proposed CDEST in fine-tuning the pre-trained model
to downstream semantic segmentation tasks, we compared CDEST with typical supervised
fine-tuning methods and several representative semi-supervised learning methods, includ-
ing the cross-consistency training (CCT) method [33], the FixMatch method [48], and the
NoisyStudent method [31]. The specific methods used for comparison are summarized
as follows.

(1) Supervised fine-tuning: Fine-tuning the model to downstream semantic segmentation
tasks using only labeled data.

(2) CCT: A semi-supervised fine-tuning method based on the consistency assumption that
the model should be able to obtain stable and consistent predictions based on inputs
containing small perturbations. Specifically, the CCT consists of an encoder, a main
decoder, and several auxiliary decoders. The labeled data are used directly to train
the encoder and the main decoder. For the features extracted by the encoder from the
unlabeled data, their original versions are used as inputs to the main decoder, while
the versions with added perturbations (e.g., added noise, dropped features, random
rotations, etc.) are used as inputs to the auxiliary decoders. Then, by requiring the
predictions of the primary and secondary decoders to be identical, the use of unlabeled
data is achieved to enhance the robustness of the model itself and its adaptability to
downstream tasks.

(3) FixMatch: A semi-supervised fine-tuning method that incorporates the consistency
constraint assumption and the idea of pseudo-label training. For annotated data,
FixMatch performs normal supervised semantic segmentation training; for unlabeled
data, FixMatch generates pseudo-labels for unlabeled images that are weakly aug-
mented (e.g., random flip and shift) and discards those that are not predicted with
high confidence. It then trains the model to complete semantic segmentation tasks by
predicting the same pseudo-labels for the strongly augmented (e.g., Cutout [66] and
AutoAugment [67]) versions of the same images.

(4) NoisyStudent: A self-training semi-supervised method based on distillation learning,
which leverages massive unlabeled data to improve the accuracy and robustness
of the task model, NoisyStudent consists of the following steps: (I) It initializes the
encoder part of the semantic segmentation model with a self-supervised pre-trained
model and trains the teacher model on the annotated data. (II) It generates pseudo-
labels by using the teacher model to predict the unlabeled data. (III) It selects the
high-confidence predictions from the unlabeled data and trains the student model
with the annotated data and the selected predictions. It also adds noise to the student
model during training, such as random noise, color distortion, and data augmentation
via RandAugment [68]. These noisy operations are more intense and diverse than
the ones used in the normal semantic segmentation training, to make the student
model more robust to noise. (IV) It makes the student model the new teacher model
to predict the unlabeled data. (V) It repeats (III) and (IV) until convergence.

In the above methods, supervised fine-tuning only uses labeled samples (i.e., 1% of the
training set) for training, while the rest of the semi-supervised methods and the proposed
CDEST additionally use unlabeled samples (99% of the training set) in the training process.
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3.3. Implementation Details

The experiment employed the Adam optimizer with an initial learning rate of 0.001 and
adopted a polynomial decay strategy for learning rate adjustment. For a fair comparison, we
set the total batch size at 16 for all fine-tuning methods. In the semi-supervised approaches,
we set the batch size to 4 for labeled data and 12 for unlabeled data. Additionally, other
shared hyperparameters and data augmentation strategies were aligned as consistently as
possible across the various methods.

During training, we performed 16,000 iterations for supervised fine-tuning methods us-
ing only a small number of labeled samples, and 32,000 iterations for other semi-supervised
methods that additionally use a large number of unlabeled samples. Specifically, we trained
the NoisyStudent method, which employs a multi-round iterative self-training strategy, for
n × 16,000 iterations, continuing until a decline in accuracy was observed (where n is not
a fixed value). During testing, we used the Kappa and overall accuracy (OA) metrics to
assess the fine-tuned models on four downstream semantic segmentation tasks.

3.4. Experimental Results

In this section, we fine-tuned the same self-supervised pre-trained model using the
proposed CDEST method as well as the four comparative methods mentioned above on
four semantic segmentation downstream tasks separately. The results in Table 2 indicate
that CDEST achieved enhanced metrics on each dataset compared to baseline methods.

Table 2. Comparison of results from four RSI semantic segmentation tasks. Bold numbers represent
the maximum value under this indicator.

Methods
Potsdam DGLCC Hubei Xiangtan

Kappa OA Kappa OA Kappa OA Kappa OA

Supervised fine-tuning 72.01 78.21 68.03 80.42 53.10 63.04 72.92 82.81
CCT 70.50 76.91 66.68 79.59 53.07 62.92 71.78 82.26

FixMatch 73.15 78.95 67.26 80.22 52.25 62.55 73.20 83.04
CDEST 74.85 80.37 68.47 81.14 55.04 64.67 73.39 83.26

NoisyStudent * 75.46 80.86 70.34 81.92 54.41 63.71 73.18 82.97
CDEST * 75.65 80.98 71.74 82.45 54.91 64.54 73.23 83.02

* Fine-tuning methods that use the multi-round iterative self-training strategy continue to train until
accuracy degrades.

On the Hubei dataset, our method outperforms the supervised fine-tuning, CCT, Fix-
Match, and NoisyStudent by 3.7%, 3.7%, 5.3%, and 1.2%, respectively, in Kappa, without
using the multi-round self-training strategy. Similarly, for the Potsdam dataset, CDEST
improves in both Kappa and OA metrics over the supervised fine-tuning, CCT, and Fix-
Match methods. Employing a multi-round self-training strategy further enhances CDEST’s
performance, surpassing that of the NoisyStudent method. The visualized result is shown
in Figure 4.

The results of the four datasets show that semi-supervised fine-tuning methods, which
leverage supervised information from additional unlabeled data and its pseudo-labels, do
not consistently improve the performance of downstream task models. For instance, in
the DGLCC and Hubei datasets, the supervised fine-tuning approach, utilizing merely
1% labeled samples, outperforms the semi-supervised CCT and FixMatch methods that
use 99% additional unlabeled samples. The main reason behind this is that the noise
in pseudo-labels of unlabeled data inevitably provide incorrect supervisory information
for fine-tuning, potentially leading the model to misidentify various objects or scenes in
RSIs and diminish the inter-class distinguishability of the learned features. Furthermore,
research has demonstrated that deep learning models tend to overfit toward incorrect
labels more than toward correct ones [69,70]. Unlike the above semi-supervised fine-tuning
methods, our method also utilizes these noise labels to guide the contrastive learning signal
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construction rather than only using these noise labels for supervised learning. In this
way, CDEST is more robust to noise labels, and thus, achieves optimal performance on all
four datasets.

Figure 4. Comparison of visual results from four RSI semantic segmentation tasks. Where the
two RSIs in (a) are from the Potsdam dataset, the two RSIs in (b) are from the DGLCC dataset, the
two RSIs in (c) are from the Hubei dataset, and the two RSIs in (d) are from the Xiangtan dataset.
* Fine-tuning methods that use the multi-round iterative self-training strategy continue to train until
accuracy degrades.

4. Discussions
4.1. Ablation Study

In this section, we perform ablation experiments to investigate the effectiveness of
three main modules of our proposed CDEST, including a supervised contrastive learning
(SCL) module, a self-training (ST) module, and a semi-supervised contrastive learning
(SSCL) module. The corresponding loss functions of these three modules are Llbl

con, Lun
ce , and

Lun
con, respectively. The specific experimental results on the Potsdam dataset are shown in

Table 3.
The experimental results show that all three modules help improve the performance

of the fine-tuned model in the semantic segmentation downstream task. Among them, the
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ST module (i.e., Lun
ce ) contributes the most to the model performance improvement, which

indicates that the semi-supervised method based on the idea of self-training is simple
but effective.

Table 3. Results of ablation experiments on the Potsdam dataset, exploring the effectiveness of the
modules of the proposed CDEST.

Llbl
ce Llbl

con Lun
ce Lun

con Kappa/OA

✓ 72.16/78.22
✓ ✓ 72.80/78.79
✓ ✓ 74.10/79.81
✓ ✓ 72.22/78.27
✓ ✓ ✓ 74.86/80.33
✓ ✓ ✓ 73.39/79.20
✓ ✓ ✓ 74.47/80.11
✓ ✓ ✓ ✓ 74.85/80.37

For the SCL and SSCL modules, the primary objective of their design is to enhance the
inter-class distinguishability of the learned features. To confirm the achievement of this
objective, we randomly selected pixel features from all classes in the Potsdam dataset’s
test set and visualized them using the t-SNE method. As shown in Figure 5a, without the
SCL and SSCL modules, the pixel features of several classes appear indistinct. Conversely,
with the integration of the SCL and SSCL modules, the fine-tuned model more effectively
distinguishes between all pixel classes (Figure 5b), illustrating the significance of these two
modules in enhancing inter-class feature distinguishability.

Figure 5. Visualization of randomly sampled pixel features’ t-SNE for each category: (a) Without
Llbl

con and Lun
con, (b) Complete method.

4.2. Study of the Quantity of Unlabeled Data

The quantity of unlabeled samples plays a critical role in the efficacy of the proposed
method. To evaluate the impact of this factor on the performance of CDEST, we conducted
a series of comparative experiments using the Potsdam and Xiangtan datasets. Specifically,
we randomly selected subsets of 10%, 20%, 50%, and 100% of unlabeled images from the
training set of each dataset for CDEST training. The results of the comparison experiments
are shown in Figure 6, where “none” represents the supervised fine-tuning baseline without
using unlabeled data. As can be seen, increasing the amount of unlabeled data generally
improves the performance of models fine-tuned with CDEST. Notably, in the Xiangtan
dataset, we observe a fluctuating pattern of performance with increasing unlabeled data.
Specifically, increasing the unlabeled data from 10% to 20% leads to a slight decrease in the
performance of the model. This phenomenon illustrates the double-edged nature of using
more unlabeled data in the semi-supervised learning framework. On the positive side,
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more unlabeled data means richer information, which increases the generalization ability
of the model and reduces the risk of overfitting. On the negative side, the pseudo-labeling
of this unlabeled data is inevitably noisy, leading to increased complexity and uncertainty
in model learning.

Figure 6. Comparative results on Potsdam and Xiangtang datasets using different numbers of
unlabeled data for fine-tuning.

To mitigate the negative impact while enhancing the positive impact of unlabeled data,
our approach introduces a contrast learning mechanism in the SSCL module, which aims
to exploit the intrinsic structural information of the data as reliable monitoring. The key
to the SSCL module is to use the noisy pseudo-labels to guide the model to learn features
by discriminating between positive and negative samples, rather than learning a semantic
segmentation based on these pseudo-labels. Consequently, despite the observed fluctuation
pattern, the performance of the model shows a general upward trend as the unlabeled data
increases from 0 to 100%.

Since unlabeled RSIs are easy to obtain in large quantities, the CDEST method offers
greater practical significance compared to traditional supervised fine-tuning.

5. Conclusions

In this paper, we propose a class distinguishability-enhanced self-training (CDEST)
method to support the global-to-local transfer for RSI semantic segmentation. To address
the overfitting and useful-feature-forgetting problems during fine-tuning self-supervised
pre-trained models to downstream semantic segmentation tasks, CDEST leverages both
labeled and unlabeled data to enhance the class distinguishability of features. Specifically,
CDEST consists of three main modules: self-training (ST) module, supervised contrastive
learning (SCL) module, and semi-supervised contrastive learning (SSCL) module. The
ST module uses a semi-supervised learning mechanism to mine additional supervised
information from unlabeled data, which can alleviate the overfitting problem and achieve
higher performance on semantic segmentation tasks. In addition, the experimental results
in Section 4.2 show an upward trend in performance as the number of unlabeled data
increases. The SCL module and the SSCL module use ground truth labels and pseudo-
labels, respectively, to guide contrastive learning, which helps preserve useful features by
explicitly enhancing the class distinguishability of features. The visualization experiments
in Section 4.1 demonstrate the effectiveness of these two modules in enhancing inter-class
distinguishability.

Benefiting from the above modules, our method consistently surpasses traditional su-
pervised fine-tuning methods and three semi-supervised fine-tuning methods on all four RSI
semantic segmentation datasets. However, the effectiveness of our method still relies on the
quality of the pseudo-labels generated by the ST module in theory, which is determined by
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the intrinsic mechanism of the ST and SSCL modules. Unfortunately, generating high-quality
pseudo-labels for some complex RSIs with insufficient labeling samples is extremely challeng-
ing. Therefore, ways to obtain high-quality pseudo-labels from such data to provide reliable
guidance for global–local transfer are worthy of research in the future.
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