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Abstract: Synthetic aperture radar (SAR) plays a crucial role in maritime surveillance due to its
capability for all-weather, all-day operation. However, SAR ship recognition faces challenges, pri-
marily due to the imbalance and inadequacy of ship samples in publicly available datasets, along
with the presence of numerous outliers. To address these issues, this paper proposes a SAR ship
classification method based on text-generated images to tackle dataset imbalance. Firstly, an image
generation module is introduced to augment SAR ship data. This method generates images from
textual descriptions to overcome the problem of insufficient samples and the imbalance between ship
categories. Secondly, given the limited information content in the black background of SAR ship
images, the Tokens-to-Token Vision Transformer (T2T-ViT) is employed as the backbone network.
This approach effectively combines local information on the basis of global modeling, facilitating the
extraction of features from SAR images. Finally, a Squeeze-and-Excitation (SE) model is incorporated
into the backbone network to enhance the network’s focus on essential features, thereby improving
the model’s generalization ability. To assess the model’s effectiveness, extensive experiments were
conducted on the OpenSARShip2.0 and FUSAR-Ship datasets. The performance evaluation results
indicate that the proposed method achieves higher classification accuracy in the context of imbalanced
datasets compared to eight existing methods.

Keywords: SAR ship recognition; image generation; tokens-to-token vision transformers (T2T-ViT);
diffusion model (DM)

1. Introduction

Synthetic aperture radar (SAR) is a radar technology that utilizes microwave signals
to produce images from objects that are on the Earth’s surface [1]. By installing radar
equipment on platforms, such as aircraft or satellites, and leveraging the motion of the
platform along with the radar’s transmit/receive capabilities, SAR technology can synthe-
size and process a series of radar echo signals to obtain information on surface reflectivity
and high-resolution terrain images. Datasets generated through SAR imaging consist of
high-resolution radar images. These images reveal fine features and provide information
on the position, shape, size, and orientation of surface objects. In contrast to optical and
hyperspectral imaging, SAR imaging operates continuously under all weather conditions,
is not affected by environmental factors, and exhibits strong sensitivity to the geometric and
physical properties of targets. Although SAR images differ significantly from the objects
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as perceived by the human eye, the advent of machine learning (ML) has successfully
addressed this challenge, achieving impressive results by employing ML techniques to
process SAR images [2].

Since the launch of the first SAR ocean remote sensing satellite, SEASAT, by the
United States back in 1978 [3], research in the field of sea surface ship monitoring has been
continuously thriving. Over the years, there have been numerous mathematical approaches
used in this field, such as those based on the generalized likelihood ratio [4], polarization
decomposition [5], and visual saliency [6]. While these classical algorithms have achieved
good detection and performance recognition results in certain marine application scenarios,
they rely on establishing mathematical models and manual feature extraction based on the
operator’s experience. This difficulty limits the applicability of these classical algorithms to
the efficient and accurate monitoring of modern ships.

The classification of ships based on SAR images is a crucial area of study for marine
operations. Its goal is to effectively and precisely differentiate between the various ship
types so that decision-makers have access to accurate information so that they can make
the right decisions. High-performance target recognition is increasingly being achieved
using artificial intelligence [7–11]. With higher accuracy, faster speed, and a more effective
design process, deep learning (DL) is poised to become the mainstream in the future.

In recent years, there have been some studies on SAR ship classification. For example,
in [12], He et al. proposed a multitask learning framework to better extract deep features
from medium-resolution samples, extending the use of dense convolutional networks to
SAR ship classification. Sun et al., in [13], addressed the lack of ship texture information in
SAR images compared to optical images by introducing a novel DL-based ship classification
network that takes advantage of the phenomenon of significant scattering points from
certain regions of the ships. This provides a promising approach for the application
of SAR images in DL. Shang et al., focusing on other challenging issues, such as scale
variance, large aspect ratios, intra-class diversity, and inter-class similarity, presented
a novel hierarchically designed network with a spherical space [14]. However, due to
objective conditions, acquiring high-quality measured SAR target sample images is costly,
and their availability is very low. Additionally, SAR is sensitive to imaging parameters and
target poses, highlighting the challenges of target classification in SAR images under the
condition of limited samples.

Motivated by the above discussion and aiming to deal with the aforementioned issues,
this paper proposes an innovative SAR ship classification model that integrates a novel
data augmentation scheme for imbalanced datasets, a latent diffusion model (LDM) [15],
and an improved Tokens-to-Token Vision Transformer (T2T-ViT) [16]. In order to tackle the
challenges of imbalanced training samples and data scarcity, an improved SAR ship image
generation module based on the LDM is introduced. By incorporating a text-to-image
generation model, new images are generated based on the input text description, addressing
the issue of insufficient data samples and thereby enhancing the model’s adaptability to
imbalanced data. To deal with the problem of limited useful information from the usual
black background of SAR ship images, we introduce a T2T-ViT classification model as
our backbone network. Due to its unique Tokens-to-Token (T2T) module structure, this
model can effectively utilize SAR training samples by combining local information on
the basis of global modeling. Lastly, to suppress interference from irrelevant features,
we employ the Squeeze-and-Excitation (SE) module to enhance the performance of the
T2T-ViT backbone network [17], thus enabling the network to focus more on features
crucial for tasks such as classification, thus strengthening the model’s expressive power
and generalization performance. Within this framework, the main contributions can be
summarized as follows:

• We introduce a new SAR ship image generation module based on an LDM, which
generates category-specific images by taking textual descriptions as input, thereby
addressing the deficiency in data samples. This novel approach prevents skewed
classification and overfitting during model training. In this way, the generated images
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effectively capture the structure and detailed features of SAR ships, providing valuable
support for the training of the classification model.

• Recognizing that the Transformer model tends to neglect local information in SAR
ship images and the presence of redundancy in its backbone network, we use T2T-
ViT as the model’s backbone network in order to achieve locality through the T2T
module while simultaneously reducing computational complexity. It turns out that
this novel approach effectively captures subtle variations and features in SAR ship
images, thereby enhancing the overall performance.

• In order to further improve the performance of T2T-ViT, we introduce the SE module.
The dynamic weight adjustment provided by the SE module enables the network
to better focus on crucial features for the current task, facilitating the capture and
utilization of relevant feature information. This mechanism strengthens the network’s
performance, making it more precise and reliable in handling SAR ship images.

The remaining sections of this paper are organized as follows. Section 2 reviews
relevant work in the field of target recognition. Section 3 provides a brief introduction
to the principles of the Transformer framework. In Section 4, the proposed method is
presented. To evaluate the proposed method, experiments conducted on two SAR ship
datasets are described in Section 5. Section 6 concludes the work presented in this paper.

2. Related Work

In this section, we will briefly review previously published key papers that have
presented ship classification techniques using (i) traditional and (ii) modern deep learning-
based methodologies.

2.1. Traditional Classification Methods

SAR ship target classification involves further image processing after detecting ship
targets, aiming to identify the category of the detected ships. Gouaillier et al. applied
Principal Component Analysis (PCA) to the feature extraction of ship targets [18]. In par-
ticular, they established a covariance matrix for a set of ship outlines, diagonalized it,
selected a subset of principal components corresponding to the highest eigenvalues in the
ship’s feature space, and trained it with ship side-view angles within a 60-degree range.
Experimental results showed that the PCA-based ship classifier design exhibited good
discriminative performance. Wang et al. proposed a peak detection algorithm based on
two-dimensional Gaussian functions [19]. This method accurately estimated the peak posi-
tion, peak amplitude, and peak width of targets in simulated and measured SAR images,
as it was verified by various experimental results. Ridha et al. conducted a detailed analy-
sis of the electromagnetic scattering process of ship targets and employed a polarization
decomposition method by using a permanently symmetric scatterer to describe the ship
targets [20]. However, this method showed poor performance in identifying moving targets.
Margarit et al. introduced phase information into the extraction of the scattering center fea-
tures of SAR ship targets, achieving the effective recognition of ship targets in motion and
strong sea clutter backgrounds [21]. Wang et al. introduced a novel approach to identifying
ship targets in SAR images using the Active Appearance Model (AAM) [22]. They showed
that, by describing the shape and grayscale of the targets, the AAM can more accurately
characterize SAR images. Furthermore, Wang extensively discussed the application of the
AAM to SAR target recognition and validated the effectiveness of this method through ship
target classification in airborne synthetic aperture radar images. Knapskog et al. achieved
ship target recognition by comparing the ship target contours extracted from SAR images
with the contours of constructed 3D models [23]. Additionally, Chen et al. proposed a
two-stage feature selection method [24] that could describe the shape and scale of ship
targets in SAR images, incorporating both scattering information and intensity information.

In summary, it is clear that, although traditional SAR ship recognition methods have
achieved satisfactory results in many applications, they have significant drawbacks, such
as time-consuming manual feature design, complex mathematical approaches, and limited
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transferability. These disadvantages make the traditional classification methods inappropri-
ate for state-of-the-art intelligent and automated recognition applications, for which deep
learning-based methods are more appropriate and will be discussed next.

2.2. Deep Learning-Based Classification Methods

More than 25 years ago, Lecun et al. implemented the LeNet-5 model for the clas-
sification of different individuals, surpassing all other methods known at that time [25].
This marked the first use of backpropagation for training convolutional neural networks.
The next breakthrough occurred in 2012, when Krizhevsky et al. introduced the AlexNet
model [26], which was proposed for computer-vision-related tasks by incorporating op-
erations such as ReLU activation functions, Dropout regularization, and stacked pooling.
In 2014, Simonyan et al. proposed the VGG model [27], which was similar to the AlexNet
model, adopting a structure of convolutional regions followed by fully connected regions.
The VGG module applies a compositional rule comprising multiple identical convolutional
layers and subsequent max-pooling layers. These convolutional layers maintain a constant
input size, while the pooling layers reduce it by half. In the same year, Lin et al. introduced
the NIN model [28], which incorporated a nested network structure. Unlike traditional
convolutional layers using linear filters and nonlinear activation functions, the NIN model
combines MLP with convolution, replacing the conventional layers with a more intricate
micro neural network structure. This new layer was termed “Mlpconv”. Szegedy et al.
introduced GoogLeNet [29], which absorbed the NIN concept and introduced the concept
of the Inception module. In 2015, He et al. proposed the deep residual network ResNet [30],
which achieved the residual learning of features through skip connections, demonstrating
the potential of deep networks in feature extraction. It is noted that, since their incep-
tion, both ResNet and Inception methods have demonstrated strong advantages and great
potential in image classification, establishing the superiority of deep structures.

Furthermore, there have been related research activities for constructing smaller and
more efficient models. For example, in 2017, Google proposed MobileNetV1 [31], which
used depth separable convolutions, composed of depthwise convolutions and pointwise
convolutions, to replace standard convolutions. This approach has significantly reduced
computational costs and parameters, creating a lightweight network suitable for mobile
devices. MobileNetV1 introduced two hyperparameters to balance the computational load
and accuracy. Then, Tan et al. proposed MnasNet [32], the backbone of an automatic
portable neural architecture that employs reinforcement learning to construct mobile mod-
els. MnasNet incorporates core CNN principles, achieving an excellent trade-off between
accuracy improvement and latency reduction. In fact, it performs remarkably well on mo-
bile devices, using speed information to measure model speed directly and incorporating it
into the primary reward function of the search algorithm. Similarly, Wang et al. proposed
HRNet [33], which can maintain high-resolution representations by parallelly connecting
high-resolution and low-resolution convolutions. The approach enhances high-resolution
representations via repeated multi-scale fusion in parallel convolutions, demonstrating
exceptional performance across various multi-vision tasks. Lite-HRNet [34], introduced
by Yu et al. in 2021, presented an improvement by incorporating efficient random blocks
into HRNet. It leverages a lightweight unit called conditional channel weighting to replace
pointwise convolutions within the random block, resulting in accelerated recognition speed.
Nevertheless, deep learning models and hybrid methods for computer vision tasks still
face significant challenges. Ongoing research continues to explore image classification with
the goal of addressing these issues and strives to raise its upper limit.

3. Preliminaries
3.1. Vision Transformer (ViT)

The introduction of the Transformer model marked a major breakthrough in the field
of natural language processing (NLP). In particular, the use of the self-attention mechanism
enabled the model to better understand long-distance dependencies and improve its ability
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to understand context [35]. In 2020, Dosovitskiy proposed the first Vision Transformer (ViT)
model [36], consisting of three components: the token generator, ViT encoder, and classifier.

Figure 1 presents a structural comparison between ViT and CNN. While classical CNNs
rely on stacked convolutional layers to extract deep features, ViT takes a different approach
by considering global information in the image along with the spatial distribution of objects.
In ViT, the input image is divided into patches or tokens. Each token’s position information
is linearly embedded, and a new token called the Class token is introduced to represent the
entire scene. The token sequence is then passed through the ViT encoder, which employs
a multi-head self-attention mechanism to capture interactions between tokens. Finally,
the output Class token is processed through MLP layers for scene classification. By directly
incorporating global information and leveraging self-attention, ViT aims to provide a
comprehensive understanding of the image, offering an alternative perspective to that
provided by traditional CNN-based methods.

Figure 1. A structural comparison diagram between CNN and ViT.

For an input image of size h × w × c, the image is initially divided into patches of
size p × p × c. Consequently, a total of n image patches can be obtained in one image,
where n = h × w/p × p. Simultaneously, a learnable Class token is added, resulting in a
total of n + 1 patches to be processed. This Class token is used to interact with all patches,
ultimately learning features for classification. Next, a flattening operation is applied to the
generated image patches, transforming each p × p × c patch into a one-dimensional vector
of size 1 × (p × p × c), and the n one-dimensional vectors are concatenated to form a two-
dimensional vector of size n × (p × p × c). Subsequently, a fully connected layer is used
to reduce the dimensionality of the two-dimensional vector, yielding a two-dimensional
feature a of size n × d. For input features, position encoding is added to indicate the relative
position of each image block.

Subsequently, the preprocessed features are fed into the Transformer encoder to obtain
interactive features. The most crucial component here is the multi-head attention layer.
Input features of size n × d are divided into m heads, resulting in m different features
[a1, a2, . . . , am]. For example, with K heads, a given input feature a of size n × d is split into
K different features, i.e., [a1, a2, . . . , aK]. Subsequently, self-attention computation is per-
formed on these K features, obtaining the corresponding weighted features [b1, b2, . . . , bK].
These weighted features are then concatenated to form a vector z of size n × d, and through
a nonlinear transformation w, interactive features f of the same size as the input features are
eventually obtained. Finally, from the interactive features obtained through the Transformer
encoder, only the 1 × d feature representing the Class token is extracted for subsequent
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classification. A dimensionality reduction operation is further conducted using an MLP to
obtain the number of classes.

Since the Transformer was originally designed for natural language processing tasks
and has not been modified to deal with computer-vision-related tasks, it faces significant
operational challenges compared to the CNN. For example, image data, being more com-
plex than text data, require substantial computational resources. Thus, unlike the CNN,
the Transformer must process a large number of image patches and perform complex
computations, which requires high computational resources. Additionally, the ViT model’s
structure has certain limitations in extracting detailed features from images. It may strug-
gle to capture fine-grained features such as subtle textures, edges, and shapes, making
ViT not so appropriate for tasks that require fine-grained visual analysis. Furthermore,
the performance of ViT models highly depends on the quality and diversity of the training
dataset used. Therefore, we will present an approach to appropriately modify the Trans-
former structure to better accommodate the characteristics of image data and improve the
performance of ViT models in tasks involving fine-grained visual analysis and others.

3.2. Contrastive Language–Image Pre-training (CLIP)

Contrastive Language–Image Pre-training (CLIP) [37] is a transferable multimodal
model trained through contrastive learning using text as a supervisory signal. Unlike
other contrastive learning methods in the computer vision domain, such as MoCo [38]
and Simclr [39], CLIP’s training data consist of text–image pairs. This unique training
approach enables CLIP to identify the correlation between text and images. By pairing text
descriptions with the corresponding images, CLIP learns how to embed representations
for both text and images and measures the similarity between them by comparing their
embedding vectors. Consequently, CLIP can achieve cross-modal transfer learning across
various tasks and domains.

As illustrated in Figure 2, CLIP employs a Text Encoder and an Image Encoder.
The former is employed to extract features from text and can use commonly available text
Transformer models in NLP. The latter is responsible for extracting features from images
and can use popular CNN models or ViT. The training process of CLIP on a text–image
paired dataset can be described as follows. Firstly, if a batch in the dataset contains N
text–image pairs, N texts are first encoded through the Text Encoder, assuming each text is
encoded into a one-dimensional vector. The output of the Text Encoder for this batch of
text data is denoted by [T1, T2, · · · , TN ]. Similarly, the N images are encoded through the
Image Encoder, assuming each image is encoded into a one-dimensional vector. The output
of the Image Encoder for this batch of image data is denoted by [I1, I2, · · · , IN ].

Figure 2. The pre-training process of CLIP.

Secondly, in the obtained [T1, T2, · · · , TN] and [I1, I2, · · · , IN], the text–image pairs have
a one-to-one correspondence: i.e., T1 corresponds to I1, T2 corresponds to I2, etc. These N



Remote Sens. 2024, 16, 1299 7 of 21

corresponding pairs are denoted as positive samples, whereas the non-corresponding text–
image pairs (i.e., T1 does not correspond to I2, TN does not correspond to IN−1) are denoted as
negative samples. Thus, in total, there exist N positive samples and N2 − N negative samples,
which are used as positive and negative labels to train the Text Encoder and Image Encoder.

Finally, for any i, j ∈ [1, N], the cosine similarity between Ti and Ij is calculated to
quantify the correspondence between the corresponding text and image. A larger cosine
similarity indicates a stronger correspondence between Ii and Tj, and vice versa. Therefore,
by training the parameters of the encoder, the goal is to increase the denormalized cosine
measure of N positive samples and, at the same time, to decrease the denormalized cosine
measure of N2 − N negative samples. The objective is as follows:

L = min(
N
∑

i=1

N
∑

j=1
(Ii · Tj)−

N
∑

i=1
(Ii · Ti)). (1)

As depicted in Figure 2, this corresponds to maximizing the blue background along
the diagonal and minimizing the other non-diagonal values.

4. Methods

The overall framework of the proposed method is illustrated in Figure 3. As a backbone
network, T2T-ViT achieves good results without the need for a massive pre-training dataset.
In cases of insufficient data samples, we employ an image generation module. In the
Conditioning Module, text information is input and encoded, combined with the U-Net
structure in the image generation module. This integration generates SAR ship images
corresponding to the textual descriptions, serving as supplements. Subsequently, the data
samples are input into the T2T-ViT network for training. Incorporating an SE attention
mechanism into the backbone network enhances its focus on crucial features, optimizing
overall performance. After processing through the T2T module, the input images are fed
into the backbone network, ultimately yielding the classification results of the target.

Figure 3. The overall framework of the proposed method.

4.1. Image Generation Module

The introduction of the image generation module is based on the implementation of
the LDM, and the operational structure is illustrated in Figure 3b. Firstly, it is necessary
to have a variational autoencoder model comprising an encoder ϵ and a decoder D. We
input the image into the encoder for compression processing, converting it from the pixel
space to feature vectors within the latent space. This latent representation vector has a
lower dimensionality, abstracting high-frequency and imperceptible details through dimen-
sionality reduction. Next, a diffusion operation is performed on the latent representation
space. This process occurs over continuous time steps, introducing Gaussian noise and
gradually reducing the level of noise. Lastly, the decoder is employed to reconstruct the
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latent representation back into the pixel space. Its purpose is to transform vectors from
the latent space into the high-dimensional pixel space, producing high-quality images that
closely match the source image.

The handling of vectors in the latent space is akin to the function of the fundamental
diffusion model (DM) [40]. The detailed operation of the DM is depicted in Figure 4.
This model is based on a parameterized Markov chain and operates through two distinct
procedures: the diffusion process and the denoising process.

The original input data are progressively mixed with Gaussian noise as part of the
diffusion process, which will end after a predetermined number of iterations when these
data become completely random. Gaussian noise is added at each stage of a diffusion
process with T steps for the original input data z0 ∼ q(z0) in the following manner:

q( zt|zt−1) = N
(

zt;
√

1 − ψtzt−1, ψtI
)

, (2)

where ψt is the variance of the noise added in step t, which increases with each step,
i.e., ψ1 < ψ2 < · · · < ψT . As the step size T grows, the input image gradually loses all its
original information and is transformed into random noise labeled as zT . The diffusion
process involves adding noise iteratively, with the output at each step denoted by zt. This
characteristic allows the diffusion process to be represented by a Markov process, which
can be mathematically expressed as follows:

q( z1:T |z0) =
T

∏
t=1

q( zt|zt−1). (3)

The denoising process occurs in a manner opposite to the previous process operation,
during which we gradually remove noise from the data. If the function distribution
q( zt−1|zt) can be obtained at each step of the denoising process, then the initial input image
information can be extracted despite the presence of pure random noise zT ∼ N (0, I) by
removing the noise repeatedly. Therefore, the denoising process can be considered a data
generation process. In this process, the Gaussian distribution of each state is parameterized
using neural networks and is correlated with the others in a Markov chain. This operation
can be mathematically expressed as follows:

pθ(z0:T) = p(zT)
T

∏
t=1

pθ( zt−1|zt), (4)

where pθ( zt−1|zt) = N (zt−1; µθ(zt, t), Σθ(zt, t)) is a parameterized Gaussian distribution,
and p(zT) ∼ N (zT ; 0, I). The core processing section of the DM, denoted by eθ(o, t), is set
as a time-conditioned U-Net, which utilizes 2D convolutional layers to build the lower-level
U-Net’s ability, further focusing on the most relevant perceptual parts. The loss function,
LDM, can be written as

LDM = Eε(x),e(0,1),t

[
||e − eθ(zt, t)||22

]
. (5)

In contrast to traditional diffusion models, we optimize the processing of input feature
vectors in the previous U-Net by introducing a mechanism called cross-attention [41],
transforming it into a more flexible conditional image generator. This method has shown
good performance in handling models based on attention mechanisms that learn multiple
input patterns. In order to combine different types of modalities (such as images or text
descriptions) with the image generation module, an encoder corresponding to the input
modality y is added, which we refer to as τθ . The encoder can convert various modalities
of input information into a feature vector τθ(y) ∈ RM×dτ , which is then used as an input
into the U-Net to combine with the latent features being denoised through cross-attention.
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Based on image-conditioned inputs, the conditions can be obtained using the
following expression:

LLDM = Eε(x),y,e(0,1),t

[
||e − eθ(zt, t, τθ(y))||22

]
, (6)

where the optimization process involves jointly optimizing both τθ and eθ . The structure of
the Conditioning Module is illustrated in Figure 3d. This modulation mechanism offers
versatility, as demonstrated in our study, where CLIP is utilized to generate images.

Figure 4. The operation of the diffusion model.

4.2. Tokens-to-Token Vision Transformers (T2T-ViT)

T2T-ViT [16] is a model for image processing that extracts image features and performs
sequence modeling through two stages of processing. Its structure is illustrated in Figure 3c,
and its operation will be described next. Initially, the image is divided into equally sized
image blocks and encoded through a series of nested Transformer encoders to generate
locally informed representations of the image. Subsequently, the obtained feature vectors
containing local information are sent to the backbone network, resulting in a feature
representation containing the overall information of the image. The model gradually
converts the image into a token with an efficient backbone structure.

Its key component is the T2T module, which is purpose-built to capture and model the
local structural information within the image. Additionally, this module facilitates a gradual
reduction in the number of tokens as the image progresses. In this way, the T2T module can
represent different regions and features of the image as relatively short token sequences,
achieving the effective compression and expression of image information. The T2T module,
as shown in Figure 5, performs two operations, namely, reconstruction and soft splitting.

The output token sequence, Ti, is used as input into the T2T Transformer for processing,
and T′

i is obtained through the following detailed operations, as described by

Ti
′ = MLP(MSA(Ti)). (7)

MSA represents layer-normalized multi-head self-attention, the function of which is to
capture dependencies at different positions in the sequence through multi-head attention
calculations. Furthermore, MLP is a layer-normalized multilayer perceptron, which is used
to process feature representations at each location. Then, these symbols are reshaped in the
spatial dimension to form the image Ii:

Ii = Reshape(Ti
′), (8)

where Reshape rearranges tokens T′ ∈ Rl×c into the image I ∈ Rh×w×c, where l is the
length of T′, and h, w, c represent height, width, and the number of channels, respectively,
satisfying l = h × w.

After obtaining the reconstructed image Ii, the local structural information is modeled
through soft splitting to reduce the number of tokens:

Ti+1 = SoftSplit(Ii), i = 1, 2, · · · , (n − 1). (9)



Remote Sens. 2024, 16, 1299 10 of 21

Figure 5. The structure of the T2T module.

The output tokens created during the current T2T process are then sent to the subse-
quent Transformer layer. In order to prevent information loss during token generation from
reconstructed images, we adopt a strategy of segmenting SAR ship images into overlapping
patches. This approach establishes prior knowledge by relating each patch to its neighbor-
ing patches, thereby promoting stronger correlations between tokens in close proximity.
By connecting the tokens within each segmented patch together, local information can be
effectively aggregated and is beneficial for subsequent processing.

4.3. Squeeze-and-Excitation (SE) Module

In ViT, the multi-head attention mechanism plays a vital role in the Transformer layer.
This mechanism not only generates attention layer outputs with encoded representation
information but also learns relationships between positions in the input sequence to better
capture its intrinsic structure and semantic information. In the context of multi-head
attention, the input sequence is first transformed into three distinct vectors: query, key,
and value sequences. Subsequently, the similarity between each query vector and the key
vectors is calculated, resulting in a weighting distribution for each query vector across
all key vectors. Next, the obtained weight distribution is adapted to perform weighted
averaging on the value vector, resulting in the output representation for each query vector.
The multi-head attention repeats this procedure multiple times, each time using different
projection matrices for queries, keys, and values to generate different attention subspaces.
At the end, the final output is created by concatenating the results from each subspace and
is used to perform subsequent operations.

The structure of the SE module is illustrated in Figure 6. In order to highlight the
important features, the SE module has been added after the output of the multi-head
attention mechanism. The SE module consists of squeeze and excitation components,
reconstructing channel weights by modeling relationships between channels. Therefore,
features related to channel regions become more prominent.

The essence of the squeeze operation is a pooling operation Fsq(·), which compresses
the input feature map M by pooling, converting the spatial information contained in it into
channel information A ∈ RN . The calculation of the lth feature vector in A is as follows:

al = Fsq(ml) =
1

H × W

H

∑
i=1

W

∑
j=1

ml(i, j). (10)

where A = [a1, a2, · · · , al ], M = [m1, m2, · · · , ml ], where ml is the lth feature vector corre-
sponding to the input feature map. After obtaining the compressed feature information,
an incentive function Fex(·) is used to extract the relationship B between channels, that is,
the degree of attention to each channel, which can be computed as,

B = Fex(A) = σ(V2δ(V1A)), (11)
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where δ represents the ReLU activation function of the first fully connected layer, σ repre-
sents the sigmoid activation function of the second fully connected layer, and V1 and V2
represent the weight matrices of the fully connected layers.

Figure 6. The structure of the SE module.

The final output of the SE module is obtained by rescaling A through the activation B
and is given by

C‘
l = Fscale(al , bl) = albl , (12)

where Fscale(·) represents reconstruction functions, and C′ = [c1
′, c2

′, · · · , cl
′] represents

the product of the obtained weights bl and the original feature map al in the corresponding
channels. During the task-learning process, the weights of channels related to the context
are increased, enhancing the expressive power of features.

5. Experiments and Performance Evaluation Results

In the previous section, we propose an improved SAR ship classification method
based on text-to-image generation and an SE module integrated with T2T-ViT. In this
section, we will evaluate the performance of our proposed classification method against
other conventional target classification techniques using two publicly available SAR ship
datasets. We also present the results of ablation experiments and category expansion
experiments to demonstrate the superiority of the proposed method.

5.1. Datasets and Settings

The OpenSARShip2.0 dataset is sourced from the Sentinel-1 satellite [42]. All images
in the dataset were obtained in Interferometric Wide (IW) mode, covering nearly all global
land and coastal areas. A notable feature of this dataset is the generation of ship labels
using information obtained from an automated recognition system, providing the data
labels with higher reliability. OpenSARShip2.0 comprises approximately 35,000 SAR ship
images, including vessels from 14 categories, such as cargo ships, cruise ships, passenger
ships, law enforcement vessels, and fishing boats. The resolution is 20 m × 20 m, with pixel
sizes of 10 m × 10 m in the azimuth and range directions.

Three major categories with relatively abundant samples were initially selected from
the OpenSARShip2.0 dataset, namely, Cargo, Fishing, and Tug, for our experiments. Fig-
ure 7 presents sample images of these three classes of SAR ships. However, it turned out
that these original datasets have some drawbacks. Firstly, there is a lack of uniformity
in the image sizes, which can be cumbersome for application to deep learning networks.
Secondly, there is a significant disparity in the number of data samples among different
ship categories, with Cargo having nearly 20,000 samples, far exceeding the sample counts
of other ship categories. Therefore, we preprocessed the selected samples of the three ship
categories by standardizing the image size to 224 × 224 pixels. Addressing the issue of
class imbalance in the SAR ship dataset, data augmentation was performed on the training
dataset. Initially, we applied horizontal and vertical flips to enhance the diversity of data
samples. Subsequently, we rotated the data samples by 90°, 180°, and 270° to simulate
various angles of vessels in real scenarios. Lastly, we randomly translated ship sample
images, with pixel translation values ranging from −5 to 5, to introduce spatial variations
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in the data samples. Following a series of data augmentation processes, the data samples
were expanded to four times their original size, as shown in Table 1, where the number of
training samples for the three ship categories based on the OpenSARShip2.0 dataset can
also be found.

(a) (b) (c) (d) (e) (f)

Figure 7. SAR ship samples from the OpenSARShip2.0 dataset representing (a) an optical image of
Cargo; (b) a SAR image of Cargo; (c) an optical image of Fishing; (d) a SAR image of Fishing; (e) an
optical image of Tug; and (f) a SAR image of Tug.

Table 1. Three ship categories’ sample statistics from the FUSAR-Ship dataset.

Category Training Testing Total

Cargo 558 178 736
Fishing 514 178 692

Tug 486 178 664

The FUSAR-Ship dataset offers a comprehensive collection of high-resolution ship
images. It comprises 15 primary ship categories and 98 subclasses, and it encompasses
various marine targets, including objects other than ships [43]. The ship images in this
dataset were obtained from China’s GF-3 satellite, which features a civilian C-band space-
borne SAR system. This advanced technology enables the satellite to capture SAR images
with a high azimuth resolution of 1.124 m × 1.728 m and full-polarization capabilities.
The imaging mode is the Ultra-Fine Stripmap mode, covering various scenes, such as
sea, land, coastlines, rivers, and islands. Due to the extremely limited sample number
of some ship categories in the FUSAR-Ship dataset, we selected the following five ship
categories to further validate the effectiveness of our model: Bulk Carrier, Cargo, Fishing,
Tanker, and Other. Figure 8 displays sample images of the five classes of SAR ships in the
FUSAR-Ship dataset. Similarly, to obtain a balanced dataset, a series of data augmentation
processes were applied to the selected samples of the three ship categories to meet the basic
requirements for training for the target classification task. The number of training samples
for the five ship categories based on the FUSAR-Ship dataset is presented in Table 2.

Table 2. Five ship categories’ sample statistics from the FUSAR-Ship dataset.

Category Training Testing Total

Bulk Carrier 722 481 1203
Cargo 729 486 1215

Fishing 726 484 1210
Tanker 726 483 1209

Other Ship 784 522 1306
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. SAR ship samples in FUSAR-Ship dataset. Among these, (a–e) represent optical images
of Bulk Carrier, Cargo, Fishing, Tanker, and Other, and (f–j) represent SAR images of Bulk Carrier,
Cargo, Fishing, Tanker, and Other.

In our experiments, we trained the models with the same parameter settings. For both the
OpenSARShip2.0 and FUSAR-Ship datasets, the input image size was fixed at 224× 224 pixels
for all training instances. The Stochastic Gradient Descent optimizer was employed [44],
utilizing a weight decay parameter of 0.005 and a momentum parameter of 0.9. The proposed
network model underwent training for a total of 2000 iterations. Due to limited GPU memory,
the batch size was set to an empirical value of 8 to improve training efficiency. To mitigate any
potential issues associated with gradient vanishing during training, a relatively low learning
rate of 0.0005 was chosen. By employing such a learning rate, we could better control the
training update pace of the network, thereby aiding in achieving stable performance for
our approach.

5.2. Performance Evaluation Indices

The classification results can be categorized into four types: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). TP indicates instances where the
model correctly predicts positive samples as positive, TN denotes cases where the model
correctly predicts negative samples as negative, FP represents instances where the model
erroneously predicts negative samples as positive, and FN signifies cases where the model
erroneously predicts positive samples as negative. Similar to previous studies [45–48],
Accuracy is selected as the main evaluation metric to gauge the model’s performance in
terms of classification to determine how effective the process suggested in this paper is.
The percentage of correctly predicted samples out of the total is referred to as Accuracy,
which is computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (13)

Furthermore, three additional performance metrics were used in the experiments for
further result validation: Precision, Recall, and F1 Score. Precision measures the percentage
of true positive samples among the samples predicted by the model as positive. It provides
insight into the correctness of the positive predictions and can be calculated as

Precision =
TP

TP + FP
. (14)
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Recall, also known as the True Positive Rate or Sensitivity, represents the percentage
of true positive samples among the actual positive samples. It is a measure that focuses on
capturing all positive instances and is related to the original samples, and it is computed as

Recall =
TP

TP + FN
. (15)

F1 Score is a comprehensive metric that takes into account both Precision and Recall,
providing a balanced measure of the model’s performance. It can be computed as

F1Score =
2 × Precision × Recall

Precision + Recall
. (16)

In order to effectively evaluate the generated images, we employed the Structure Simi-
larity Index Measure (SSIM) [49], which is a metric for assessing the similarity between two
images, taking into account information pertaining to luminance, contrast, and structure.

To assess the similarity between the mean brightness of two images, we define a
luminance contrast function as follows:

I(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (17)

where µx and µy represent the mean of the local blocks of images x and y. C1 is a small
constant used to stabilize the divisor, usually taking (k1 · MAX)2, where MAX is the largest
possible value of the pixel value, and k1 is a small constant.

Considering the brightness variance and the covariance between the two images,
the contrast function is defined by

C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (18)

where σx and σy represent the standard deviation of the local block of images x and y, σxy is
the covariance between x and y, C2 is a small constant used to stabilize the divisor, usually
(k2 · MAX)2, and k2 is a small constant.

The structural similarity is measured by the similarity between brightness and contrast,
and we define the structural contrast function as follows:

S(x, y) =
σxy + C3

σxσy + C3
, (19)

where σx and σy represent the standard deviation of the local block of images x and y, σxy
is the covariance between x and y, and C2 is a small constant used to stabilize the divisor,
usually C3 = C2/2.

Finally, the total SSIM is obtained by combining brightness similarity, contrast similar-
ity, and structural similarity, and it is computed as follows:

SSIM(x, y) = [I(x, y)]α · [C(x, y)]β · [S(x, y)]γ, (20)

where α, β, and γ are used to adjust the importance between the three modules, usually
taking a value of 1.

5.3. Image Generation Experiment

After incorporating the image generation module into the model, we expanded the
imbalanced dataset of three selected categories from OpenSARShip2.0. Taking the existing
samples of three ship categories as input, corresponding to the language texts SAR-Cargo,
SAR-Fishing, and SAR-Tug, the model underwent iterative training. By providing textual
information as input, the model generated corresponding SAR ship images. To verify
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the credibility of the generated images, the SSIMs between the generated images and the
original dataset were calculated, and the average result obtained reached 0.837, which
proves that we successfully captured the features of the SAR ship. Due to the limitation of
training samples, generating SAR ship images is performed from a top-down perspective.
Typical samples of various ship categories generated by the image generation module are
shown in Figure 9.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Image results generated by inputting text information: SAR Cargo, SAR Fishing, SAR Tug;
(a–c) represent Cargo images, while (d–f) represent Fishing images, and (g–i) represent Tug images.

From the above performance evaluation results, it can be concluded that the images
generated by the image generation module meet the standards as a dataset, exhibiting
high resolution and clarity. This indicates that these generated images can be used to
train models or conduct other relevant research. By leveraging these generated images,
we can more accurately capture and classify the features of the target objects, effectively
improving the precision and efficiency of model training. This is clearly very important
for further optimizing and enhancing ship classification algorithms. For the three selected
ship categories in the OpenSARShip2.0 dataset, we successfully augmented the training
set to 700 images using the generated image samples. This means that, in subsequent ship
classification experiments, we have a more extensive and comprehensive dataset. By using
such a dataset, we can more comprehensively evaluate and fine-tune our ship classification
model to achieve even more accurate and reliable classification results.

5.4. Performance Comparison Results

To more comprehensively evaluate the effectiveness of the proposed method, we
compared it with three traditional machine learning models and nine deep learning classifi-
cation models on the OpenSARShip2.0 and FUSAR-Ship datasets. In terms of the number
of network layers in the proposed method, we chose 14 Transformer layers, as this selection
is the most appropriate choice for the best balance between model accuracy and model
parameters. The traditional machine learning models include SVM [50], Adaboost [51],
and KNN [52]. The deep learning models include LeNet [25], AlexNet [26], ResNet [30],
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MobileNet [31], DeiT [53], DenseNet [54], EfficientNet [55], Shufflenet [56], and CSPNet [57].
The comparison results are shown in Table 3.

Table 3. A comparison of quantitative evaluation indicators on two datasets. For a clear display,
the highest score in each column is highlighted in bold. Train time represents the time it takes for the
model to train one epoch, and test time represents the time it takes for the model to classify 8 images
at once.

Methods

OpenSARShip2.0 Dataset FUSAR-Ship Dataset Speed

Precision
(%)

Recall
(%)

F1
Score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1
Score
(%)

Accuracy
(%)

Train
Time (s)

Test
Time
(ms)

SVM [50] 58.02 57.89 58.47 58.24 56.12 56.45 56.73 56.36 - 29.45
Adaboost [51] 49.73 49.52 49.27 49.64 39.92 40.27 40.31 40.28 - 21.57
KNN [52] 63.01 62.86 63.32 63.05 52.95 52.62 52.71 52.87 - 14.82
LeNet [25] 68.72 67.85 66.84 68.09 60.87 60.23 60.41 60.21 7 16.29
AlexNet [26] 67.12 66.63 66.41 66.49 61.65 62.03 61.22 62.18 22 39.08
ResNet [30] 59.21 58.40 58.09 59.04 60.41 61.27 60.80 61.41 60 127.03
MobileNet [31] 67.11 67.57 66.43 67.55 67.41 67.05 67.27 67.13 25 42.35
DeiT [53] 57.65 56.94 55.92 57.09 52.97 53.04 51.89 53.01 68 61.89
DenseNet [54] 67.17 66.49 66.54 66.48 67.81 68.96 68.05 69.22 74 48.56
EfficientNet [55] 71.52 71.73 71.32 72.16 70.59 70.43 70.27 70.69 37 29.32
Shufflenet [56] 73.58 73.41 73.12 73.41 71.29 71.21 71.34 71.36 26 45.60
CSPNet [57] 70.08 70.49 69.40 69.88 70.40 70.23 70.28 70.58 94 42.34
Proposed method 74.13 73.96 73.94 74.46 72.05 72.12 71.97 72.19 53 51.37

From Table 3, it can be observed that our proposed method achieved higher classifica-
tion performance compared to other classic deep learning target classification algorithms
on the three categories of the OpenSARShip2.0 dataset. It achieved an Accuracy of 74.46%,
whereas the second-best algorithm, Shufflenet, achieved 73.41%. There were also improve-
ments in other evaluation metrics. When conducting five classification experiments on the
FUSAR-Ship dataset, which is not limited to the classification of three types of ships, the in-
crease in categories made classification more difficult. However, our proposed method still
achieved the best classification performance, with an accuracy of 72.19%, which is 0.83%
higher than the suboptimal algorithm Shufflenet. The other three evaluation indicators also
showed some improvement, with 0.76%, 0.91%, and 0.63%. The proposed method requires
53 s per epoch during training, which is mid-level compared to the other networks. When
conducting image classification, the classification time for eight images in our proposed
method is 51.37 ms, which is not significantly different from the inference time of most
other models. In summary, in the face of imbalanced training samples, our proposed
method demonstrated stronger capabilities by supplementing training samples through the
image generation module and adjusting feature weights using the SE attention mechanism.
Therefore, it is well suited for addressing data scarcity situations.

5.5. Performance Results

To verify the effectiveness of the image generation and SE modules in improving the
performance, we conducted ablation experiments on three categories of the OpenSAR-
Ship2.0 ship dataset. Specifically, we compared the results of experiments with and without
these two modules and calculated their respective classification accuracies. The results of
the ablation experiments are shown in Table 4, where “✓” indicates the addition of these
two modules to the base model T2T-ViT.

From the performance results presented in Table 4, it can be observed that T2T-ViT, as a
variant model of ViT, outperforms ViT by better utilizing information in the image through
the use of the T2T module, even without extensive pre-training on large datasets. This is
consistent with the imbalance and lack of training data images faced in the classification
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of SAR ships. Thus, by using the T2T-ViT model as the backbone network and by also
employing the proposed modules, the classification accuracy of the three categories of
OpenSARShip2.0 ships was increased by 2.23%, 1.46%, and 3.55%.

Table 4. Ablation experiments on three categories of OpenSARShip2.0 ship dataset.

Backbone Image Generation
Module SE Module Accuracy (%)

ViT 64.89
T2T-ViT 72.13
T2T-ViT ✓ 74.02
T2T-ViT ✓ 73.59
T2T-ViT ✓ ✓ 74.46

In addition, we used the image generation module as the main component and
conducted more in-depth experiments to explore the effect of the generated data samples
on the classification results. Initially, there were 558, 514, and 486 original training samples
for the three types of ships. After using the image generation module, the number of
training samples had expanded to 700. The results are shown in Table 5, where “×”
indicates the absence of the image generation module in the base model, and “✓” indicates
the presence of the image generation module in the base model.

Table 5. The classification results of three categories of ships with the added image generation module
on the OpenSARShip2.0 dataset.

Image
Generation

Module
Category Precision (%) Recall (%) F1 Score (%)

×
Cargo 79.54 79.81 79.67

Fishing 68.42 60.94 64.46
Tug 66.18 72.58 69.23

✓
Cargo 79.79 82.25 81.01

Fishing 72.94 65.42 68.98
Tug 69.66 74.19 71.85

These results reflect the advantage of using the image generation module on the
classification performance of three ship categories. As seen in Table 5, it is also noted that
the best classification performance is obtained for Cargo ships, which is due to their distinct
characteristics, as they typically carry standard-sized containers. This unique structural
feature, with a small-width deck edge, sets Cargo ships apart from other ship categories,
making their features more evident in remote sensing images and facilitating clearer feature
extraction during model training. It is clear that the use of the image generation module
resulted in improvements in Precision, Recall, and F1 Score for all categories. For example,
the F1 Score increased by 1.84%, 8.75%, and 3.08%, respectively. This demonstrates that the
enhancement provided by this module is reasonable, particularly in situations with limited
data availability.

5.6. Expansion of Experiment to Four Categories

To further investigate the effectiveness of our proposed method, we conducted training
on a fourth ship category, namely, Tanker, using the OpenSARShip2.0 dataset. We selected
250 valid images of oil tankers and 400 images of the other three categories of ships from
the existing dataset. In comparison to the other three ship categories, this sample size
was evidently insufficient to support effective classification training for the fourth ship
category. Therefore, we employed the image generation module to augment the data
to 400 images. Subsequently, we divided the data into training and testing sets at a 4:1
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ratio and incorporated them into the improved T2T-ViT for training. The classification
performance results for the four ship categories are presented in Table 6, where we used the
basic model to train on the dataset with unbalanced samples. Due to the similarity between
classes of SAR ship data, when training tankers with a small number of data samples,
the basic model is unable to effectively extract features, resulting in the misdiagnosis of
tankers as ships of other classes. The introduction of the image generation module not only
successfully maintains the classification of the three basic ship categories but also improves
the recognition rate of the fourth ship category, “Tanker”. In the overall evaluation of the
model, the most important evaluation indicator, Accuracy, reveals a recognition rate of
59.03% with the basic model due to the relatively small proportion of Tanker samples in
the original data. The recognition rate of 60.26% with the improved model clearly shows
that it has been effectively improved.

Table 6. Classification results after adding a fourth category of ships from the OpenSAR-
Ship2.0 dataset.

Method Category Precision
(%) Recall (%) F1 Score

(%)
Accuracy

(%)

T2T-ViT

Cargo 67.18 60.79 63.83

59.03Fishing 56.83 63.92 60.17
Tug 58.32 50.32 54.03

Tanker 54.46 57.52 55.95

Proposed method

Cargo 68.06 61.25 64.47

60.26Fishing 57.14 65.03 60.82
Tug 59.26 51.61 55.17

Tanker 57.65 61.25 59.39

Compared to training with only the original dataset, the application of the image
generation module provides us with additional training samples, so this approach enables
a more comprehensive SAR ship classification. The use of the image generation module
effectively augments the dataset, providing the algorithm with richer sample information,
thereby improving the network’s generalization ability and classification accuracy. This not
only showcases the effectiveness of the image generation module in expanding the dataset
but also confirms the feasibility and practicality of our proposed method. By incorporating
the image generation module, our approach adapts better to various ship categories and
achieves satisfactory classification results.

6. Conclusions

In our paper, a novel SAR ship classification method is proposed to address the
issue of inter-class sample imbalance in the SAR ship dataset. The improved approach
utilizes text-to-image generation to mitigate the imbalance in the dataset, addressing the
deficiency of insufficient data samples by introducing deep image modules into T2T-ViT
in a text-to-image manner. Simultaneously, the SE model is introduced to enhance the
network’s focus on key features, thereby improving classification accuracy. Classification
experiments were conducted on the OpenSARShip2.0 dataset and the FUSAR-Ship dataset,
demonstrating that our proposed method outperforms other algorithms in Precision, Recall,
F1 Score, and Accuracy. Additionally, we conducted ablation experiments and extended
ship classification experiments with four categories, further proving the effectiveness and
stability of the proposed method.
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