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Abstract: Characterizing temperature and salinity (T-S) conditions is a standard framework in
oceanography to identify and describe deep water masses and their dynamics. At the surface, this
practice is hindered by multiple air–sea–land processes impacting T-S properties at shorter time
scales than can easily be monitored. Now, however, the unsurpassed spatial and temporal coverage
and resolution achieved with satellite sea surface temperature (SST) and salinity (SSS) allow us to
use these variables to investigate the variability of surface processes at climate-relevant scales. In
this work, we use SSS and SST data, aggregated into domains using a cluster algorithm over a T-S
diagram, to describe the surface characteristics of the California Current System (CCS), validating
them with in situ data from uncrewed Saildrone vessels. Despite biases and uncertainties in SSS and
SST values in highly dynamic coastal areas, this T-S framework has proven useful in describing CCS
regional surface properties and their variability in the past and in real time, at novel scales. This
analysis also shows the capacity of remote sensing data for investigating variability in land–air–sea
interactions not previously possible due to limited in situ data.

Keywords: sea surface salinity; sea surface temperature; SMAP SSS; MUR SST; California Current
System; Saildrone; surface density

1. Introduction

Temperature and salinity are fundamental ocean variables in both physical and bio-
logical marine science. At depth, they describe water masses’ properties, including density,
and therefore have been widely used in oceanography to describe ocean currents and
mixing at regional and global scales, which in turn influence the transport of other ocean
properties like heat, nutrients, and carbon [1]. To identify different water masses, water
conditions are plotted in temperature and salinity space, referred to as a T-S diagram, where
salinity is plotted on the x-axis and potential temperature (θ) on the y-axis, and isopycnals
are superimposed. The stable or slowly changing properties of water masses at depth, due
to limited mixing, makes this approach useful despite data being sparse [2]. At the surface,
however, multiple processes (heat and momentum fluxes, solar radiation, precipitation,
mixing, etc.) can alter the T-S properties of the water on shorter time and spatial scales [3].
This makes it difficult to track water masses or their evolution with the sparse in situ data
available [1], as salinity data are not as ubiquitous as temperature due to the cost and
availability of salinity instrumentation. Despite data limitations, surface or near-surface
temperature and salinity data have been used in the past to describe large-scale patterns in
regions where data are available (for example, see the description of the California Current
by [4]).

Measuring sea surface temperature (SST) from satellites has allowed for the research of
surface dynamics at spatio-temporal scales and coverage not possible with any other tech-
nology [5]. Despite SST not being fully representative of dynamical processes at depth [6],
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as it is affected by multiple air–sea processes, it is now one of the fundamental variables in
ocean and climate research. Among the myriad variables we now collect through satellites,
sea surface salinity (SSS) is now surpassing a decade of global measurements through the
European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite (launched in
2009 [7]) and the U.S. National Aeronautics and Space Administration (NASA) missions
Aquarius (2011–2015 [8]) and Soil Moisture Active Passive (SMAP, launched in 2015 [9]).
While SSS has lower resolution (~40–150 km) than SST, its coverage and resolution in space
and time is not provided by any in situ salinity dataset. Furthermore, the SSS data time
span allows the investigation of scales relevant to ocean climate processes. For example, SSS
is used to investigate well-known air–sea processes like deep water formation or sea–land
processes like river runoff, but SSS is also being used in novel research as a precursor of
land drought [1]. Although the use of SSS is on the rise, its use in research or end-user
applications in coastal areas (~100 km) is still limited due to its comparatively coarse
resolution, biases, and land contamination issues, all related to its use of L-band microwave
radiometry [1,10]. However, previous studies show that SSS gradients are well captured in
coastal areas (~40–100 km), even when magnitudes are biased [11]. This suggests that SSS
could be used to describe change in coastal areas where many ecologically and societally
relevant processes occur such as river outflow, land run-off, and coastal upwelling, among
others [1].

In this paper, we use a clustering algorithm to classify remote sensing SSS and SST
into distinctive seawater profiles and regions; we also tested the accuracy of this approach
using in situ measurements collected by uncrewed Saildrone vehicles. Previously, [12,13]
had successfully employed remote T-S diagrams based on remote sensing data to describe
North Atlantic conditions, comparing them with Argo float data, which provide subsurface
salinity and temperature. Here, we focus on the California Current System (CCS), a highly
dynamic region due to the confluence of multiple water masses at depth and surface, plus
entrainment to the surface through upwelling, and a wide latitudinal range leading to
important temperature gradients and fluxes [3,4,14].

2. Materials and Methods
2.1. Data

The National Oceanic and Atmospheric Administration (NOAA) conducted 12 cruises
along the U.S. West Coast in the summers of 2018 and 2019 using Saildrone vessels (West
Coast Fisheries Surveys; see https://www.saildrone.com/missions/west-coast-survey-
2018, accessed 1 November 2023). A Saildrone is an uncrewed surface vehicle powered
by wind and sunlight that collects ocean and atmospheric data from the ocean surface
in real time [15] and for an extended period of time. Saildrone vehicles collect many
types of data, including SST and SSS derived from a conductivity, temperature, and depth
(CTD) sensor onboard at a depth of 0.6 m, sampling once a minute (data available from
https://data.saildrone.com/). The cruises and months (July to September) selected for
this study used multiple vehicles and covered a diverse set of trajectories in both years
that provided data all along the central and northern CCS (Figure 1). These data were
aggregated to daily resolution values, resulting in 777 data points during the period of
study (Figure 1). These data are referred to here as the Saildrone in situ data.

SST satellite data were extracted from NASA’s Multi-Scale Ultra-High-Resolution SST
(MUR SST) V4.1 L4 dataset [16], obtained from the JPL MEaSUREs Project [17] at 0.01◦

spatial (latitude and longitude) and daily temporal resolution. The SSS data used were from
NASA’s JPL Soil Moisture Active Passive (SMAP) V5.0 L3 dataset [18–20], an 8-day running
mean, daily dataset at a 0.25◦ spatial resolution (latitude and longitude). Both the SST and
satellite SSS data are available through NASA’s Physical Oceanography Distributed Active
Archive Center (PO.DAAC), accessed 1 November 2023.

https://www.saildrone.com/missions/west-coast-survey-2018
https://www.saildrone.com/missions/west-coast-survey-2018
https://data.saildrone.com/
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Figure 1. Saildrone in situ data aggregated daily, displayed by location (left) and day of year vs.
latitude (right). Data period: July–September 2018 (red) and 2019 (blue).

Saildrone raw data were collocated with satellite SST and SSS by Chelle Gentemann,
and as described by [21]. Briefly, raw Saildrone data were matched up with L2 satellite
SSS data and MUR SST using a nearest-neighbor interpolation function in Python’s xarray
package [22], prioritizing space over time. Then, all Saildrone points matching a single
satellite datum were averaged, providing a single collocation matchup for a given day. This
resulted in 475 daily data points during the period of study, referred to here as the remote
sensing collocated data.

Finally, we used SSS and SST data, gridded at the SMAP resolution, during the July
to September months from 2015 to 2023 for the entire CCS to analyze variability in T-S
characteristics through time. This dataset is referred to as remote sensing gridded data.
Note that there is a gap in the SSS data in June–July 2019 due to instrument failure [10].

2.2. Analysis
2.2.1. Clustering

Temperature and salinity from the Saildrone in situ data were used in an unsupervised
clustering algorithm to classify different sea water profiles. We used a Gaussian mixture
model (GMM) algorithm because of its flexibility when assigning clusters. This type of
clustering has been previously applied to ocean temperature and salinity data to detect
water profiles in Argo float data [23,24]. The clustering was performed using the Scikit-
learn machine learning package in Python which uses the expectation–maximization
algorithm for fitting the Gaussian models [25]. Different numbers of clusters and covariance
matrix types were assessed using Bayesian information criteria scores to help select the
best model. The final model selected was one with six clusters and a full covariance
matrix type (i.e., correlation between variables is allowed). The model was applied to
all 777 daily Saildrone in situ data points and each point was assigned a cluster that
maximized the posterior probability, i.e., that a probability distribution of the clustered
data was as normally distributed as possible (Figure 2). The centroids were extracted
from the six clusters, and the coordinates (in T-S space) for the clusters were used for the
classification process.
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Figure 2. (A) Mapping of reclassified Saildrone in situ data colored by clustering in (D). (B) Mapping
of remote sensing collocated data colored by clustering shown in (E). (C) T-S diagram Saildrone
in situ data, colored by the clustering analysis. (D) Saildrone in situ data reclassified using the
closest centroid method. (E) Classification of remote sensing collocated data based on centroids from
Saildrone in situ data shown in (C). Yellow stars indicate cluster centroids.

First, the Saildrone in situ data were ‘reclassified’ to the nearest centroid, rather than
the originally assigned cluster. This allowed us to compare the classification into clusters
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between in situ and collocated remote sensing data, based on a similar method. Prior to
being reclassified, the data were normalized using feature scaling to between zero and
one (Figure A1). The same normalization process was applied to the centroid points. The
reclassification process involved calculating the distance (d) between each collocated point
and the six cluster centroids and assigning each point to the cluster with the smallest
distance (Equation (1)).

d =

√
(temperaturedata − temperaturecentroid)

2 + (salinitydata − salinitycentroid)
2 (1)

2.2.2. Classification of Remote Sensing Data

The same classification process of normalizing the data, calculating the distance to
each centroid, and assigning each data point to the nearest cluster was repeated with
the remote sensing collocated and gridded data. Because of the discrepancy in spatial
resolution between SST and SSS datasets, the MUR data were averaged (re-gridded) to
match the SMAP data resolution for the classification of the remote sensing gridded data so
both products were on the same grid. The classification was performed for the 475 points
of the remote sensing data collocated with Saildrone and 777 points for the remote sensing
gridded data.

Finally, we extended the analysis of satellite data to the entire period of data availability
in the summer (2015 to 2023), and the remote sensing gridded SSS and SST data were used
to describe the conditions of the CCS using the clustering centroids from Saildrone in situ
data. To describe these data, given the large amount of data classified (886 points per daily
scene), we analyzed them in two different ways: first, we calculated a summer climatology
spanning all years, and second, we selected and averaged five days at the end of July
for two different years (2015 and 2021) to describe and compare the T-S conditions for
those years. A 5-day period was chosen to illustrate interannual variability; a compromise
between smoothing the day-to-day variability and still capturing synoptic events such
as upwelling.

2.2.3. Uncertainty

To quantitatively assess the capacity of the remote sensing data to capture the T-S
characteristics of the in situ data using the T-S framework, we compared the proportion of
the remote sensing collocated data that was classified in the same cluster as the Saildrone
in situ data, i.e., the data point closest to the same cluster centroid. These data were labeled
as ‘correctly’ classified.

3. Results
3.1. Saildrone In Situ Data

The T-S diagram of the summer Saildrone in situ data (Figure 2C) is aggregated in
what can loosely be described as a tilted V-shape. The vertex, located at the bottom-right
side of the diagram, shows the most dense, cool, and saline waters in this dataset at ~10 ◦C,
34 PSU, and a density of 26 kg/m3. The aggregation is divided into a vertical branch
with temperature increases up to around 22 ◦C and salinities 33–34 PSU, and a second
branch with temperature up to ~18 ◦C and salinity decreasing to 31 PSU (lower salinities
were recorded for only few and sparse data points, and therefore we limited the dataset to
this threshold).

Clustering

The clustering of T-S Saildrone in situ data was optimally described by six independent
clusters (Figure 2C). In the figure, these clusters are colored to facilitate visualization in the
maps, and therefore the clusters are named with said color to identify and describe the char-
acteristics of each. The centroids of these six clusters are also shown in Figure 2C and were
used to reclassify the Saildrone in situ data based on the closest centroid (Figure 2D). The
reclassified data were then mapped using their averaged latitude and longitude (Figure 2A).



Remote Sens. 2024, 16, 1311 6 of 17

The map depicts different regions based on the clustering of T-S characteristics, listed in
Table 1. With the exception of a few coastal points in Central California, four distinct
regions and characteristics in the T-S diagram were identified for the summer in the CCS:
the low salinity and relatively warm waters associated with the Columbia River plume
in the north (turquoise), the warm and high-salinity waters of the Southern California
Bight (orange), the high salinity and medium temperatures of Central California (gray),
and the low-temperature, high-salinity waters of Northern California associated with
strong coastal upwelling occurring in this area (blue). The other two clusters (purple and
navy) represent middle-range temperatures and salinities between the turquoise and blue,
and they are less clearly defined into regions and are more transition states between the
mixed water associated with the Columbia River plume and the coastal upwelling water in
northern California.

Table 1. Description of characteristics and region of each cluster based on the reclassified Saildrone in
situ T-S data.

Cluster Color Characteristics Region

1—Orange High SSS, High SST Southern California Bight
2—Gray High SSS, Mid SST Central California

3—Blue High SSS, Low SST Northern California and Southern Oregon; coastal,
associated with coastal upwelling

4—Purple Mid SSS, Mid/Low SST Mostly along northern CCS and offshore of
blue waters

5—Navy Low SSS, Mid SST Mostly along northern CCS, between coastal
upwelling waters and Columbia River waters

6—Turquoise Low SSS, High SST Columbia River water mixed with northern CCS,
and its extended plume offshore and south

3.2. Remote Sensing Collocated Data
3.2.1. Classification and Description

The T-S diagram of the remote sensing collocated data shows a more dispersed pattern
(Figure 2E) than the Saildrone in situ data, due to error and uncertainties in SSS and SST
data resulting from land contamination, resolution, and the re-gridding of SST data (see
below). However, when classified according to the centroids from the clustering on the
Saildrone in situ data and mapped (Figure 1B), they described similar patterns to those of
the Saildrone in situ data. The turquoise, orange, and gray clusters are similarly situated
in both maps, representing similar regions and conditions. On the other hand, the blue,
navy, and purple clusters, while still representing the Northern California region, exhibit
a different pattern. In the remote sensing collocated data, the blue cluster (representing
cold, high-salinity waters) is absent from the region south of Cape Mendocino (40.44◦N),
and is replaced instead by the purple cluster. Fewer data belonging to the navy cluster are
observed in the remote sensing collocated data offshore of the Northern California region
than in the Saildrone in situ data. Overall, however, CCS characteristics are well described
by the collocated data, with the exception of those in the area of strongest upwelling in
Northern California, where a coastal band with strong and narrow plumes and fronts of
cold, saline water associated with upwelled water might lead to the differences observed.

3.2.2. Uncertainty and Biases

When all the remote sensing collocated data points are considered (475), 65% of them
were classified correctly (i.e., in the same cluster as the Saildrone in situ data). Most of the
incorrectly classified data are located in Northern California and around the plume of the
Columbia River, corresponding mostly to the clusters with transition characteristics (mid
SST and mid SSS; Figure 3). When the proportion of correct/incorrect classification of data
was calculated for each cluster (the total number of points based on the Saildrone in situ
data), the blue cluster had the lowest proportion (43.3%) while the turquoise and orange
clusters had the highest at 89.4% and 88%, respectively (Table 2).
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Figure 3. Proportion of correct vs. incorrect classified remote sensing collocated data by cluster
defined by Saildrone in situ data centroids. (A) Location of the correctly/incorrectly classified data.
(B) T-S plot showing the collocated data. Green points are the correctly classified data; red points are
the incorrectly classified data.

Table 2. Proportion of correct vs. incorrect classified remote sensing collocated data by cluster defined
by Saildrone in situ data, expressed as percentage.

Cluster Color Orange Gray Blue Purple Navy Turquoise

Proportion (%) 88.0 69.3 43.3 69.6 69.2 89.4

We further investigated the source of the uncertainty by examining the differences
between the SSS and SST collocated data and the Saildrone in situ data (Figure 4). The
largest differences were found in coastal areas, as expected from the land contamination
issue and modeling of coastal SSS data in the L3 product given its resolution [20], but this
was also observed in SST. Both SST and SSS show negative differences on average between
remote sensing and in situ data (−0.642 and −0.116, respectively, for the 0–50 km region),
although individual large positive differences are also found in SSS in coastal areas. SST
errors can be associated with its re-gridding to the lower SSS resolution.
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Figure 4. Differences in SSS and SST between the remote sensing collocated data and the Saildrone in
situ data, plotted as bimodal density distributions. (A–C) show, in darker color, where the largest
density of differences in salinity (x-axis) and temperature (y-axis) occur; univariate histograms show
on each axis. Data are separated and colored by distance to shore: (A) 0–50 km in blue, (B) 51–100 km
in orange, (C) >101 km in green, and (D) all data combined, by data points rather than densities, and
probability distribution in the axis rather than histograms.

3.3. Remote Sensing Gridded Data
3.3.1. Summer Climatology

The averaged values of remote sensing gridded SST and SSS from July to September
were classified, colored, and mapped according to the Saildrone in situ data centroids and
are depicted in the T-S diagram in Figure 5. It is worth noting that in this classification, there
are an increased number of data points offshore where Saildrone and collocated data were
sparse. In the gridded data, clusters are more regionally defined on the map. The orange,
gray, navy, and turquoise gridded data clusters are similarly located to those from Saildrone
in situ data. The navy data has a more defined area around the turquoise water related to
the Columbia River plume and offshore of the purple cluster in Northern California and
Southern Oregon. The purple cluster dominates the coastal area in Central California and
Southern Oregon, and only a few points of data on this map and T-S diagram correspond to
the blue cluster. This is due to the short-lived nature of the cool–saline conditions associated
with upwelling events that last only days to weeks and are averaged with the fast-warming
conditions during the relaxation of winds during the summer [26], moving the averaged
values toward classification as the purple cluster.

3.3.2. Variability in T-S Conditions

To illustrate the use of this T-S framework to describe different conditions in the CCS,
we selected two periods of five days (27–31 July) for the years 2015 and 2021; remote
sensing gridded data were averaged over this 5-day period before clustering. During 2015,
the CCS was immersed in an extreme and extended marine heatwave (MHW) that started
in 2014 and lasted until mid-2016, impacting the whole West Coast [27], while 2021 was a
year considered normal in comparison [28,29]. Figures 6 and 7 show the T-S diagram and
cluster-colored map for each of these periods, along with the maps of SSS and SST for the
same period for comparison.

During the MHW in 2015, three clusters were dominant: orange, gray, and turquoise
(Figure 6A). The orange cluster extends further north and offshore, and not only in Southern
California as in the climatology or the in situ data Saildrone overlapping period. The
turquoise cluster waters have a similar pattern as in the climatology, although the T-S
diagram shows that these data points in general have higher salinity and overall higher
temperature values than the climatology and the in situ Saildrone data. The gray-colored
data points are shifted further north in Northern California and Oregon, inshore and
offshore, and only onshore in Central California. For this period, few purple and no blue
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data points are observed, showing that cool–saline water was generally absent during this
period (Figure 6B), as it corresponds with the occurrence of the extreme MHW [27]. In
contrast, in 2021, data belonging to all clusters are present (Figure 7A,B) in a distribution
similar to the climatology and the in situ Saildrone data. At this time, a clear area of
cool water is seen in Oregon and Northern California, indicating upwelling (Figure 7D),
although salinity is relatively low (Figure 7B). The gray cluster in Central and offshore
Central California is in this case highly saline, as seen in the SSS map (Figure 7C). Note
that there are a couple of turquoise points in Southern California, but the T-S diagram
(Figure 7B) shows that they are better (visually) aggregated with the orange cluster.
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4. Discussion

In this paper, we present a new methodology to describe variability in surface ocean
conditions using remote sensing temperature and salinity in coastal regions. While SST
variability can be accurately described in coastal regions using satellite data thanks to
its high spatial resolution, the lower resolution and large uncertainties of SSS near land
challenge its use at the coast. Here, we combine a classic oceanographic T-S diagram frame-
work and a data clustering technique to aggregate distinct surface water characteristics in a
coastal region using in situ data. This allows us to classify remote sensing SST and SSS into
these identified clusters and describe how conditions vary at the surface and at the coast.

We illustrate this methodology in the CCS during the months of July to September,
using in situ surface data from an uncrewed Saildrone vessel. Our goal is to demonstrate
that this method can be useful to describe variability in surface ocean conditions in coastal
areas and with an ample coverage in space and time, including dynamic and coastal areas
where the spatial resolution of the data allows it. Moreover, this T-S framework can be
used in near-real time given the fast availability of remote sensing data, with potential to
be used in management and planning.

4.1. Surface CCS Conditions Based on Saildrone In Situ Data

First, we described surface conditions along the CCS in a T-S diagram using in situ
data collected by uncrewed Saildrone vessels. The T-S diagram shows water with different
properties, and despite the many processes that impact surface water, data were aggregated
in identifiable clusters. For the summer CCS data, Saildrone in situ data had a tilted V
shape. Although surface waters have different properties than the at-depth water masses
identified in the area, our T-S representation does resemble the distribution of these waters
in the T-S diagram described by [3]: (i) the Pacific Subarctic Upper Water coming from the
north along the California Current, starting cold and saline, and increasing its temperature
while decreasing in salinity as it surfaces; (ii) the Eastern North Pacific Central Water,
offshore of the CCS, but intruding into it; and (iii) the Pacific Equatorial Water flowing
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northward in the California Undercurrent, both cold and saline at depth, but increasing
their temperature with just slightly changing salinity as they surface. In the CCS, these
different water masses are not only mixed into the surface, but also brought toward the
surface through Ekman transport, Ekman pumping, and topographic upwelling; therefore,
water masses with conditions resembling those of deeper waters are expected. Finally,
surface waters are also influenced by river runoff, with the largest impact being from the
Columbia River, which has a large footprint offshore and downstream [4].

Secondly, we aggregated the Saildrone in situ data into clusters and defined their cen-
troids, which were later used to classify the remote sensing data, reclassify the in situ data,
compare the two data types, and quantify the uncertainty. The clusters in the reclassified
Saildrone in situ data describe the T-S branches more clearly, and also describe distinct
regions in the CCS. The T-S clustering framework divides the CCS into four general regions
differently from how it is often divided based on temperature or upwelling conditions
alone [14]. In the summer, surface T-S data divide the CCS into the following regions:
(1) a southern region with warm and high salinity waters in the Southern California Bight;
(2) a northern region, normally considered north of Cape Mendocino (~42◦N), which here
begins in mid-Oregon and extends offshore, corresponding to surface waters dominated
by subarctic input from the east and north and the low-salinity waters associated with the
Columbia River; (3) a central region with high-salinity surface water that prevails in central
California and also offshore of Northern California and Southern California; finally, (4) a
region of cold and saline waters at the coast in Northern California and Southern Oregon
associated with coastal upwelling. These regions have been independently described in
terms of near-surface temperature or salinity since the 1980s [4,30], showing increased
consistency with satellite data in recent decades. Furthermore, this clustering method
allows us to describe the surface water masses as a single descriptor, as with water masses
at depth, that can be clearly observed in a single map.

4.2. Surface CCS Conditions Based on Remote Sensing Data

Since we have shown that the Saildrone in situ data clusters adequately represent
CCS summer surface conditions, we explore how the classification of remote sensing
collocated data compare to it. While the remote sensing data are more dispersed than
the in situ data, the data points are still located around the centroids defined by the in
situ data clusters. More importantly, the collocated data correspond to similar locations
to the Saildrone data, identifying similar regions with distinct water surface properties.
The southern and northern regions are clearly identified with similar boundaries, and the
Central California region has a similar location, near and offshore in the area, extending to
offshore Southern California and also in northern California and Southern Oregon for the
remote sensing collocated data. The navy and purple clusters of collocated data occupy a
similar region around data associated with the Columbia River in Oregon and Washington,
but in Northern California the purple cluster appears closer to the coast than in the in situ
data. In particular, the blue cluster that appears in nearshore northern California in the in
situ Saildrone data is further offshore and north in the collocated data, partially due to the
lack of satellite data and partially due to uncertainties and biases in the SSS data nearshore.

We then explored the use of this T-S framework using all available gridded remote
sensing data for the months of July–September. The averaged values (summer climatology)
showed that, apart from a few outlier values (Figure 5), the T-S diagram and the cluster-
colored map identified the location of clusters similar to those from the Saildrone in situ
data. Furthermore, the purple cluster is clearly limited to coastal Northern California and
Southern Oregon, with only a few blue cluster points associated with coastal upwelling. The
navy cluster is more clearly depicted as a transition between the turquoise and the purple
and gray clusters in the map. Using gridded data has the advantage of expanding the
coverage offshore, showing that the central (and even in southern California) gray cluster
waters are dominant and the turquoise cluster expands offshore as well, identifying them
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as a mix with the California Current System waters and coastal processes; the turquoise
cluster mixes also with the precursor of the CCS, the North Pacific Current waters [31].

In the climatology, few points are classified into the blue cluster, highlighting the
synoptic scale of variability of the upwelling events in the Northern California and Southern
Oregon region during this time of year [26]. These events bring cold and saline water to the
surface, but are interspersed with periods of strong warming—when averaged though the
season and years, this results in warmer and lower salinity data points classified as purple
or even gray clusters. Using daily data in the climatological classification is necessary to
observe the extent of the blue cluster. On the other hand, if climatological data were used
in the clustering of conditions (for example, for other regions without in situ data), some
short-lived events could be missed.

Fortunately, remote sensing data are available at daily scales, allowing us to see
snapshots of surface water conditions at synoptic scales. In this manuscript, it is impossible
to show the classification of all remote sensing data available, but we present two 5-day
periods to illustrate the use of this methodology to observe changes in the ocean surface
conditions over short temporal periods and with a spatial coverage not available in any
other observational dataset. The 5-day period in 2021 (Figure 7) shows the data points
of each of the clusters, with a large area identified into the blue cluster associated with
coastal upwelling. The SST map in Figure 7D illustrates the footprint of this upwelling
event as cooler temperatures, although it is not clearly visible in the SSS map (Figure 7C).
Although 2021 could be classified as a more ‘normal’ year than 2015, it does contrast with
the climatology in that many of the data points associated with the gray cluster have high
salinity, clearly visible in the SMAP SSS map and the T-S diagram. In particular, a shift in
surface water conditions seems to occur across shore ~38◦N where cool waters associated
with upwelling stop, increased salinity is observed, and the cluster classification changes
from blue and purple to gray. This period also illustrates that some outliers in the SSS
map or the T-S diagram are not so in the colored map, as they are correctly classified
into the closer cluster. This demonstrates the advantage of the clustering method, which,
despite uncertainties in SSS and SST, can still utilize the data to show variability in surface
conditions. In this analysis, we did not remove the outliers to illustrate this point, but we
also found that coastal data cannot be used in isolation and/or in a quantitative manner.

The July period in 2015 (Figure 6) shows a different picture for the surface ocean
conditions than 2021. There is no deep, cool water associated with coastal upwelling,
and very few purple cluster data points. This is due not to a lack of upwelling but
more importantly to the high stratification caused by the extreme MHW that prevailed
along the West Coast in 2014–2016 [27], preventing deep waters from reaching the surface.
The colored map in Figure 6A also shows that in addition to the limited presence or
absence of blue, purple, and navy cluster points, the orange cluster was extended north off
Central California due to the higher SST values associated with the MHW. Interestingly,
the nearshore off Central California remained relatively cool (gray cluster), although high
SSS values can be seen in the SSS map and T-S diagram. During the early period of SSS
data from the SMAP mission, April–August 2015, a bias in the data was reported due to the
use of different rates of data collection between this period and later on [32]. This bias is
corrected in the SMAP dataset V6, available now for the RSS (Remote Sensing System) SSS
data product [32], but not yet for the JPL SSS data product used in this analysis. Despite this,
the illustrated 2015 period shows large differences compared to other years, and this T-S
framework presents the 2014–2016 MHW from a new perspective, showing aspects of the
surface CCS structure that were unchanged, such as the Columbia River plume, the ‘cooler’
coastal Central California, and Southern California, but conditions were largely different in
the coastal upwelling area in Northern California and offshore of Central California. The
use of this T-S framework in near-real time during extreme events like the MHW could
be useful to identify areas of bigger concern, not only due to high SSTs but also to other
impacted air–sea–land iterations.
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4.3. Uncertainty

A major challenge in the use of remote sensing data in coastal and other challenging
areas are the biases and errors due to resolution, land contamination, and clouds [10], which
for SSS can be large in comparison with SST. Because SSS is based on L-band microwave
radiometry, errors are dominated by land contamination and spatial resolution. In addition,
L3 SSS product estimates near the coast might introduce an error due to the extrapolation
of larger-scale process than coastal ones [20]. In the case of the high-resolution MUR SST
data, based on infrared and microwave sensors, the dominant cause of the errors is cloud
contamination [16]. In coastal upwelling regions, commonly occurring clouds and fog lead
to high-resolution data gaps, leaving only the lower-resolution microwave data that might
not capture the upwelling-related SST gradients [33]. While in this work we are not aiming
for a quantitative description of the surface characteristics of the CCS, we still need to
estimate the uncertainty of the methodology and data. Away from the coast (>100 km), the
data are generally highly accurate and consistent with other descriptions of CCS surface
values [3,13], especially considering the dynamical nature of the CCS and of the Saildrone
trajectories. However, errors or differences can be significant in some points (Figure 4),
in particular for SSS where values vary in a smaller range than SST. SST differences tend
to be negative (higher SST values in the remote sensing data than in situ data), which
is surprising as the MUR SST, as with other L4 datasets, tends to have positive biases
in upwelling areas due to the persistent presence of clouds [33]. This uncertainty could
be partially attributed to the re-gridding of the MUR SST data to a lower resolution grid
to match the SSS data. Overall, the largest uncertainties are limited to the coastal data
points (<50 km), and these points could be removed from the data before applying the T-S
framework methodology if they are identified as outliers in the T-S diagram or the map.
We decided not to do so in this analysis to demonstrate the magnitude of the uncertainties
and errors, and how despite this, the T-S methodology can highly accurately describe data
in the CCS if we consider four main clusters and two others of transitional conditions.
Furthermore, these outlier coastal points show data that are potentially erroneous and the
classification makes this more evident for their removal.

The only data for which this methodology has a large uncertainty is the blue cluster,
where the classification was correct less than half of the time. This cluster represents the
recently upwelled water at the coast, and besides the problems of land contamination
at the coast, the resolution might be inadequate to accurately describe a process that
is highly dynamic and at higher spatial scales than the remote sensing data. Despite
this, the occurrence of data classified into the blue cluster in July 2015 shows that the
methodology is capable of identifying recently upwelled waters, but that caution should
be used in interpreting coastal data from 2015 due to the instrument rate bias mentioned
above. Another error source at the daily scales at which upwelling plumes could change
is the smoothing and interpolation of SSS data into a daily grid (from 8-day averages) in
comparison with the high resolution (daily averaged) of the Saildrone SSS. While a more
accurate comparison might be made with L2 SSS products, [11] showed that these daily
collocations adequately represent gradients in conditions associated with coastal upwelling.
Furthermore, we aim to illustrate variability in surface T-S conditions, not necessarily
the quantification of mesoscale or finer structures. However, future work focused on the
upwelling (spring–summer) vs. other seasons and in a narrower area where upwelling is
dominant would be needed to examine if the uncertainties are in fact due to a resolution
issue with the re-gridded MUR SST data, as it does not resolve the highest spatial scales
associated with upwelling events, or are related to the larger SSS data coastal errors.

This methodology can easily be expanded to other seasons within this region and to
other regions as well. Ideally, some in situ observations would be available to perform the
clustering, as shown in this work. Even if in situ data are not available, the climatology
analysis showed that remote sensing data can capture most clusters that the in situ data
also capture, except the cluster representing short-lived conditions. The clustering analysis
can then be performed on a random subset of the satellite data. For the CCS, this approach
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can be used to describe surface T-S conditions in other seasons when no Saildrone data
are available. To facilitate the analysis, separating the data by seasons would avoid a
T-S diagram with overlapping patterns that would complicate the clustering process, as
different seasonal processes occur through the year (for example, precipitation in the winter
and strong seasonal heating in the summer). In other regions, a preliminary inspection of
the seasonality of the data would be necessary.

5. Conclusions

In this work, we demonstrated that the clustering T-S framework can be useful in
describing surface temperature and salinity conditions in the coastal ocean. Describing
the data using separated clusters with particular conditions, as commonly performed with
water masses at depth, reduces the uncertainty in remote sensing coastal data, expanding
the use of SSS. We present here the specific case of the CCS, where previous studies and in
situ data are available, to assess the validity and accuracy of the method. However, this
method can be expanded to other regions with or without in situ data to train the clustering.
As shown here, this T-S framework (or in this case SST-SSS framework) identifies regions
beyond those identified only by SST and that reflect processes and air–sea–land interactions
that further describe the surface ocean dynamics. Furthermore, this methodology takes
advantage of the SSS dataset, a vast and growing source of global data, which is still under-
utilized in coastal areas. Our results provide a potential breakthrough for the application
of SSS in coastal regions where connections to biological productivity are crucial.
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