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Abstract: Accurate and complete digital elevation models (DEMs) play an important fundamental
role in geospatial analysis, supporting various engineering applications, human activities, and
scientific research. Interferometric synthetic aperture radar (InNSAR) plays an increasingly important
role in DEM generation. Nonetheless, owing to its inherent characteristics, gaps often appear in
regions marked by significant topographical fluctuations, necessitating an extra void-filling process.
Traditional void-filling methods have operated directly on preexisting data, succeeding in relatively
flat terrain. When facing mountainous regions, there will always be gross errors in elevation values.
Regrettably, conventional methods have often disregarded this vital consideration. To this end, this
research proposes a DEM void-filling method based on incorporating elevation outlier detection. It
accounts for the detection and removal of elevation outliers, thereby mitigating the shortcomings
of existing methods and ensuring robust DEM restoration in mountainous terrains. Experiments
were conducted to validate the method applicability using TanDEM-X data from Sichuan, China,
Hebei, China, and Oregon, America. The results underscore the superiority of the proposed method.
Three traditional methods are selected for comparison. The proposed method has different degrees
of improvement in filling accuracy, depending on the void status of the local terrain. Compared with
the delta surface fill (DSF) method, the root mean squared error (RMSE) of the filling results has
improved by 7.87% to 51.87%. The qualitative and quantitative experiments demonstrate that the
proposed method is promising for large-scale DEM void-filling tasks.

Keywords: InNSAR; digital elevation model; outlier detection; void filling

1. Introduction

Digital elevation models (DEMs) are common digital geographic information products
and important geospatial information sources [1]. They provide information about the
spatial relief of the Earth’s surface [2]. A high-quality DEM is of great importance for scien-
tific research and can be widely used in geological and landform research [3], hydrological
research [4], glacier research [5], and smart cities [6]. Interferometric synthetic aperture
radar (InSAR) technology is widely used in the field of deformation monitoring and is also
an effective way to generate large-scale DEMs [7,8]. However, there are always voids in
InSAR-DEMs, especially in mountainous areas [9,10]. DEM voids are therefore limiting
factors for applications [11,12].

There are lots of different methods with which to fill INSAR-DEM voids. SRTM, an
earlier nearly global DEM with uniform global quality using bistatic InNSAR technology,
has brought about a wealth of void-filling research [13-16]. A common idea is to perform
interpolation, relying on the elevations around the voids to calculate the missing elevation,
and proceed layer-by-layer until all voids are filled. Currently, widely used interpolation
methods are inverse distance weighting (IDW), kriging, and spline, without resorting to
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auxiliary data [14,17]. According to the method characteristics, the selection of points used
for interpolation will greatly affect the filling results. The elevations around the voids are
not always reliable, resulting in discontinuity in the interface area between the voids and
non-void areas [13]. To smooth the results, some scholars have proposed to first reconstruct
a smooth plane in the voids. Additionally, the high-frequency features around the voids
were then extracted and applied to the filling plane to simulate the details [18]. This method
can only create simulated terrain, and filling accuracy is difficult to guarantee.

It is of great interest to properly consider external auxiliary data to improve the
accuracy of DEM void filling. The selection of auxiliary data is a key factor, such as
extracting valley lines from Landsat sensor imagery [19], night time ASTER thermal imagery
data [20], and shadow maps from multispectral images [21,22].In fact, these auxiliary data
are not homogeneous with those of DEMs, and are not as simple and direct as DEM.
External DEMs in the same area are the most commonly used auxiliary data [13,23-25];
the classic one is the fill and feather (F&F) method [15]. The void is replaced directly with
external data, and the boundary bias around it is eliminated through feathering, which has
the potential to blur edges and has no theoretical basis. Furthermore, the delta surface fill
(DSF) method has been proposed. The DSF method achieves filling closer to the original
surface by adjusting the deviation between the raw data and external data around the
void [13]. Deep learning has also been employed in DEM void filling, but the need for rich
datasets and unstable performance still make it dominant in specific applications [26,27].
Furthermore, voids in DEMs are often accompanied by the emergence of elevation outliers,
especially around voids. These outliers affect not only the reliability of the raw data but
also the filling performance.

Some studies have focused on removing elevation outliers in DEMs [28-30]. In optical
DEM generation, the same set of stereo image pairs can be used to produce two different
DEMs by exchanging the main and auxiliary images [31]. The similarity measurement
method uses the statistical comparison of these two DEMs to determine elevation outliers.
The local elevation histograms and adaptive irregular triangulation networks are specially
used for TanDEM-X DEM to detect low-elevation outliers [32]. Two-dimensional Kalman
filtering can be employed to remove outliers in the DEMs generated by Sentinel-1 images
and effectively reduce DEM errors [33]. These DEM outlier detection methods mainly
focus on refining complete DEMs, especially those in urban areas. There are no studies that
incorporate elevation outlier removal into the filling of raw DEMs with voids, especially in
mountainous areas. Considering outlier removal in DEM void filling is critical for accurate
DEM filling.

In this study, the INSAR-DEM voids are filled by incorporating elevation outlier
detection. Outliers are detected and removed by a well-designed process and subsequently
treated as voids. Differences from existing methods include (1) the utilization of a novel
DEM outlier detection concept combined with an optimal void-filling approach and (2) an
emphasis on filling voids in INSAR-DEM within mountainous terrain with numerous
elevation outliers. The paper is structured as follows: Section 2 introduces the methodology,
while Sections 3 and 4 validate and analyze the method’s performance using TanDEM-X
data. The conclusions are summarized in Section 5.

2. Materials and Methods

This section presents the detailed principles of the proposed void-filling method based
on incorporating elevation outlier detection. Figure 1 illustrates the overall flow chart
of the method. This method consists of the following steps: Firstly, preprocess the input
DEMs to ensure that the resolution is uniform and mutually registered. This includes
standardizing horizontal and vertical datum, resampling the external DEM to match the
raw DEM resolution, and achieving precise registration through the iterative closest point
(ICP) principle. This preprocessing ensures consistency between the area represented by
the external DEM data obtained during void filling and the desired area. Secondly, DEM
outlier detection and removal, explained in detail below, is applied to eliminate incorrect
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elevation values in raw DEM. Thirdly, DEM void filling should retain and utilize the raw
DEM data as much as possible, and only introduce external DEM when the lack of external
data assistance will lead to poor results. We found that smaller voids can be recovered well
by interpolation, but the filling effect is poor when the voids are larger. According to the
need to introduce external data to fill DEM voids, they are divided into two categories:
large voids and small voids. When the void is small, simple interpolation is enough, so
there is no need to introduce external data [34]. Theoretically, the size of the voids that
interpolation can handle is different under different terrain conditions. The flatter the
terrain, the wider the range in which interpolation can work [14]. For the convenience of
calculation, this paper uses a threshold to classify large voids and small voids, which has
proven to be a feasible approach in DEM void filling tasks [34]. Experiments suggest that
this threshold is 16 pixels in mountainous areas; we used this fixed threshold in subsequent
experiments. A void connected domain with more than 16 pixels is considered a large
void, and vice versa, a small void. Finally, the DSF method is employed to fill the large
voids, while IDW interpolation is used to fill the small voids. Combine the filling results
of large and small voids to obtain the complete DEM finally filled by this method. IDW is
an algorithm with a simple principle and will not be introduced here. Therefore, the two
most important parts of the method, DEM outlier detection and removal and DSF, will be
introduced in detail below.
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Figure 1. Void-filling flow chart of the proposed method based on incorporating elevation outlier detection.

2.1. DEM Outlier Detection and Removal

Comprehending the concept and origins of elevation outliers enhances the precision
of finding solutions. Elevation outliers, or aberrant elevation values within a DEM, sig-
nificantly deviate from actual elevations. Manifesting as jumps, bulges, depressions, or
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erratic trends, they commonly arise in undulating local terrains with low image coherence,
resulting in unwrapping failures [35,36]. Typically, they manifest in the vicinity of extensive
voids, as illustrated in Figure 2. The chaotic colors in (a) and dark hues in (b) indicate the
presence of numerous elevation outliers surrounding voids in the area.
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Figure 2. DEM outlier example. (a) the actual elevation; (b) the residual map of (a) compared to the
reference DEM.

The detection and removal of DEM elevation outliers include two parts based on
statistical principles and morphological principles, respectively. After outlier detection
based on statistical and morphological principles, the elevation outliers in the raw InSAR-
DEM were well detected. They will be treated as data voids and subsequently merged
with the raw data voids. The following are two consecutive steps for DEM elevation outlier
detection and removal: The processed DEM will be input into the next step.

2.1.1. DEM Outlier Removal Based on Statistical Detection

Notably, existing methods for detecting DEM elevation outliers share a common
trait—utilizing the statistical characteristics of elevation points as the detection founda-
tion [28,31,37]. Motivated by this, we propose a statistical method for detecting elevation
errors suitable for INSAR-DEM. In optical DEMs, reversing the reference and target images
generates two DEMs for comparison. Similarly, INSAR-produced DEMs can be compared
with existing external DEMs, assuming consistent conditions. Deviations between the two
DEMs are expected due to them describing the same terrain with theoretically limited
fluctuations. In theory, if neither the INSAR-DEM nor the external DEM contain systematic
errors, the elevation difference between the two should be normally distributed. Then
the point where the elevation difference is far away from the mean difference between
InSAR-DEM and external DEM can be considered to have a very small probability of occur-
rence, so it is considered an outlier. Three times the standard deviation is a commonly used
criterion in statistics for detecting outliers [38], so we used this standard as the basis for
statistical detection principles. It must be noted that the multiple of the standard deviation
does not necessarily have to be 3. The larger the multiple, the smaller the number of outliers
detected. The smaller the multiple, the greater the possibility of removing reliable points.
The experimental recommendation is to set it between 2 and 4. In addition, the normalized
median absolute deviation (NMAD) can also be tried as a threshold, which will not be
listed here [39]. Formulae (1)—(4) derive the statistical outlier detection principle of three
times the standard deviation, with de;q,, being raw DEMSs, demt oy, being the external
DEM, d being the difference between the two DEMs, ¢ being the standard deviation of
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the difference, and y being the mean difference. Figure 3 further illustrates the statistical
removal principle graphically.
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Figure 3. Statistical outlier detection scheme. (a) An example of a statistical histogram of elevation
differences between an INSAR-DEM and an external DEM; elevation mean difference p and standard
deviation o are listed; (b) A schematic diagram of outlier distribution under normal distribution, data
outside the two red dashed lines represent outliers.

2.1.2. DEM Outlier Removal Based on Morphological Detection

Ideally, statistical principles would be sufficient to detect elevation outliers, but the
actual situation is much more complex. Due to the disparate acquisition periods of external
DEMs and raw DEMs, coupled with the generally limited accuracy of external DEMs, a
substantial number of elevation outliers persist around voids even after statistical detection.
As void filling heavily relies on the elevation values in proximity to voids, more meticulous
detection of these outliers is imperative. To address this, elevation outlier detection based
on morphological principles is proposed. Landform segmentation can be performed using
morphological operations on DEM, which proves the potential of morphological principles
to assist in DEM processing [40].

Morphological detection of elevation outliers consists of the following steps: Firstly,
convert the DEM with voids after detecting elevation outliers based on the above statistical
principles into a binary image. Where there is data, it is assigned a value of 0, and where
there is no data, it is assigned a value of 1. Secondly, dilation and corrosion operations are
performed on this binary image, which are collectively called the closing operation. The
dilation operation can fill in some graphics defects, and the erosion operation can remove
protruding burrs on some graphics [41]. The combination of dilation and corrosion allows
adjacent small voids to be merged and void boundaries to be smoother. Specific examples
of dilation and corrosion operations are shown in Figure 4. Thirdly, the changed points
after morphological processing are compared with the coherence during the INSAR-DEM
production process. If the standards are met, the morphological processing results will
be retained. If the standards are not met, the morphological processing results will be
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Void connected domain
before closing operation

cancelled. The changing points include the increase and decrease in void points. Only
the increased points that are less than the coherence threshold meet the standard, and the
decreased points that are greater than the coherence threshold meet the standard. Because
morphological processing lacks a theoretical foundation related to DEM, adding coherence
constraints can prevent arbitrary processing. The selection of the coherence threshold is
empirical. In this article, it is selected as 0.8 through experiments, which is also applicable
in most cases. Finally, we can obtain a binary image after morphological operations and
coherence constraints, in which the range of voids is updated. The newly added non-zero
value points in this binary map are the morphological detection results of elevation outliers.

Structural Closing operation, dilation Structural Closing operation,
element in yellow and green element corrosion in blue

Figure 4. Dilation and corrosion morphology operations. Examples are shown before the operation,
after the dilation operation, and after the dilation and corrosion operation. Green represents the
initial void range, yellow represents the void range added by the dilation operation, blue represents
the void range retained after the corrosion operation, and red represents the structural elements of
the morphological operation.

2.2. Delta Surface Fill

Conventional void filling addresses only the data inconsistency at a void’s edge,
potentially yielding inaccuracies. The DSF method aims to globally adjust all external
data filled into a void, extending beyond a void’s edge adjustment [13]. This involves
computing the difference between raw data and external auxiliary data within a specified
overlap range along the void’s edge. As mentioned before, the DSF method is used to fill
large voids. Here we take the example of filling a large void. The method encompasses the
following steps:

I.  Computing the delta surface of raw DEMs and external DEMs;
II. Internal filling of delta surface voids;

III.  Delta surface voids” edge interpolation;

IV. Combining external DEMs and the delta surface.

Firstly, a difference is made between the raw DEM and the external DEM. Secondly,
large voids in the delta surface are identified, and a fixed value is assigned to their centers.
The fixed value assigned to void centers is the average of the delta surface within a certain
outward range. The range size relates to the local terrain complexity and DEM resolution,
with an experimental recommendation of 5-15 pixels. Thirdly, interpolate the remaining
voids in the delta surface using the IDW method for a smooth transition. Lastly, add and
merge the delta surface with the external DEM to obtain the DSF filling result. Figure 5
elucidates the DSF implementation process.
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Figure 5. DSF implementation process. Various colors: light green for DEM data, red for data voids,
and pink for the delta surface. (a) is raw DEMSs; (b) is external DEMs; (c) = (b) — (a) is the delta
surface corresponding to step (I); (d) is the delta surface center filled in large voids by mean value,
corresponding to step (II); (e) is the delta surface filled and interpolated entirely, corresponding to
step (III); (f) = (b) — (e) is the filled DEM corresponding to step (IV). Red represents void pixels, pink
represents elevation difference pixels, and green represents elevation pixels.

2.3. Study Area and Experimental Data

Since the outstanding innovation of this method is the inclusion of elevation outlier
detection, mountainous areas with many elevation outliers are the terrain scenarios mainly
effective for. In plain areas, the effect of this method is close to that of the traditional DSF
method. In addition, if the void filling process is used to process the voids in the water area
DEM, the elevation obtained will not be a horizontal plane. The processing of the water area
DEM is generally completed by water Flattening [34]. Taking comprehensive considerations
into account, we used three different mountainous terrains to test the performance of this
method. In order to assess the practical efficacy of the proposed method, a real-data
experiment was undertaken, centered on the challenges associated with DEM production
in mountainous regions known for prevalent data voids. Three TanDEM-X satellite datasets
were chosen for this investigation. The reference DEMs come from the ALOS PALSAR
DEM with a 12.5 m resolution and the USGS 3DEP LiDAR DEM with a 10 m resolution [42],
which are the highest quality DEMs that can be collected in their respective areas. The
evaluation shows that both ALOS PALSAR DEM and LiDAR DEM have high accuracy and
are sufficient to estimate the void filling effect in INSAR-DEM [43,44]. Figure 6 displays
the geographical location of the study area via an optical image, delineated by a red
rectangular box. Figure 7 presents raw TanDEM-X satellite-derived DEMs (Figure 7a,c,e)
generated through interferometry processing, alongside high-precision ground verification
DEM data (Figure 7b,d,f). Table 1 gives detailed information about prepared datasets.
Leveraging ground verification data enables stereotypical analysis and comparison, as well
as facilitating a comprehensive, quantitative, and detailed assessment of different methods
for addressing the void-filling task.
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Figure 6. The location of the study areas and data coverage (red rectangular box). A, B, and C are
data coverage maps of the three study areas of Sichuan, Hebei, and Oregon respectively.
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Figure 7. Raw DEMs (a,c,e) generated by TanDEM-X and reference DEMs (b,d,f). (a,b) correspond to
area A, (c,d) correspond to area B, and (e f) correspond to area C.
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Table 1. Detailed information about the prepared datasets.
. Spatial Image Size Void
Location Landform Datatype Data Source Resolution (Pixels) Pixels
Area A Sichuan, Plateau, Raw DEM TanDEM-X 10m 5538 x 4572 654,907
rea China bare ground Reference DEM ALOS PALSAR 12.5m 4430 x 3658 -
Area B Hebei, Mountain, Raw DEM TanDEM-X 10m 6016 x 4818 176,085
rea China low vegetation Reference DEM ALOS PALSAR 12.5m 4813 x 3854 -
Area C Oregon, Mountain, Raw DEM TanDEM-X 10 m 6043 x 4986 807,757
rea America High vegetation Reference DEM LiDAR 10 m 6054 x 6001 -
3. Results

3.1. Void-Filling Results via Different Methods

There are both traditional methods and deep learning methods for void filling in
DEM. Deep learning methods have many application cases in the field of DEM void filling,
such as void filling using GAN networks. Deep learning methods can sometimes achieve
better performance than traditional methods, but this performance is highly related to
the training data and network parameters and is not as stable and reliable as traditional
methods [26]. The method we proposed focuses on performance in large-scale DEM void-
filling tasks, and deep learning methods do not yet meet this requirement. Therefore, only
representative traditional methods are selected for comparative analysis. In the traditional
DEM void-filling methods, two principal approaches to void filling exist: The first en-
tails employing interpolation methods to address voids devoid of external auxiliary data.
Representative methods within this category include the IDW and kriging interpolation
techniques. The second approach involves resolving inconsistencies between the DEM and
external auxiliary data by employing external auxiliary data to fill the voids. Various types
of external auxiliary data are available for this path, with DEMs being the most commonly
utilized. A well-established and acknowledged method for this purpose is the DSF method.
Consequently, in our experiment, we opted for the IDW, kriging, and DSF methods as
traditional group comparison methods. The external DEM, sourced from Copernicus,
possesses a 30 m resolution. Data preprocessing involves resampling external source DEMs
and aligning different source DEMs, ensuring a uniform resolution and reference datum
for external sources and raw DEMs, and facilitating meaningful comparisons.

To observe methodological nuances, two small, rugged mountainous areas were
chosen in all of areas A, B and C for meticulous analysis and comparison. Figure 8 depicts
the locations of these six areas, illustrating the voids’ spatial extent before and after elevation
outlier detection by method in this article. The white background in Figure 8 indicates
DEM voids. The first row displays raw DEM void areas, while the second row exhibits
void areas after elevation outlier removal. After detection, void areas expand, connecting
some initially fragmented void groups and rendering void shapes more regular. Generally,
elevation values surrounding voids bear low reliability, and elevation outlier detection
yields additional results around voids, aligning with the original purpose of elevation
detection. Accurate elevation outlier detection forms the basis for reliable subsequent
filling. Consistent detection outcomes and theoretical expectations underpin subsequent
experimental procedures.

Table 2 further details the proportions of pixels with distinct elevation values in a
DEM, categorized as raw DEM void pixels, detected outlier pixels, and reliable area pixels.
The proportions of detected elevation outliers exhibit significant variations across the six
areas, influenced by distinct raw void proportions and elevation outlier conditions. The
objective of assessing these proportions is to discern changes in filling accuracy and the
affected elevation value area. Notably, the proportion of detected elevation outliers does
not signify the accuracy of detection or filling. And the proposed method relies on the void
mask after elevation outlier detection, while the three traditional methods use the raw void
mask in the following experiments.
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Figure 8. Two small areas were enlarged in area A, area B and area C, named area 1, area 2, area 3,
area 4, area 5, and area 6. These areas, denoted as raw voids and voids after elevation outlier
detection, will be used in subsequent experiments. The white background in the enlarged figure
represents voids.

Table 2. Statistics on the pixel proportion of voids, detected outliers, and reliable area for different
study areas.

Raw DEM Voids Detected Outliers Reliable Area
(%) (%) (%)
Area 1l 18.72 8.18 73.10
Area 2 10.74 5.94 83.32
Area 3 16.82 17.16 66.02
Area 4 13.52 6.95 79.53
Area 5 27.66 9.97 62.37
Area 6 18.29 11.23 70.48

Subsequently, the filling of voids in the six areas was executed using three traditional
methods and the proposed approach, with the results depicted in Figure 9. Examination of
the raw DEMs reveals concentrated voids in regions of abrupt terrain changes, presenting
a substantial challenge for void filling due to their considerable size. In such scenarios,
mere interpolation proves ineffective. Both the IDW and kriging methods yield similar
interpolation outcomes, generating textures within the voids that deviate from the terrain.
The DSF method, aided by an external DEM, mitigates the formation of such inconsistent
textures. Nonetheless, noticeable elevation disorders and errors surround the raw voids in
the DSF results. The proposed method rectifies these discrepancies within DSF, yielding
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visually continuous and smooth filling results. Moreover, in comparison with the reference
DEM, the proposed method demonstrates complete consistency in terrain texture. Despite
the higher original resolution of reference DEMs, the proposed method retains more
terrain details.

Area 2 Area 3 Area 4 Area b Area 6

Raw
DEM

IDW

Interpolation Interpolation

Kriging

DSF

Proposed
Method

Reference
DEM

. 2\ ‘
Voids High -I Low

Figure 9. Comparison of the filling results of six different areas using different methods. The white

background in the figure represents voids.

3.2. Elevation Difference Analysis

DEM data exhibits a broad value range, spanning from hundreds to thousands of
meters, with the void-filling-induced floating data range typically confined within tens
of meters. Consequently, the disparities in DEM-filled elevation values are inadequately
discerned in an elevation map mirroring the vast DEM range. A mere DEM comparison
proves insufficient for a comprehensive method evaluation. Preferably, a more effective
approach involves distinguishing void-filling outcomes from the reference DEM to derive
an elevation difference map.
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Figure 10 contrasts the filling results of different methods with reference DEMs, pre-
senting respective elevation difference maps. Color classification is based on the difference
in magnitude, with darker colors indicating greater discrepancies. Across all areas, the
difference maps exhibit a characteristic wherein the absolute value of most elevation dif-
ferences hovers around 0, signifying successful co-registration. The IDW and kriging
methods manifest the darkest colors, particularly around raw DEM voids, revealing a piv-
otal limitation in the absence of external data. Without precise void area information, void
elevation data cannot be accurately reconstructed. Introducing external data through the
DSF method significantly reduces the absolute value of elevation differences within voids,
underscoring the imperative nature of external auxiliary data. Lastly, the proposed method
further diminishes absolute elevation differences by eliminating elevation outliers, almost
entirely rectifying a substantial number of errors. In comparison to all three traditional
methods, the proposed method closely aligns with reference DEMs in void reconstruction,
demonstrating superior elevation difference performance.
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Figure 10. Enlarged view of the elevation difference of DEMs filled through different methods.

In addition to visually presenting elevation differences, the difference map facilitates
the quantitative analysis of void-filling accuracy through commonly used indicators—the
root mean squared error (RMSE) and mean absolute error (MAE) [14,45]. They are calcu-
lated as follows:

n
RMSE — %Z%—Hf 5)
i=1
1 n
MAE = ;Z|hi7Hl»| (6)
i=1

h; and H; represent the filled DEM elevation and reference DEM elevation of the i-th
point, and n represents the total number of elevation points. This research incorporates
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these indicators, providing Tables 3 and 4. The IDW and kriging methods exhibit the
highest RMSE values, whereas the DSF method shows a decline, and the proposed method
consistently demonstrates the smallest RMSE in each region, aligning with previous analy-
ses. We selected the best-performing DSF method from the comparison methods for further
comparison and calculated the RMSE improvement ratio of the proposed method relative
to the DSF method. In the six different enlarged areas selected, the degree of improvement
ranges from 7.87% to 51.87%. This improvement correlates with the local area’s elevation
outliers. The MAE results in Table 4 align with the RMSE analysis in Table 3 and will not
be reiterated.

Table 3. Elevation RMSE of different void-filling methods in six areas. The data in bold in the table
are the best performing methods.

RMSE (m) Improvement (%)

IDW Kriging DSF Proposed Method Compared to DSF
Area 1 47.40 47.00 26.76 22.15 17.23
Area 2 16.18 15.80 12.82 8.73 31.90
Area 3 46.60 46.39 38.58 18.57 51.87
Area 4 39.17 38.90 29.82 15.04 49.56
Area 5 33.75 33.10 16.65 15.34 7.87
Area 6 23.44 23.03 19.35 17.63 8.89

Table 4. Elevation MAE of different void-filling methods in six areas. The data in bold in the table are
the best performing methods.

MAE (m) Improvement (%)

IDW Kriging DSF Proposed Method Compared to DSF
Area 1 21.98 21.77 14.18 11.14 21.44
Area 2 9.12 8.96 7.18 5.67 21.03
Area 3 28.43 28.29 22.87 13.58 40.62
Area 4 17.44 17.39 13.24 8.48 35.95
Area 5 20.70 20.32 13.19 12.13 8.04
Area 6 17.34 17.13 15.16 14.09 7.06

3.3. Important Terrain Void-Filling Performance Analysis by Profile

DEMs serve a crucial role in extracting and depicting significant terrain changes and
features, where the discontinuity and reasonableness of terrain transformations are pivotal
considerations. Drawing profiles of DEMs along selected cross-section lines at key locations
provides a viable means with which to assess these factors. In Figure 11, two orthogonal
sections were extracted from each of the aforementioned six small areas, and corresponding
elevation change curves were plotted below. Cross-section line selection criteria involve
opting for lines passing through void centers with heightened complexity and choosing two
orthogonal lines to ensure sample representativeness, offering multidimensional insights.
Figure 11 illustrates cross-section drawing using different methods: three colored dotted
lines correspond to the traditional methods, the green solid line represents the proposed
method, and the red solid line represents the reference DEM.
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Figure 11. Profile performance of enlarged figures of the six areas using different void-filling methods.
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The proposed method’s profile exhibits the highest consistency with the reference
DEM. While local elevation changes lack the detailed precision of the reference DEM, they
generally capture accurate terrain characteristics. Several phenomena associated with
the proposed method warrant in-depth exploration. Firstly, in raw DEMs with no void
areas (depicted as a white background), the three traditional methods maintain complete
consistency since they preserve raw data values. The proposed method diverges from
these three traditional methods due to elevation outlier removal, resulting in changes that
align the outcome more closely with the reference DEM. Secondly, within raw data void
areas (gray background value), DSF and the proposed methods produce similar results,
converging toward greater similarity within large voids and ultimately achieving consis-
tency. This similarity arises from both methods using the same external DEM for filling.
The difference is mainly reflected in the transition of the edges of the voids; the proposed
method’s transition is more natural and aligns with reality. Thirdly, the filling outcomes of
the IDW and Kriging methods are nearly identical, with minor distinctions. This uniformity
arises from the shared configuration in the experiment’s interpolation process, utilizing
common parameters such as interpolation reference point selection, the search point method,
and interpolation order. While acknowledging that different interpolation parameters yield
diverse outcomes, this research strives for comparability by employing shared parameters
among methods. The quantitative results in Table 5 also indicate that the proposed method
achieves lower elevation differences than the other methods.

Table 5. Elevation accuracy of the selected profiles in Figure 11. The data in bold in the table are the
best performing methods.

MAE of Line 1 (m) MAE of Line 2 (m)
. . Proposed . . Proposed
IDW Kriging DSF Method IDW Kriging DSF Method
Area l 42.45 42.46 20.64 14.74 35.17 35.17 6.75 5.82
Area 2 17.57 17.14 8.10 6.37 7.45 7.01 4.80 4.58
Area 3 39.94 39.78 34.70 13.80 51.72 51.72 40.25 18.57
Area 4 38.86 38.61 27.46 8.30 22.26 22.00 16.44 10.84
Area 5 37.46 36.30 13.64 12.58 15.10 15.10 13.28 10.67
Area 6 27.60 26.81 17.85 17.29 16.29 15.47 12.69 13.30

In the void-filling task within the experimental area, the analysis of filling results,
elevation differences, and profiles indicates that the proposed method surpasses traditional
methods qualitatively and quantitatively.

4. Discussion
4.1. The Impact of Elevation Outlier Removal on DEM Void Filling

Whether it involves interpolation or external auxiliary data, the quality of raw DEM
data significantly influences void-filling results. Interpolation-based void filling relies on
raw DEMs for interpolating voids. Void filling with external data assistance is also contin-
gent on the raw DEM’s quality for two reasons: First, the filling result borrows the trend
surface of external auxiliary data, necessitating a task akin to ‘registering’ external data
in raw DEM. Second, at void edges, a transition task resembling interpolation principles
is inevitable.

Prior to void filling, ensuring the reliability of raw DEMs is crucial. In some regions,
InSAR-produced DEMs exhibit elevation outliers, as depicted in Figure 2, resistant to reso-
lution through coherence masks during interferometry processing. Addressing this concern,
a void-filling method incorporating elevation outlier detection was introduced. Figure 8
illustrates void mask changes pre- and post-elevation outlier detection, highlighting the
imperative nature of outlier detection. After detection, the remaining DEM elevation values
are comparatively reliable, enhancing DEM quality and refining void areas for an easier
void-filling process. Elevation outlier removal notably improves void-filling efficacy, as



Remote Sens. 2024, 16, 1452

16 of 19

supported by Tables 3 and 4, and Figure 10. Extending the elevation outlier detection con-
cept to other void-filling methods, performed prior to filling, holds potential for progress.
While this study concentrates on evaluating the proposed void-filling method’s impact,
further exploration of combining elevation outlier detection with traditional void-filling
methods is a prospective research direction.

4.2. Suitable Situations and Future Improvement Directions of the Proposed Method

This method is very effective in quickly filling DEM voids in large-scale mountainous
DEMs, with two key characteristics. Firstly, it is tailored for the adaptability of DEM
terrain, particularly well-suited for rugged mountainous areas prone to data voids, often of
considerable size. Traditional interpolation methods falter in addressing extensive voids,
whereas the proposed method adeptly handles both large and small voids. In order to
explore whether it is necessary to divide the voids into large voids and small voids for
separate processing, we conducted an experiment in area C. And the accuracy of the
statistical results for the two processing strategies are listed in Table 6. It must be noted that
the difference between the two strategies is only in the small voids, so the statistical accuracy
here is the accuracy within the small voids rather than the entire DEM. Experiments show
that, compared to processing all voids uniformly, dividing the voids into large and small
voids and processing them separately can improve the accuracy of the results. The difficulty
and effect of the DSF void-filling method used in this study for a large void depend on
whether the elevation around the void is reliable. Therefore, although the void becomes
larger after the elevation outliers are removed, the elevation around the void becomes more
reliable, the difficulty of filling is reduced, and the effect is improved.

Table 6. The accuracy statistics table for separate processing and unified processing of large and
small voids. Only counts the accuracy within small voids. The data in bold in the table are the best
performing methods.

RMSE (m) MAE (m)
separate large and small voids process 14.56 11.55
unify large and small voids process 14.72 11.83

Secondly, the method is tailored for DEM data with locally poor quality, such as low
coherence or difficulty in phase unwrapping due to mountainous terrain and vegetation.
The elevation outlier removal step effectively eliminates poor-quality elevation points,
mitigating adverse effects. In other terrain scenarios, the advantages of this method are not
obvious. For example, in plain areas, the DEM obtained by InSAR has high quality and
reliability and few elevation outliers. The effect of this method is close to that of the DSF
method. For another example, in the water areas, the filled water terrain is messy, which
is inconsistent with the actual situation of the water being flat and requires special water
flattening processing.

Regarding the selection and impact of external source DEM, It’s essential to clarify
that, although in most cases, the resolution and accuracy of external DEMs are lower
than those of raw DEMs, using a small amount in voids is a viable alternative. In void-
filling tasks for large voids, the quality of the selected external DEM significantly impacts
the reconstructed elevation quality within the void. Opting for a high-quality DEM is
imperative to ensure void-filling quality. Additionally, the external DEM resolution should
not significantly differ from that of raw DEMs to prevent the occurrence of a “patch’ effect
caused by resolution disparities in void reconstruction.

Every method has limitations, and the proposed method is no exception. These
limitations also point to areas for future improvement and can be outlined in two key
aspects: on the one hand, by employing methods like terrain factor extraction and raw
DEM-based analysis to enhance the accuracy of elevation outlier detection; on the other
hand, by enhancing the resolution of the external DEM by integrating optical images or
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SAR intensity maps, replacing the basic resampling step to ensure improved data quality
consistency in the filling results.

5. Conclusions

In this research, the concept of DEM elevation outlier detection and removal was
introduced into the traditional DEM void-filling process, and a void-filling method based
on incorporating elevation outlier detection is proposed. The proposed method detected
and removed outliers existing in raw DEMs by combining statistical principles and mor-
phological principles, thereby improving the quality of void filling. Three experimental
datasets from Sichuan, China; Hebei, China; and Oregon, America, were applied to con-
duct real experiments. The three classic traditional methods of IDW, kriging, and DSF
were selected as control methods. The experimental results show that, compared with
traditional methods, both qualitative and quantitative filling results have been greatly
improved. Compared with the DSF method, the RMSE of the filling results by the proposed
method has improved by 7.87% to 51.87%. The proposed method can solve the problems of
elevation outliers existing in raw DEMs and achieve significant improvements in filling
quality. In addition, the analysis also found that, this method has its preferred application
situation, which is rugged mountainous areas. And the elevation outlier detection and
removal method in this article could be generalized and applied to other DEM void-filling
methods to improve the quality of DEM void filling in different situations.
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