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Abstract: In recent years, Rwanda, especially its Eastern Province, has been contending with water
shortages, primarily due to prolonged dry spells and restricted water sources. This situation poses a
substantial threat to the country’s agriculture-based economy and food security. The impact may
escalate with climate change, exacerbating the frequency and severity of droughts. However, there
is a lack of comprehensive spatiotemporal analysis of meteorological and agricultural droughts,
which is an urgent need for a nationwide assessment of the drought’s impact on vegetation and
agriculture. Therefore, the study aimed to identify meteorological and agricultural droughts by
employing the Standardized Precipitation Evapotranspiration Index (SPEI) and the Vegetation Health
Index (VHI). VHI comprises the Vegetation Condition Index (VCI) and the Temperature Condition
Index (TCI), both derived from the Normalized Difference Vegetation Index (NDVI) and Land Surface
Temperature (LST). This study analyzed data from 31 meteorological stations spanning from 1983
to 2020, as well as remote sensing indices from 2001 to 2020, to assess the spatiotemporal patterns,
characteristics, and adverse impact of droughts on vegetation and agriculture. The results showed
that the years 2003, 2004, 2005, 2006, 2013, 2014, 2015, 2016, and 2017 were the most prolonged
and severe for both meteorological and agricultural droughts, especially in the Southern Province
and Eastern Province. These extremely dry conditions led to a decline in both vegetation and
crop production in the country. It is recommended that policymakers engage in proactive drought
mitigation activities, address climate change, and enforce water resource management policies in
Rwanda. These actions are crucial to decreasing the risk of drought and its negative impact on both
vegetation and crop production in Rwanda.

Keywords: agricultural drought; GIS techniques; meteorological drought; remote sensing; Rwanda

1. Introduction

Drought is more than a temporary climatic anomaly; it is a complex and multifaceted
phenomenon that impacts various human and natural systems [1]. It is characterized by a
prolonged and severe lack of precipitation that leads to a water shortage for some activity or
group [2]. Drought can have devastating consequences for health, agriculture, economies,
energy, and the environment, affecting millions worldwide every year [3]. The United
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Nations (UN) recognizes drought as a major factor in water scarcity, affecting 40% of the
global population and posing a severe threat to human security and well-being. Projections
indicate that by 2030, as many as 700 million people could face displacement due to water
scarcity resulting from drought [4]. Climate change is intensifying the frequency, intensity,
and duration of droughts in many regions of the world [5]. The hydrological cycle is altered
as the global temperature rises, resulting in more extreme precipitation patterns [6]. In
dry regions, higher temperatures increase evaporation and reduce soil moisture, creating a
positive feedback loop that intensifies drought conditions [7].

Moreover, global studies highlight the enduring presence of drought, significantly
affecting human health, wealth [7], agriculture [8], and the ecosystem [9]. This phenomenon
leads to public health challenges, including insufficient sanitation and substandard drinking
water quality [10]. However, the implementation of strategic planning and robust drought
mitigation policies offers potential relief from these adverse impacts.

Rwanda, a landlocked gem in East Africa, is a country of diverse landscapes and
abundant water resources. Its terrain, characterized by high altitudes, ranges from the
low-lying Rusizi River at 950 m to the towering Mount Karisimbi at 4507 m [11]. The
country’s water wealth is equally impressive, with vast untapped reserves replenished
by a dense network of rainfall-fed lakes, rivers, wetlands, and groundwater systems. The
hydrological network is divided into two major drainage basins: the Nile, covering 67%
of the area and contributing 90% of the national waters, and the Congo, covering the
remaining 33%. This network encompasses a multitude of lakes, including Kivu, Bulera,
Ruhondo, and Muhazi, and rivers such as the Akagera and Nyabarongo in the Nile Basin
and the Rusizi and Sebeya in the Congo Basin. Thus, Rwanda’s rich landforms and water
resources form a vital part of its natural heritage [12].

Rwanda relies heavily on agriculture for economic development and food security.
However, it faces climate change risks that could disrupt its climatic conditions, thereby
impacting agricultural productivity [13]. The potential outcomes, such as higher temper-
atures, intense rainfall, and prolonged dry spells, pose a threat to crops, livestock, soil,
water, and biodiversity elements crucial for the well-being of Rwandans, particularly the
poor and vulnerable [14]. Droughts, a frequent hazard, affected over 4 million people
from 1976 to 2007 in Rwanda, with the worst case in December 1989 causing 237 deaths
due to hunger. According to the World Bank Group, droughts have resulted in social and
environmental issues such as displacement, conflicts, and biodiversity loss, particularly in
the eastern and southern regions of the country [15]. In 2015–2016, drought impacted crops
on over 23,000 hectares in Kayonza, Nyagatare, and Kirehe districts, resulting in the deaths
of 1750 cows due to a lack of fodder and water [16].

While some studies [17,18] have investigated the impacts of drought on agriculture
and water resources in Rwanda, there remains a notable gap in comprehensively under-
standing the characteristics, trends, and potential implications of climate change on drought
in the region. The existing literature primarily focuses on specific aspects and there is a
need for a more holistic exploration. Drought events in Rwanda exhibit considerable spatial
and temporal variability, exerting significant repercussions on both agriculture and water
resources. Notably, a study by Ndayisaba et al. [19] utilized AVHRR and MODIS NDVI
datasets to scrutinize vegetation changes in Rwanda. The study used regression and Hurst
exponent methods to analyze the changes in vegetation cover from 1990 to 2014. The study’s
findings indicated an overall increase in vegetation cover, with 81.3% of the areas showing
improvement and 14.1% showing degradation. The most noticeable changes occurred in
Kigali and the Eastern Province. Additionally, Mirindi [20] investigated historical and
future drought characteristics in Rwanda’s Eastern Province amid climate change. Using
the Standardized Precipitation Index (SPI), the study quantified meteorological droughts
from 1981 to 2019 and employed the CORDEX Model for projections (RCP2.6 and RCP8.5)
from 2022 to 2099. Findings revealed rising drought frequency and intensity, with projec-
tions indicating a continuing trend. However, the study solely focused on meteorological
drought, overlooking other types like agricultural and hydrological droughts. Limited by
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using only one drought index (SPI), it also did not account for human activity effects. The
study suggests broader geographical inclusion and integration of remote sensing indices
like NDVI for future research enhancement. Furthermore, Uwimbabazi et al. [21] examined
meteorological drought patterns in Rwanda using ground-based data from 1981 to 2020
and employed SPEI and SPI to assess drought severity at annual and seasonal scales. While
no significant trends were observed in annual, March, April, and May (MAM) or October,
November, and December (OND) rainfall, significant temperature increases were noted in
MAM, OND, and annually. Moderate droughts were more prevalent than severe/extreme
ones in MAM and OND, with varying intensity, duration, and frequency across the seasons.
The study has some limitations as it focuses solely on meteorological drought and does
not consider other types of drought, such as agricultural drought, and their impacts on
vegetation and agriculture.

The current research on drought in Rwanda is limited in its exploration of spatiotem-
poral patterns, trends, and characteristics using remote sensing data and GIS techniques.
Additionally, it is crucial to conduct a detailed analysis of the impact of drought on vegeta-
tion and agriculture at a national level. This would help identify areas that require further
research. This study used a combination of remote sensing indices and ground-based
data from 31 meteorological stations to assess drought conditions and their implications
comprehensively. This study offers valuable insights for informed climate change plan-
ning by overcoming the limitations of prior research that lacked remote sensing indices
and a comprehensive analysis of drought’s impact on vegetation and agriculture at the
national scale.

2. Materials and Methods
2.1. Study Area

Rwanda, situated on the East African Plateau, covers 26,338 km2. Positioned between
latitudes 1◦4′ and 2◦51′ south and longitudes 28◦53′ and 30◦53′ east in the tropical belt, it
shares borders with the Democratic Republic of Congo (RDC) to the west, Uganda to the
north, Tanzania to the east, and Burundi to the south [22,23] (Figure 1).
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Rwanda has a diverse ecosystem, including rainforests, savannahs, wetlands, and
farmlands. Approximately 52% of the land is suitable for farming, with about 66% actively
cultivated. Additionally, over 93,000 hectares of marshland are utilized for cultivation.
The hilly terrain poses challenges such as runoff and landslides, increasing vulnerability
to climate change effects, as reported by the World Bank [15]. Rwanda experiences a
temperate tropical plateau climate with two rainy seasons (March to May and September to
November) and two dry seasons (June to August and December to February). The country
has two agricultural seasons corresponding to the rainy periods: Season A (September to
December) and Season B (March to May). Rwanda comprises five provinces: Northern
Province, WWestern Province, SSouthern Province, EEastern Province, and the capital city,
Kigali City.

2.2. Datasets

The Rwanda Meteorology Agency (Meteo Rwanda) provided point-based rainfall and
minimum and maximum temperature data from 31 stations across Rwanda for the study,
which covered 1983 to 2020. The stations were grouped by province (Figure 1). The study
used rainfall data as a proxy for precipitation because Rwanda does not have snowfall. The
rainfall pattern (Figure 2) shows that the northern region has the highest annual average
rainfall (above 1700 mm) and the eastern region has the lowest (400 mm). The eastern
region also has the highest average annual maximum temperature of 27.69 ◦C, while the
northern region has the lowest average annual minimum temperature of 11.20 ◦C.
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MOD11A2 provides land surface temperature (LST) with an 8-day temporal resolution
and a 1-km spatial resolution, while MOD13A3 offers normalized difference vegetation
index (NDVI) data at 1 km spatial resolution and a 16-day temporal resolution. These
datasets, accessed from the National Aeronautics and Space Administration’s (NASA)
Earth Data Portal (https://ladsweb.modaps.eosdis.nasa.gov/search/ (accessed on 10 June
2023)), will be utilized from 2001 to 2020 to generate the Vegetation Condition Index (VCI)
and Temperature Condition Index (TCI), contributing to the production of the Vegetation
Health Index (VHI). Additionally, crop yield data for the same period can be obtained
freely from the Food and Agriculture Organization of the United Nations (FAOSTAT) portal
(https://www.fao.org/faostat/en/#data (accessed on 10 August 2023)).

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://www.fao.org/faostat/en/#data
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2.3. Methods
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI helped to identify meteorological drought by providing a standardized
measure of the balance between precipitation and evapotranspiration, which are key me-
teorological variables for assessing drought conditions. The SPEI, an upgraded drought
measure built on the SPI, helps us understand how global warming affects drought con-
ditions [24]. The SPEI was proposed by Vicente-Serrano et al. [25] and is considered a
suitable alternative to the SPI [26]. The study chose the SPEI-3 (3-month time scale) to
capture short-term meteorological drought variations, particularly relevant for immediate
impacts on ecosystems and water resources [27]. The Hargraves method, which is com-
monly employed for estimating potential evapotranspiration (PET), requires the monthly
average maximum and minimum temperatures (Tmax and Tmin) as the main factors [28].
This method was used in our study.

(1) Calculate climate level measurement Di (Equation (1)), which is the difference between
precipitation Pi and PETi for the month I as follows:

Di = Pi − PETi (1)

This offers a straightforward assessment of the water balance for the examined month.
The calculated Di values are aggregated at different time scales.

(2) To calculate the total amount of water available for different periods of time, use the
climate water balance series method.

Dk
n = ∑k−1

i=0 (Pn−1 − PETn−i), n ≥ k (2)

The time scale, usually measured in months, is denoted by k and n represents the
number of computations.

(3) Apply the probability density function of a three-parameter log-logistic distributed
variable to fit the data series (Equation (3))

f (x) =
β

α

(
x− y

α

)β−1
(

1 +
(

x− y
α

)β
)−2

(3)

The L-moment parameter estimation method can be used to obtain the origin parame-
ter γ, the shape factor β, and the scale factor α. Therefore, the following Equation (4) gives
the cumulative probability for a specific time scale:

F(x) =

[
1 +

(
α

x− y

)β
]−1

(4)

To obtain the SPEI time series of change (Equation (5)), the study applied a standard
normal distribution to the cumulative probability density.

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (5)

W is a parameter that is calculated by the formula
√
−2ln P, where P represents the

probability of exceeding the specified moisture gain or loss when p ≤ 0.5, p = 1 − F(x), and
when p > 0.5, p = 1 − p and the sign of SPEI is reversed. In addition to the variable factors,
the equation has some fixed components: C0 = 2.515517, C1 = 0.802853, C2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.00130 [29].



Remote Sens. 2024, 16, 1455 6 of 24

2.3.2. Vegetation Health Index (VHI)

The VHI is specifically designed to assess vegetation health and vigor, making it a
useful tool for monitoring agricultural drought. It is defined by two components, which
are the VCI and the TCI.

Kogan [30] proposed the VCI as a method to account for local variations in ecosystem
productivity, which indicates the condition of vegetation in different growth stages. The
VCI is a remote sensing drought index based on the NDVI. It is computed using the
following formula:

VCI =
NDVI − NDVImin

NDVImax − NDVImin
× 100 (6)

where NDVI is the monthly NDVI and NDVImin and NDVImax are the monthly minimum
and maximum NDVI values, respectively, over the study period.

On the other hand, the TCI (Equation (7)) index was developed in 1995 [30,31] and
its computational algorithm is similar to VCI (Equation (6)). The TCI serves as a thermal
stress indicator utilized for assessing temperature-related drought conditions. This remote
sensing index assumes that during the drought event, soil moisture diminished significantly
and caused high vegetation stress. LST can be calculated using different satellite images [32].

TCI =
LSTmax − LST

LSTmax − LSTmin
× 100 (7)

where LST is the monthly LST and LSTmin and LSTmax are the monthly minimum and
maximum LST values, respectively, over the study period.

The VHI described in Equation (8) is one of the most popular remote sensing index
used for drought monitoring [33,34].

VHI = α×VCI + (1− α)× TCI (8)

The VHI is calculated by combining two indices: the VCI and the TCI. Each index
has a weight factor that determines how much it influences the VHI. The weight factor is
denoted by α for the VCI and (1 − α) for the TCI. This study followed the recommendation
of Kogan et al. [35] and used equal weights (α = 0.5) for both indices.

The VHI values indicate the severity of drought conditions, with lower values repre-
senting extreme drought and higher values representing optimal conditions. The threshold
values were used to classify drought grades under SPEI and VHI following the studies
of [36,37], which are elaborated in Table 1.

Table 1. Classification scales of drought.

Grade Types SPEI VHI (%)

1 No drought SPEI > −1 VHI > 40
2 Mild drought - 30 ≤ VHI < 40
3 Moderate drought −1.5 < SPEI ≤ −1 20 ≤ VHI < 30
4 Severe drought −2 < SPEI ≤ −1.5 10 ≤ VHI < 20
5 Extreme drought SPEI ≤ −2 VHI < 10

2.3.3. Inverse Distance Weighted (IDW)

The IDW interpolation method, a commonly used technique, predicts values for un-
measured locations based on the values of surrounding measured locations. This method
operates under two primary assumptions: the influence of an unknown value of a point
increases with proximity to the control point and the degree of influence is directly propor-
tional to the inverse of the distance between points [38,39]. In the process of interpolation,
observation points receive weights that decrease as the distance from the new point in-
creases, affecting their relative influence [40]. The weighting power, which controls how
weighting factors decrease as the distance from a new point increases, is used to assign
weights to observation points. As the power increases, the value of the new point becomes
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closer to the value of the nearest observed point. Consequently, IDW operates on the as-
sumption that the value of an attribute, denoted as z at any point without sampled data, is
estimated by calculating a distance-weighted average of the sampled points located within
a specified neighborhood around that unsampled point. This method ensures that the influ-
ence of distant points is minimized, thereby providing a more accurate prediction [41,42]. In
this study, the IDW interpolation method was employed to analyze the spatial distribution
of drought conditions. It was used to interpolate the drought characteristics observed at
various stations and to create comprehensive drought maps.

2.3.4. Computation of Drought Characteristics

To calculate the drought characteristics, the study used the following parameters,
which were evaluated based on drought events: duration, frequency, severity, and intensity
(Table 2). This study applied the thresholds of SPEI≤−1.00 to identify drought and wetness
events, respectively [36]. The study notes that these events were measured in months.

Table 2. Parameter equations for drought characteristics analysis.

Drought Characteristics Equation Symbol and Units

Drought duration (D) D = ∑n
i=1 di
n

D: drought duration (months),
di: duration of an ith drought event,
n: total number of drought events

Drought frequency (F) F = nm
Nm
× 100

F: drought frequency (%),
nm: number of drought months,
Nm: total number of months

Drought severity (S) S =
Duration

∑
i=1

Index S: drought severity

Drought intensity (I) I = 1
n ∑n

i=1 SPEII

I: drought intensity (−),
n: number of drought occurrences in months with SPEI < −1,
SPEIi: SPEI value under the threshold (−)

These parameters are commonly employed to examine the characteristics of drought
conditions under various spatiotemporal conditions [36,43]. To assess the potential impact
of global warming on drought characteristics, the parameters mentioned above are utilized.

2.3.5. Drought Trend Analysis

To detect the significant trends in the area, the nonparametric Mann-Kendall (MK) test
was applied. This method is thought to be the best method for analyzing climatic changes
and trends in climatological time series. The World Meteorological Organization (WMO)
has approved the MK test as a method for analyzing trends in time series of environmental
data. This test can reveal how a series changes over time and is often applied to track the
time series analysis and to detect sudden shifts [44,45].

2.3.6. Pearson’s Correlation Coefficient

One way to measure the degree of linear correlation between two variables is Pearson’s
correlation coefficient [46,47]. This study calculated Pearson’s correlation coefficient (r)
to examine the relationships between the agricultural drought index and crop yields to
determine the impact of agricultural drought on crop production. The formula used to
calculate the Pearson correlation coefficient between those variables is

r =
n(Σxy)− (Σx)(Σy)√[

nΣx2 − (Σx)2
] [

nΣy2 − (Σy)2
] (9)
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where r = Pearson’s correlation coefficient, n is several pairs of scores, x and y are distinct
variables, Σxy is a sum of the products of paired scores,Σx is a sum of x scores, (Σy) is a
sum of y scores, Σx2 is a sum of squared x scores, and Σy2 is a sum of squared y scores [48].

3. Results and Discussion
3.1. The Spatiotemporal Patterns of Meteorological Drought in Rwanda

This study assessed the spatiotemporal variability of meteorological droughts in
Rwanda from 1983 to 2020 using the SPEI-3 timescale. The results showed that moderate to
severe drought events occurred in many locations throughout the study period, with the
most extreme drought occurring in 2017. The analysis demonstrated the spatial heterogene-
ity and temporal trends of drought patterns in Rwanda and offered valuable insights for
drought monitoring and management. The analysis followed the drought classification
presented in Table 1.

According to the SPEI-3 timescale, moderate drought was a prevalent occurrence
across most of Rwanda’s provinces from 1983 to 2019. However, specific regions also
encountered severe or extreme drought in certain years. In the Eastern Province, severe
drought manifested in 1986, 1988, 1989, 2002, 2010, 2011, 2012, 2013, 2016, and 2017,
with concurrent extreme drought events documented in 1993, 2000, and 2014 (Figure 3a).
Likewise, the Southern Province witnessed severe drought in 1983, 1988, 1989, 1991, 2002,
2012, 2015, 2016, 2018, and 2019, alongside extreme drought occurrences in 1984, 1986, 1993,
and 2017 (Figure 3b). In Kigali City, instances of severe drought were noted in 1983, 1990,
1992, 1993, 2002, 2005, 2008, 2016, 2017, and 2019. Additionally, extreme drought events
were observed in 1986 and 2006 (Figure 3c). Within the Northern Province, severe drought
events were recorded in 1984, 1986, 1989, 1993, 2004, 2012, 2014, and 2016, accompanied by
extreme drought conditions in 1984 and 2017 (Figure 3d). Finally, the Western Province
experienced severe drought events in 1984, 1986, 1993, 2004, 2005, 2006, 2010, 2013, 2014,
2015, 2018, and 2019, with concurrent extreme drought conditions witnessed in 2012 and
2017 (Figure 3e). Notably, as Figure 2c illustrates, most of the province experienced a severe
rainfall deficit in 2017, resulting in extreme drought conditions that lasted throughout the
year, in particular in the Northern and Western regions. This was the most challenging year
for the provinces in terms of water scarcity and its impacts on agriculture, the environment,
and livelihoods. The primary driver of these drought events was the marked deficiency in
precipitation, which fell significantly below the historical average for the region.

However, the increase in surface air temperatures significantly contributed to exacer-
bating the water balance and intensifying drought conditions [49]. This temperature rise
aligns with the findings of a study by Safari [50], which analyzed temperature trends and
variability in Rwanda from 1983 to 2022. The study identified a statistically significant posi-
tive trend in minimum temperature for both the long dry season and short rain season, with
increases of 0.17 ◦C/decade and 0.20 ◦C/decade, respectively. Similar dryness incidents
were observed not only in Rwanda but also in neighboring countries, particularly in the
northern and eastern parts of Burundi and Tanzania [51,52]. The analysis underscores the
joint significance of rainfall and temperature in determining drought severity, emphasizing
that changes in normal precipitation patterns can lead to drought events. Due to human
activities, the frequency of extreme climatic events such as droughts and floods has been
increasing globally. These changes are attributed to the global warming caused by human
activities [53]. The evidence of detrimental anthropogenic activities and associated green-
house gas emissions is unmistakable, as emphasized by the Intergovernmental Panel on
Climate Change (IPCC) [53], while natural variability, such as the El Niño Southern Oscilla-
tion (ENSO), also influences extreme climatic events [54,55]. Climate variability, particularly
in temperature and precipitation, has become a prevalent characteristic in many countries.
This variability may contribute to the occurrence of droughts and wet events in the region,
considering the influential roles of rainfall and temperature on evapotranspiration.
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3.2. Drought Characteristics across Rwandan Provinces

The analysis of drought characteristics across Rwanda’s provinces, including Eastern
Province, Northern Province, Kigali City, Southern Province, and Western Province, based
on SPEI-3 timescale results, where the SPEI is at or below −1 (SPEI ≤ −1) from 1983 to
2020, provides a comprehensive view of the nation’s vulnerability to drought events.

The average duration of drought events exhibited variability among the provinces.
The Western Province experienced durations ranging from 1 to 13 months, as shown in
Figure 4d, while Southern Province saw droughts spanning 1 to 8 months. Northern
Province had drought events that extended from 1 to 18 months and Kigali City recorded
durations of 1 to 8 months. The Eastern Province observed droughts lasting from 1 to
13 months, with the majority lasting from 1 to 8 months. Droughts were observed across
all provinces, with the highest frequency in the Eastern Province at approximately 18.64%
of the study period. The Western Province observed a frequency of approximately 17.32%,
followed by the NNorthern Province at 16.89%, Kigali City at around 15.35%, and the
Southern Province at approximately 14.69% (Figure 4c). Furthermore, the highest average
drought severity was found in the Northern Province at −2.72, followed by the Western
Province at −2.43, Kigali City at −2.37, the Southern Province at −2.57, and the Eastern
Province at −2.18 (Figure 4b). Moreover, the average drought intensity exhibited variation,
with the Eastern Province having the highest average intensity at approximately −1.41,
followed by the Western Province at −1.46, Kigali City at −1.39, the Northern Province at
1.43, and the Southern Province at −1.52 (Figure 4a).
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The results highlight the temporal and spatial variability of drought occurrences
in Rwanda, which have implications for agriculture and environmental management.
The Eastern Province experienced the most frequent drought events, while the Southern
Province faced the highest intensity. The Northern Province, on the other hand, suffered
from the longest-lasting droughts, with the most severe average severity. These droughts
lasted from 2016 to the end of 2017, due to a lack of rainfall and rising surface air tempera-
tures, as shown in Figure 2c, which were unprecedented in this province. These findings are
in line with the results of the study conducted by Twahirwa et al. [56]. The study assessed
trends in rainfall and temperature in the Musanze district in the Northern Province and
indicated increasing temperature trends and decreasing rainfall trends, with a significant
downward tendency in rainfall during certain seasons.

3.3. Drought Trend Analysis Based on SPEI-3

The Mann-Kendall trend test results showed that none of the Rwandan provinces had
a statistically significant trend at the 0.05 level. This indicated that there was no evidence of
increasing or decreasing drought frequency or intensity in the past 38 years (1983–2020)
based on SPEI-3. However, some provinces exhibited weak positive or negative trends that
might warrant further analysis. The province with the highest positive trend was Kigali
City, with a tau coefficient of 0.053 and a p-value of 0.09. This suggested that Kigali City
experienced slightly wetter conditions over time but this trend was not strong enough to
reject the null hypothesis of no trend. The province with the highest negative trend was
Western Province, with a tau coefficient of −0.05 and a p-value of 0.11. This implied that
Western Province experienced slightly drier conditions over time but this trend was not
statistically significant either. The other three provinces (eastern, northern, and southern)
had very small positive trends, with tau coefficients ranging from 0.008 to 0.026 and p-
values ranging from 0.4 to 0.79. These results suggested that there was no clear trend in
drought conditions for these provinces based on SPEI-3.

In summary, the Mann-Kendall trend test for SPEI-3 does not reveal any significant
trends in drought conditions across Rwandan provinces in the past 38 years. However,
some weak positive or negative trends may warrant further investigation using other
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indicators or methods. The findings presented align with a study by Kalisa et al. [57]. The
study used the SPI index to assess drought occurrences and trends in the East African region.
Concurrently, the Mann-Kendall test was employed to examine changes in precipitation
and SPI across various time scales. Notably, the study indicated that SPI-3 identified
insignificant positive trends over Rwanda, while SPI-12 revealed a significant positive
trend in drought occurrences over the same region.

3.4. The Spatiotemporal Patterns of Agriculture Drought in Rwanda

This section examines the spatiotemporal patterns of agricultural drought in Rwanda.
It focuses on three aspects: the impact of temperature variations on crop conditions using
the TCI, the assessment of vegetation health and resilience to environmental stressors
using the VCI, and the severity of agricultural drought using the VHI. The study employs
remote sensing data (NDVI and LST) from 2001 to 2020. This helps to understand the
effects of temperature, vegetation health, and the overall situation of agricultural drought
in Rwanda.

3.4.1. Temperature Conditions and Crop Health: Insights from TCI Analysis

The Temperature Condition Index is a vital tool for agricultural drought monitoring, as
it reflects the influence of temperature conditions on crop health and stress. Low TCI values
signify heat stress, whereas high values indicate favorable conditions for vegetation [31,58].
Figures 5 and 6 illustrate the spatial and temporal dynamics of TCI indices across the
provinces of Rwanda from 2001 to 2020.

The annual TCI maps for the study area can be observed in Figures 5 and 6, provid-
ing valuable insights into the variations in temperature conditions and their impacts on
vegetation. The year 2003 was marked by significant thermal stress, especially in the North-
ern Province, Western Province, and Kigali City as well. During these years, TCI values
fell below the critical threshold of 40, indicating unfavorable temperature conditions for
vegetation (Figure 5). A similar pattern emerged in 2004, with thermal stress affecting the
Southern Province, Kigali City, and the Eastern Province (Figure 5), and in 2005, particularly
in the Eastern Province (Figure 5). In subsequent years, in 2015, thermal stress was notably
prevalent, primarily affecting the Eastern Province and Kigali City, as demonstrated by TCI
values dropping below 40 (Figure 6). A similar pattern emerged in 2010 and 2013, when
western and Southern Province experienced thermal stress, with TCI values remaining
below 40 (Figures 5 and 6). Furthermore, the most intense thermal stress was observed
in 2006, 2016, and 2017, particularly impacting the Eastern Province, Southern Provinces,
and Kigali City. During these years, TCI values fell below 20 (Figures 5 and 6), signifying
exceptionally unfavorable temperature conditions for vegetation.

These patterns of thermal stress, especially during years with the lowest TCI values,
have significant implications for vegetation and crop health. They can lead to reduced
crop yields, less healthy vegetation, and potential disruptions to the ecosystem. The study
conducted by Zeng et al. [58] emphasized that the thermal condition index has a more
significant impact on the VHI than the VCI globally. Their research highlights the link
between insufficient precipitation, causing water stress and high temperatures, affecting
plant health, and causing heat stress. Gidey et al. [59] further support these findings by con-
necting vegetation stress to rising surface temperatures. Similarly, Gomes et al. [60] found
that stressed vegetation features were predominant in the semi-arid region of northeastern
Brazil. They also noted that the value of TCI was lower than 40 in El Niño years due to
the irregular precipitation in the region. It is essential to understand these patterns for
developing strategies to mitigate the effects of temperature-induced stress on vegetation
and enhance agricultural and environmental resilience in the region.
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3.4.2. Assessing Vegetation Health and Resilience in Response to Environmental Stressors:
A VCI Analysis

Vegetation plays an essential role in the energy exchange of the land surface, the
hydrological cycle, and climate regulation [61]. Vegetation patterns respond strongly to
changes in the natural environment, especially to precipitation scarcity. Semi-arid regions,
in particular, exhibit high sensitivity to variations in precipitation [62]. VCI is a key
indicator of vegetation health on maps, indicating stress or poor conditions. Low VCI
values indicate poor conditions, such as insufficient rainfall or soil moisture deficits, and
are often associated with drought. High VCI values indicate robust healthy conditions,
such as adequate rainfall and optimal soil moisture [31].
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The results derived from the VCI index in Figures 7 and 8 have revealed a significant
pattern of considerable reductions in vegetation vigor within the study area over the past
decade, particularly during specific years. This pattern, as indicated by VCI values falling
below 40, can be attributed to a range of environmental stressors and challenges. In the
years 2002 and 2012, the Western Province, Southern Province, and Northern Province
experienced significant reductions in vegetation, reflecting the impact of environmental
factors such as inadequate precipitation, soil moisture deficits, and unfavorable growing
conditions. In 2003, 2010, 2011, 2014, 2018, and 2019, especially in the Eastern Province,
Kigali City and the Southern Province grappled with similar issues, further emphasizing
the sensitivity of vegetation to changes in its ecological surroundings. Notably, the years
2008, 2009, 2013, and 2015 were marked by significant reductions in vegetation, with values
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dropping below 40, particularly in the Southern Province, Kigali City, and the Eastern
Province. These observations point to extended periods of unfavorable conditions, includ-
ing inadequate rainfall and moisture deficits, which had a negative impact on vegetation
health and vigor. Furthermore, in 2004, the entire Rwandan region exhibited signs of
vegetation stress with values below 30, as shown in Figure 7. A similar pattern emerged in
2005, particularly in the Eastern Province and Kigali City. Moreover, in 2016, there was a
substantial decline in vegetation vigor, with values falling below 20, primarily impacting
the Eastern Province and Kigali City. This suggests ongoing challenges related to factors
such as inadequate rainfall and soil moisture deficits.
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Furthermore, the most significant reduction in vegetation vigor was observed in 2006
and 2017, with values falling below 15, as shown in Figures 7 and 8. During these years,
the entire study area experienced a significant decline in vegetation, with heightened
levels of stress particularly in the Eastern Province, Kigali City, the Northern Province,
and the Southern Province. These findings underscore the vulnerability of vegetation to
prolonged environmental stressors, highlighting the adverse effects of insufficient rainfall,
soil moisture deficits, and unfavorable growth conditions on the agricultural and ecological
systems of the region. Moreover, these findings align with previous studies conducted in
various regions worldwide. For instance, Dutta et al. [63] found that in India, there was
noticeable stress on vegetation in 2002 compared to 2003. This was highlighted by the VCI,
which pointed to crop stress due to drought in 2002, indicating a low VCI during that period.
Similarly, Ait Ayad et al. [64] revealed that VCI maps obtained from their study indicated
low values of the VCI in the years 1988, 2000, and 2006, implying unfavorable development
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situations in most of the Doukkala region. Additionally, the study demonstrated that
the low VCI values reflected vegetation conditions close to the minimum values of the
NDVI. As emphasized by Kogan [65], the VCI serves as a valuable tool for characterizing
vegetation and assessing the dynamics of vegetation, along with climatic influences on
plant health. The study concludes that the VCI holds significant promise for enhancing
the analysis of vegetation conditions in non-homogeneous areas. Understanding these
observed patterns and their underlying causes is imperative for the effective management
of agriculture and the environment in these affected areas.

3.4.3. Assessing Agricultural Drought Using the Vegetation Health Index

The impact of water scarcity on the vegetation in the study region was evident from
the values of VCI and TCI, which indicated low vegetation conditions and thermal stress,
respectively. To assess the agricultural drought in the area from 2001 to 2020, the study
integrated these parameters into VHI, which confirmed the occurrence of a typical dry spell
during this period.

The annual maps illustrating the spatial distribution of VHI for the study area from
2001 to 2020 are presented in Figures 9 and 10. It was found that in 2002, a period of
mild to moderate drought was observed, particularly affecting the Western Province and
Northern Provinces. In 2003 and 2015, severe drought conditions were noted, especially in
the Eastern Province and Northern Province, as well as in 2009, 2010, 2013, and 2019, in
Kigali City and the EEastern Province and Southern Province. Additionally, in 2004, severe
drought conditions were particularly evident in the Western Province, Northern Province,
and Eastern Province. Furthermore, the year 2005 witnessed an extreme drought, primarily
impacting the Eastern Province. A similar pattern emerged in 2006, 2016, and 2017, with
high-intensity drought events affecting all provinces in Rwanda, especially the Eastern
Province and Southern Provinces. These drought events had significant implications for
agriculture, resulting in crop failures, food shortages, population displacement, conflicts,
and biodiversity loss, particularly in the eastern and southern regions of the country [15].

The findings of this study align with previous research, notably Uwimbabazi et al. [21],
which investigated the drought conditions in Rwanda and found that the years 2015,
2016, and 2017 experienced varying degrees of dryness, with some areas like Kamembe
Aero, Nyamagabe, Musanze Aero, Byumba, Nyagatare, Kawangire, and Ngoma exhibiting
extreme drought events from 2016 to 2017. The observed occurrences of extreme dry events
were attributed to a significant reduction in rainfall and elevated surface air temperatures
during those years. Similarly, Kogan [31] reported that a series of intensive droughts have
affected Ethiopia since the early 1970s, causing considerable damage to crops and the
economy, which relies mostly on agriculture. The study also demonstrated that if both VCI
and TCI remain below 35–40 for several weeks, a corn yield reduction of over 50% can be
expected. Additionally, a study conducted by Lima et al. [66] reported that the VCI and TCI
values indicated significant water stress on the vegetation in the study region. The study
demonstrated that the combination of the above parameters through VHI confirms that
the study area had a typical period of agricultural drought between 2010 and 2020. This
collective evidence highlights the persistent threat of drought to agriculture, particularly in
rainfed regions, where adverse effects on crops and economies are pronounced. Drawing
on the broader scientific literature, including studies such as [67,68], the results reinforce
the dire consequences of drought on agriculture. The cumulative impact of agricultural and
meteorological droughts on vegetation is highlighted by previous research [69]. Therefore,
Lottering et al. [70] recommended using strategies to adapt and cope with the expected rise
in drought, especially for small-scale producers. This would help decrease the impacts and
damages related to drought.
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3.4.4. Agricultural Drought (VHI) Response to the Annual Rainfall

This study investigated the impact of below-average annual rainfall on agricultural
drought in the study area. The main climatic factor that caused agricultural drought
was the rainfall deficit. Previous studies [59,71] reported a linear and strong correlation,
respectively, between rainfall and agricultural drought indices. They also suggested that
low rainfall levels increased moisture stress and the occurrence of agricultural drought.
However, this study revealed a moderate positive linear relationship between VHI and
annual rainfall (R = 0.46, p < 0.05), as shown in Figure 11. This indicates that as rainfall
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increased, VHI also increased, implying less agricultural drought. This study concluded
that insufficient rainfall led to high moisture stress levels and caused agricultural drought
in dry years.
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3.4.5. The Impact of Agricultural Drought on Crop Production in Rwanda

Dryness occurs in any region of the country, especially during the growing season,
and can cause significant crop losses. In order to evaluate the direct impact of drought
on crop production in the region during the study period, the study calculated Pearson
correlation coefficients (r) between agricultural drought indices (VHI) and crop production
(potatoes and maize).

Figure 12 presents a comprehensive view of national potatoes and maize production
in Rwanda from 2001 to 2020. The data reveal notable declines in production for the
observed species of crops. Maize and potato production dropped in 2004, 2006, 2007, 2014,
2015, 2016, and 2017 (Figure 12a,c), which coincided with the drought periods identified
by the SPEI and VHI as drought indicators in this study. Agricultural drought poses a
significant threat to both vegetation and crop production in Rwanda. Crop production and
VHI showed a weak positive association for potatoes (R = 0.217891, p > 0.05) and maize
(R = 0.10, p > 0.05), suggesting a possible negative impact of drought on crop production.
However, the relationship was not statistically significant, probably because the VHI did
not fully capture the influence of factors such as irrigation, chemical fertilizer usage, and
other agricultural practices. Unfortunately, we could not evaluate the effect of these factors
on crop production due to the limited data availability of agricultural practices for each
province, which would have enhanced the value of the results mentioned above.
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Moreover, similar positive correlations between crop yields and the Vegetation Health
Index (VHI) have been observed in Germany [72]. Moreover, to cope with the challenges of
climate variability and change, Rwanda may need to implement adaptation and resilience
measures that can enhance the water efficiency and sustainability of its agricultural sector.
Potential strategies include water harvesting and storage, crop rotation and intercropping,
the adoption of drought-tolerant crop varieties, the improvement in irrigation infrastructure
and management, and the promotion of climate-smart agricultural practices [73].

4. Conclusions

This comprehensive study examined meteorological drought patterns in Rwanda from
1983 to 2020, employing SPEI-3 annually, based on data from 31 meteorological stations
nationwide. Additionally, the study investigated agricultural drought from 2001 to 2020
by incorporating remote sensing data (NDVI and LST). These data were used to compute
the VCI and TCI, which were combined to derive the VHI as an indicator of agricultural
drought. The analysis revealed that extended and intense drought events, especially in
2003, 2004, 2005, 2006, 2013, 2014, 2015, 2016, and 2017, significantly affected agricultural
productivity. The Eastern Province was the most affected by frequent drought occurrences,
while the Southern Province endured the most intense droughts. The Northern Province
experienced the longest and most severe droughts, particularly between 2016 and 2017. Fur-
thermore, the Mann-Kendall trend test for SPEI-3 indicated no significant trends in drought
conditions across Rwandan provinces over the past 38 years. The study also examined
the effects of below-average annual rainfall on agricultural drought, finding a moderately
positive linear correlation between VHI and rainfall. Insufficient rainfall emerged as a
primary contributor to high moisture stress and subsequent agricultural drought during
dry years. Drought was found to adversely affect crop production. The identification of
thermal stress and reduced vegetation vigor in various provinces highlighted the complex
nature of drought impacts. The study underscored the vital role of remote sensing, satellite
data, and drought indices in monitoring and assessing drought conditions.

Furthermore, this study establishes a foundation for future research on meteorological
and agricultural droughts in Rwanda. As temperatures rise across Rwanda’s provinces,
it is crucial for subsequent studies to evaluate the impacts of climate change. These stud-
ies should focus on how climate change affects the frequency and severity of droughts
and project potential future scenarios. Furthermore, assessing the effectiveness of adap-
tation strategies in response to drought events and pinpointing areas for improvement
are essential for increasing resilience to these droughts. Continued research will lead to
a more thorough understanding of droughts in Rwanda and will guide the development
of policies and strategies to bolster resilience against changing climatic conditions. This
study recognizes its limitations, such as not considering irrigation, crop growth, and water
demand impacts when assessing agricultural drought in plain regions. A notable gap is
the exclusion of a Crop Water Stress Index (CWSI) based on sap flow for Conilon coffee
plants. Future research should include CWSI or Crop Water Demand and Crop Growth
Impacts (CWAPI) indices, derived from long-term sap flow measurements, to gain deeper
insights into water stress and its effects on crop yield, particularly in provinces experiencing
severe droughts.

This study not only contributes to our understanding of drought patterns and their
impacts on vegetation and crop production in Rwanda but also underscores the significance
of climate-resilient agricultural practices and the necessity for adaptive strategies. The
findings of this research can serve as a foundation for future efforts to enhance the resilience
and sustainability of Rwanda’s agricultural sector in the face of a changing climate.
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