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Abstract: Accurate crop mapping is crucial for ensuring food security. Recently, many studies
have developed diverse crop mapping models based on deep learning. However, these models
generally rely on a large amount of labeled crop samples to investigate the intricate relationship
between the crop types of the samples and the corresponding remote sensing features. Moreover,
their efficacy is often compromised when applied to other areas owing to the disparities between
source and target data. To address this issue, a new multi-modal deep adaptation crop classification
network (MDACCN) was proposed in this study. Specifically, MDACCN synergistically exploits time
series optical and SAR images using a middle fusion strategy to achieve good classification capacity.
Additionally, local maximum mean discrepancy (LMMD) is embedded into the model to measure and
decrease domain discrepancies between source and target domains. As a result, a well-trained model
in a source domain can still maintain satisfactory accuracy when applied to a target domain. In the
training process, MDACCN incorporates the labeled samples from a source domain and unlabeled
samples from a target domain. When it comes to the inference process, only unlabeled samples of
the target domain are required. To assess the validity of the proposed model, Arkansas State in the
United States was chosen as the source domain, and Heilongjiang Province in China was selected as
the target domain. Supervised deep learning and traditional machine learning models were chosen
as comparison models. The results indicated that the MDACCN achieved inspiring performance in
the target domain, surpassing other models with overall accuracy, Kappa, and a macro-averaged
F1 score of 0.878, 0.810, and 0.746, respectively. In addition, the crop-type maps produced by the
MDACCN exhibited greater consistency with the reference maps. Moreover, the integration of optical
and SAR features exhibited a substantial improvement of the model in the target domain compared
with using single-modal features. This study indicated the considerable potential of combining
multi-modal remote sensing data and an unsupervised domain adaptive approach to provide reliable
crop distribution information in areas where labeled samples are missing.

Keywords: agriculture monitoring; remote sensing; machine learning; spatial analysis; multi-modal

1. Introduction

With the growing population, extreme weather events, and regional conflicts, food
security has become a hot issue in countries and regions around the world. Precise mapping
of crops plays a critical role in grasping the agricultural land utilization and monitoring crop
growth, enabling decision-makers to formulate effective agricultural policies for ensuring
food security [1,2]. Additionally, accurate planting information can assist in agricultural
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insurance, land leasing, and farmland management [3,4]. Hence, it is of tremendous
significance to conduct precise crop-type mapping in large-scale areas.

Remote sensing is commonly used in large-scale crop mapping owing to its benefits
of rapid data acquisition, wide coverage, and cost-effectiveness. Optical remote sensing
images contain spectral information that is highly correlated with crop physiology and
morphological characteristics, and they have become the primary important data source for
crop mapping [5,6]. In particular, time series optical images are superior to single optical
images because they can capture differences in physiological characteristics between crops
within a growing season [7,8]. Synthetic Aperture Radar (SAR) is another important remote
sensing data source, which is capable of all-weather imaging using microwaves with
longer wavelengths than optical sensors. It can provide rich information on crop structure
and moisture content, and it has been extensively applied in crop classification [1,9]. For
example, time series SAR imagery has been successfully utilized to detect changes in plant
canopy structures to identify rice [10]. Given the large differences between SAR and optical
imagery, the combined use of these two modalities is able to provide highly complementary
information [11–14] and thus exhibits significant potential in crop mapping [15–17].

The essence of remote sensing-based crop classification lies in establishing the relation-
ship between crop types and their corresponding remote sensing features. Machine learning
approaches have the advantage of handling complex and huge data, and they have been
widely used in exploring optical and SAR time series images for crop mapping [18–21]. For
example, Random Forest (RF) exhibited good performance in extracting important features
from the two-modal data for crop classification [22,23]. Recently, deep learning methods,
which involve deeper neural networks and more intricate architectures, have led to signifi-
cant breakthroughs in agricultural remote sensing [24]. Many studies have demonstrated
the superiority of deep learning models over traditional machine learning approaches in
crop mapping [12,25,26]. The deep learning models proposed to synergistically utilize
multi-modal data can be broadly categorized into three groups according to the fusion
strategies. (1) Early fusion: the original data of the two modalities are directly interpolated
and stacked into a single sequence and then processed by a network [27,28]. (2) Middle
fusion: the high-level features of the two modalities are extracted independently and then
concatenated for classification by a network [29,30]. (3) Decision fusion: the two modalities
are processed independently by two similar networks and the classification decisions are
averaged or weighted to obtain the final result [31]. However, these fusion strategies have
advantages and disadvantages. For example, early fusion is the simplest fusion form, but
it usually requires interpolation to concatenate optical and SAR images [32], which may
add additional computation and give rise to information redundancy. Decision fusion can
obtain more reliable performance by incorporating two classification results [31], but it
requires more parameters and is prohibitively costly for complex computation [32]. Middle
fusion is able to obtain important information from multi-modal data and reduce data
redundancy [33]. Ignoring the complex structure, several studies have shown that mid-
dle fusion methods are preferable to the other fusion methods in synergistically utilizing
multi-model data [2,32,34].

Although deep learning models have exhibited good performance in crop mapping
using optical and SAR data, most models are supervised models that need abundant labeled
samples for model training. However, collecting ground samples can be a labor-intensive
and time-consuming task. Transfer learning aims to leverage the knowledge acquired
from a previous task to improve the learning performance of a related task, which can
reduce or avoid data-collecting efforts. Applying models trained in regions with ample
labeled samples to other regions directly has been regarded as a straightforward transfer
approach [35]. Specifically, the United States (U.S.) is often chosen as a domain with
abundant samples owing to its open source and extensively utilized Cropland Data Layer
(CDL). For instance, Hao et al. (2020) collected high-confidence samples from the CDL and
corresponding time series images to construct an RF model and then used the model to
classify crops in three target regions [36]. However, meteorology-induced phenological
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variations can lead to differences in spectral information for a specific crop across different
domains. This disparity between the data distributions of the source and target domains
is commonly referred to as domain shift, which leads to a performance decline when
applying a trained model from the source domain to the target domain [3,37]. Fine-tuning
is regarded as a commonly used transfer learning technique that aims to mitigate the
problem of domain shift. It utilizes a small number of labeled samples from the target
domain to fine-tune the entire or specific parts of a trained model, allowing it to adapt to
a new task. Several studies have adopted fine-tuning in crop classification and achieved
good results [38–40]. However, overfitting can occur when using a small dataset for fine-
tuning. Compared with the transfer approaches mentioned above, unsupervised domain
adaptation (UDA) methods migrate knowledge obtained from a source domain, which has
a substantial number of labeled samples, to a target domain that only has unlabeled data.
UDA methods have been successfully applied to many fields, such as computer vision and
signal recognition [41–43]. Very recently, UDA has been explored in crop mapping [44,45].
For example, Wang et al. (2022) designed a UDA model for crop classification using remote
sensing data and achieved promising classification accuracies [46]. However, they focused
on field-level crop mapping using only optical images. Considering the effectiveness of
UDA methods in transfer learning, it is necessary to further explore their potential for crop
mapping in large areas using multi-modal remote sensing data.

This study designed a multi-modal deep adaptation crop classification network
(MDACCN). The proposed model aims to solve the problem of missing labeled sam-
ples in the target domain based on UDA, and it improves the accuracy of crop classification
by synergistically utilizing optical and SAR images. Arkansas State in the U.S. and Hei-
longjiang (HLJ) Province in China were selected as the source domain and target domain,
respectively. Experiments were designed to verify the effect of MDACCN by comparing it
with two supervised models. The impacts of different combinations of multi-modal data
and different fusion schemes were also evaluated. In addition, the constructed models were
employed to conduct crop mapping in different regions, and the superior performance of
MDACCN was further elucidated. The main contributions of this study are summarized
as follows. (1) For the first time, we combined the UDA and multi-modal remote sensing
images for unsupervised crop mapping. (2) We designed a middle fusion framework
with attention modules to exploit time series optical and SAR data, which exhibited better
performance than those of early fusion and decision fusion. (3) The MDACCN achieved
inspiring results in actual crop mapping, showing that it has great potential to provide
reliable crop distribution information in areas where labeled samples are lacking.

2. Materials
2.1. Study Area

Both the U.S. and China are crucial agricultural producers on a global scale [47]. The
U.S. conducts agricultural surveys annually to obtain sufficient crop samples and then
combines satellite remote sensing data and machine learning models to publish a crop-type
map covering the continental U.S. [48]. However, there is no official crop-type map for
China. Therefore, this study explored the capabilities of the proposed model for crop
mapping in China using labeled samples from the U.S. Specifically, corn, soybeans, and
rice were chosen, as they are the main crops commonly cultivated in both countries and
have approximate phenological periods that pose challenges for classification. Arkansas in
the U.S. (Figure 1a) was selected as the source domain and Heilongjiang (HLJ) in China
(Figure 1b) as the target domain because these regions widely cultivate the three selected
crops. HLJ is the biggest crop-growing province in China [49]. It has annual precipitation
of 380–600 mm and an average annual temperature of 6.01 ◦C [50]. Arkansas (AR) is a
state in the southern U.S., located in the middle of the Mississippi River. It has hot, humid
summers, whereas the winters are dry and cool. Annual precipitation throughout the
state averages between 1140 and 1292 mm. The phenological calendar of the three crops is
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shown in Figure 2, and the entire growing period for most crops is mainly from April to
October.
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Figure 2. Crop planting and harvesting date.

2.2. Data Acquisition and Preprocessing
2.2.1. Ground Truth

We conducted a field survey in HLJ in 2019 to collect crop samples using a mobile GPS
device. Each crop sample contains the crop type and geographic coordinates. Besides corn,
soybean, and rice, other categories are grouped as “others”. A total of 1764 labeled samples
were collected, including 458 corn, 874 soybean, 370 rice, and 62 “others”. These samples
were primarily used to assess the transferability performance of the models. Owing to the
lack of field samples in Arkansas, we employed CDL as an alternative to ground truth data.
CDL is a high-quality land cover map that focuses on specific crops, providing a spatial
resolution of 30 m, annual updates, and nationwide coverage; therefore, it has gained
extensive usage as reference data in the field of crop classification [37,48,51,52]. It also
offers a confidence layer that indicates the predicted confidence level for each pixel. We
set 95% confidence to filter the CDL map from 2019 to improve the quality of sampling.
Additionally, the European Space Agency (ESA) WorldCover 2020 map was used to mask
the non-crop land. Finally, we randomly selected 6000 labeled samples for each crop type
in Arkansas, totaling 24,000 samples for model training and testing.

2.2.2. Remote Sensing Images

Sentinel-2 and Sentinel-1 are two key missions in a series of satellite missions initi-
ated by the ESA to support global environmental monitoring and resource management.
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Sentinel-1 mission consists of a pair of polar-orbiting satellites that provide high-resolution,
all-weather imaging of the Earth’s surface. It includes C-band imaging operating in four
modes with different resolutions (up to 5 m). Sentinel-2 is a multi-spectral imaging system
that provides high-resolution imaging of the Earth’s surface with 13 bands. It also com-
prises two satellites, each with a spatial resolution of up to 10 m. These two satellites can
be combined to provide full coverage of the surface of the earth every five-day interval.

This study selected Sentinel-1 IW images and Sentinel-2 Level-2A surface reflectance
images (bottom-of-atmosphere) as SAR and optical data sources, respectively. Sentinel-1
images were processed to produce a calibrated, ortho-corrected product, and Sentinel-2
images were atmospherically corrected. Ten bands of Sentinel-2 were selected as spectral
features, including three visible bands, one Near-Infrared (NIR) band, four Red-edge bands,
and two short-wave infrared (SWIR) bands. Two bands of Sentinel-1 were used as SAR
features, including VH and VV bands.

2.2.3. Data Preprocessing

The remote sensing observations for the crop samples were collected between April
and October according to the crop calendars of the three main crops. For Sentinel-2 images,
10-day composites were produced by taking the median of the remaining observations
after cloud removal [53,54]. Further, linear interpolation and the Savitzky–Golay algorithm
were employed to fill gaps and smooth outliers in the resulting time series images, respec-
tively [55]. The above processes were also conducted for Sentinel-1 images, but the median
values were replaced by the average values to composite the images [56]. In the end, a total
of 240 features were incorporated into the modeling process, consisting of 12 features with
20 temporal observations. All the necessary steps for data collection and preprocessing
were executed using the Google Earth Engine [57].

3. Methodology
3.1. Multi-Modal Deep Adaptation Crop Classification Network (MDACCN)

The framework of the MDACCN is shown in Figure 3. To take advantage of the multi-
modal time series data, two branches are designed to process optical and SAR features
respectively. In the training process, the MDACCN incorporates two input data streams,
one from a labeled source domain and one from an unlabeled target domain. The total
loss is computed using forward propagation, and the model parameters are optimized
through a gradient descent-based optimization process. In the inference process, the trained
network is fed with only the unlabeled target domain samples to obtain class probabilities.
The class of the target domain sample is then determined by selecting the class with the
highest probability.

Since the middle fusion scheme is employed to design MDACCN, an optical feature
extractor and a SAR feature extractor are constructed to process optical features and SAR
features, respectively. The two feature extractors share the same structure, and both use
the modified ResNet-18 as the extractor to obtain key information from the satellite images
of the two modalities. ResNet-18 is a popular ResNet variant that has 18 convolutional
layers and consists of five stages [58]. The first stage contains a single convolutional layer
followed by a max pooling layer. The four subsequent stages are each composed of two
residual blocks with a varying number of filters. A residual block is made up of two
convolutional layers and a shortcut connection. These shortcuts can be classified into two
types, namely, identity shortcuts and projection shortcuts, depending on whether the input
and output have the same dimensions. The five stages are selected to construct the feature
extractor in MDACCN. In addition, we embedded the Convolutional Block Attention
Module (CBAM) into each residual block to enhance the extractor’s focus on important
features while suppressing irrelevant features [59]. To perform the convolution operations,
the optical and SAR time series features are transformed into matrix form along the time
and feature dimensions. Since the size of the SAR matrix is 2 × 20, which is too small to
operate the reductions among the stages, an interpolation operator is adopted to expand
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the size of SAR features to the same as that of the optical features (10 × 20). The optical
matrix and SAR matrix are processed separately by their corresponding feature extractors.
The resulting features are then globally averaged and concatenated together before being
fed into the classifier for the final output. The classifier in MDACCN is designed as a
multilayer perceptron containing two fully connected layers.
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Figure 3. Architecture of MDACCN. xs and xt denote the source domain instances s and target
domain instances t, and opt and SAR denote the optical and SAR features, respectively. LMMD needs
four inputs: the true label ys, the predicted label ŷt, and the activated intermediate features zs and zt.

Domain adaptation is the part that distinguishes MDACCN from traditional super-
vised deep learning models. In this study, Ds =

{(
xs

i , ys
i
)}ns

i=1 with ns labeled samples is
utilized to represent the distribution of the source domain, and Dt=

{(
xt

i
)}nt

i=1 with nt un-
labeled samples is employed to represent the distribution of the target domain. Specifically,
xi indicates the features of a sample i, and yi means the corresponding type. Generally, Ds
and Dt are different due to the varied crop phenology across a large area. Therefore, models
trained using labeled source domain samples often perform poorly when applied to the
target domain directly. To solve this issue, local maximum mean discrepancy (LMMD) [60]
was adopted in the MDACCN to measure the shift between the two domains and employ
gradient descent to minimize the shift. Specifically, LMMD is an improved extension of
MMD that has been adopted in many models for domain adaptation [61,62]. MMD focuses
on measuring the global distribution of the two domains but fails to consider the correla-
tions between subdomains within the same category across different domains. LMMD is
designed for measuring the distinction between the distributions of related subdomains in
both the source domain and target domain, resulting in more precise alignment (Figure 4).
The formula of LMMD can be described as follows:

dH(p, q) ≜ Ec

∥∥∥Ep(c) [ϕ(xs)]− Eq(c)
[
ϕ
(
xt)]∥∥∥2

H
(1)

where H is a reproducing kernel Hilbert space equipped with a kernel k. The k is defined as
k
(

xs, xt
)

=
〈
ϕ(xs) , ϕ

(
xt)〉 , where ⟨, ⟩ denotes the inner product between two vectors. p and

q represent the data distributions of Ds and Dt, p(c) and q(c) represent the data distributions
of Ds

(c) and Dt
(c), respectively, where c represents the crop type. E is the mathematical

expectation. xs and xt are the instances in Ds and Dt, respectively. The function ϕ is a
feature map that projects the initial samples into the Hilbert space.
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On the assumption that each sample is assigned to a class based on a weight parameter
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Finally, the total loss of MDACCN contains the domain adaptation loss and classifica-
tion loss:
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where J represents the cross-entropy loss. d̂l
opt

and d̂l
SAR

are the domain adaptation loss
of optical and SAR features, respectively. λ > 0 is a trade-off parameter.

3.2. Experimental Setting

We carried out a comprehensive comparison to evaluate the performance of the
proposed model. First, the accuracies of the MDACCN with different modal inputs were
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compared to verify the importance of the multi-modal data. In particular, the corresponding
branch in the model was frozen when a particular modal datum was not inputted. Second,
the early fusion scheme and decision fusion scheme were used to reconstruct MDACCN
to explore the influence of the fusion scheme on model performance. The structures of
early-and decision-fusion-based models are described in Figure 5. Finally, the well-trained
models were used to generate the predicted crop maps in the target domain, and the maps
were compared with the reference maps to assess the mapping performance of the models.
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The 24,000 labeled samples from the source domain were randomly split into three
subsets: 60% for training, 20% for validation, and the rest for testing. An equal number
of unlabeled samples was randomly selected from the target domain and added to the
training samples from the source domain to train the MDACCN. The 1764 labeled samples
from the target domain were used as the testing data to measure the final transferability
performance in the target domain. The number of training epochs for the MDACCN was set
to 200. According to the result of the validation, the model configuration was determined
as follows: a batch size of 256, a learning rate of 0.001, an SGD optimizer, and a trade-off
parameter λ set to 0.5. RF and a supervised neural network (SDNN) were selected for
comparison. Specifically, the RF was set to have 400 trees, with each having a maximum
depth of 20. To ensure a fair comparison, SDNN was designed with a similar architecture
to MDACCN, but without the domain adaptation loss component. Experiments were
conducted on a computational platform comprising an Intel i7-12700kf CPU, 64 GB RAM,
an RTX 3090 GPU, and 2 TB storage. Pytorch 1.10 was used for developing the deep learning
models, and Scikit-learn 1.2.1 was employed for implementing the machine learning models.
Moreover, model performance was assessed based on confusion matrixes, overall accuracy
(OA), Cohen’s kappa coefficient (Kappa), and macro-averaged F1 score (F1).
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4. Results
4.1. Comparison of Single-Modal Data and Multi-Modal Data

The testing accuracies of the models using single-modal data and multi-modal data
were compared, and the results are demonstrated in Table 1. Specifically, the single-modal
data include time series features of S1 data (S1) and time series features of S2 data (S2), and
the multi-modal data are a combination of S1 and S2 data (S1S2). In the source domain,
the models trained using S1 features had significantly lower accuracy compared with the
models trained using S2 features, which is consistent with previous studies [14,15]. The
RF and the SDNN trained using S1S2 features outperformed the corresponding models
trained using S2 features, and the SDNN trained using S1S2 features obtained the best
performance among all models, with an OA of 0.957. It is worth noting that the MDACCN
has a slightly inferior performance compared with the SDNN in the source domain. This is
because the SDNN just focuses on the samples of the source domain, while the MDACCN
uses domain adaption to close the distribution of high-level features between the source
and target domains to improve the performance in the target domain. In the target domain,
it is observed that all models had lower accuracies due to the domain shift. The accuracy
degradation of the MDACCN was not as significant as the RF and SDNN. This may be
because the MDACCN reduced the domain discrepancy between the source and target
domains in the training process, so the good performance of the source domain can be
migrated to the target domain. Furthermore, models trained using S1S2 features showed
better performance than those trained using only S1 or S2 features. The MDACCN model
trained using S1S2 features obtained the highest performance in the target domain, with an
OA of 0.878.

Table 1. Classification performance of models using different modal data.

Model Modal
Source Domain Target Domain

OA F1 Kappa OA F1 Kappa

RF S1 0.825 0.823 0.767 0.645 0.463 0.396
S2 0.940 0.939 0.919 0.626 0.520 0.476

S1S2 0.946 0.946 0.928 0.730 0.602 0.587
SDNN S1 0.821 0.820 0.761 0.605 0.440 0.343

S2 0.956 0.955 0.941 0.756 0.601 0.633
S1S2 0.957 0.957 0.943 0.731 0.594 0.577

MDACCN S1 0.774 0.769 0.698 0.618 0.478 0.397
S2 0.946 0.946 0.928 0.843 0.710 0.751

S1S2 0.938 0.938 0.917 0.878 0.746 0.810

Confusion matrixes were further computed to show the distribution of predictions
for each crop type using the testing data. In the source domain (Figure 6), the SDNN
trained using S2 features exhibited higher accuracy in almost every class of crop compared
with other models. By using S2 or S1S2 features, RF and MDACCN were also capable of
accurately identifying the crops, only slightly inferior to the SDNN. However, all models
trained using S1 features showed lower accuracy for each crop except rice. In the target
domain (Figure 7), all models exhibited a decline in accuracy for each class. The MDACCN
trained using S1S2 features was the only model that performed well in recognizing soybean,
corn, and rice, with an OA exceeding 0.8, indicating the effectiveness of multi-modal data
in transfer learning. It should be noted that all models struggled to accurately identify
the “others” category. Although MDACCN had the largest number of samples correctly
classified in the “others” category, its accuracy was still below 0.5.
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4.2. Comparison of Different Fusion Schemes

This experiment aimed to validate the effects of different fusion schemes on classifi-
cation performance using the testing data. Specifically, the MDACCN and SDNN were
compared using early, middle, and decision fusion schemes. The performance of different
fusion schemes in both the source and target domains is presented in Table 2. It is obvious
that the middle fusion outperformed the other two schemes significantly in terms of each
model and each domain. For example, the middle-fusion-based MDACCN had a Kappa
that was over 0.1 higher than that of the early- and decision-fusion-based MDACCN. The
early- and decision-fusion-based models performed similarly in the source domain, but the
decision-fusion-based model showed significant superiority over the early-fusion-based
model in the target domain. This may be because both middle-fusion- and decision-
fusion-based models have two branches that process SAR and optical features respectively,
allowing them to better learn the domain invariant representations of the crops and gain
an advantage in transfer applications. Compared with decision fusion, middle fusion
integrates the features of different modalities at the middle layers of the model, enabling
more effective modal integration and interaction in the early stages of feature extraction.
This allows the model to capture more discriminative and complementary features.
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Table 2. Classification performance of models using different fusion schemes.

Model Fusion Scheme Source Domain Target Domain

OA F1 Kappa OA F1 Kappa

MDACCN Early 0.904 0.903 0.872 0.768 0.591 0.627
Middle 0.938 0.938 0.917 0.878 0.746 0.810

Decision 0.890 0.889 0.853 0.832 0.665 0.730
SDNN Early 0.924 0.923 0.899 0.694 0.509 0.490

Middle 0.957 0.957 0.943 0.731 0.594 0.577
Decision 0.945 0.944 0.927 0.701 0.527 0.506

The classification results of the models using three fusion strategies for each crop in
the target domain are depicted in Figure 8. It is evident that the models with the middle
fusion scheme exhibited superior identification accuracy for each crop compared with other
schemes. The decision-fusion-based models demonstrated a clear advantage over early-
fusion-based models in corn and “others” identification. Owing to the domain adaptation,
the MDACCN showed superior performance over the SDNN in identifying crops in the
target domain with each fusion scheme. It is worth noting that the accuracy of the model
was still relatively low for corn and “others”. According to Figure 7, the model tended
to misclassify the corn as soybean, which may be attributed to the similar phenological
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characteristics of the two crops. As for the “others”, the other crop types were grouped as
“others” except the main crops. The variation of the “others” between the source and target
domains induces low classification accuracy. However, among the models with different
fusion strategies, the middle-fusion-based MDACCN proposed in this study achieved the
best and most balanced classification results.
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4.3. Crop Mapping Performance

To explore the crop mapping performance in practice, the middle-fusion-based deep
learning models were applied to produce the crop-type maps for the three mapping areas
(Figure 1b) in the target domain. The center point coordinates of mapping areas (1)–(3)
are (43.844N, 124.649E), (46.891N, 129.971E), and (47.720N, 127.208E), respectively. The
area of each mapping area is about 100 km2. Since there is no official crop distribution map
in China, the 2019 crop map in Northeast China provided by You et al. (2021) [55] was
utilized as a reference map, which was proved to have high accuracy with an OA of 0.87.

The reference maps and the generated maps of the mapping areas in HLJ Province are
shown in Figure 9. The majority of crops in mapping area 1 are corn and rice, primarily
distributed in the central and northern regions. The RF and SDNN misclassified some corn
as rice in the southern region. In addition, the generated crop maps exhibited pronounced
salt-and-pepper noise, with blurry boundaries between crop fields. MDACCN produced a
reliable crop map that showed better consistency with the reference map. Rice cultivation is
predominant in the southeastern part of mapping area 2, while corn and soybean are widely
distributed in other parts. All models successfully captured the general trend in the spatial
distribution of crops. However, RF and SDNN models misidentified a considerable portion
of corn planting areas as soybean. In mapping area 3, soybean, corn, and rice are widely
distributed, among which soybean is the main crop. Although the RF and SDNN were able
to accurately map the distribution of rice, they failed to correctly identify corn and soybean.
In contrast to RF and SDNN, the crop map generated using MDACCN showed a higher
level of consistency with the reference map.

To more accurately evaluate the reliability of the maps produced by the models, we
used the labeled samples collected in the mapping areas and calculated the accuracy based
on their true and predicted classes (Table 3). The generated map from the RF in mapping
area 1 failed to identify the “others” samples. The crop map produced by the SDNN in
mapping area 2 failed to assign the correct category to the corn samples. Among these
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models, only MDACCN generated reliable crop maps in which most samples had the
correct type, proving that the proposed model has good transfer performance.
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Table 3. Accuracy of sample recognition on the generated maps. (“-” means that the sample size of
the current category is 0, so the accuracy cannot be calculated).

Mapping Area Model Soybean Corn Rice Others

1 RF 1 0.667 0.667 0
SDNN 0.333 1 0.667 0.333

MDACCN 1 1 1 0.333
2 RF 1 0.6 1 -

SDNN 1 0.4 1 -
MDACCN 1 1 1 -

3 RF 0.762 0.667 1 0.941
SDNN 1 0.333 1 0.750

MDACCN 1 0.667 1 1
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5. Discussion
5.1. Interpretation of the Domain Adaptation in MDACCN

The fundamental distinction between the MDACCN and conventional supervised
models is domain adaptation. To assess the impact of the domain adaptation of the
MDACCN, t-SNE [63], a widely used dimensionality reduction approach, was employed
to visualize and compare the feature distributions before and after the domain adaptation
from the source domain and the target domain. Specifically, the distributions of original
features inputted to the model and the extracted features from the domain adaptation in
the MDACCN were selected for visualization. As MDACCN was constructed with two
branches to process optical and SAR features separately, we visualized the changes in the
feature distribution for each modal datum individually.

Figure 10 shows the distribution changes of SAR features on each crop using the
testing data of the source and target domains. The clear separation of original crop features
from the two domains indicates the presence of the distribution shift. This discrepancy is
likely a result of variations in agricultural management practices and natural conditions
between the domains. This separation may lead to the phenomenon that the same type of
crops in two domains are misclassified as different crops, thereby resulting in a decrease in
performance when applying the well-trained models to new domains directly. In contrast,
the distributions of the extracted features from the source domain and target domain are
much closer. This change can be attributed to the domain adaptation, which is designed
to alleviate the differences between the feature distributions of the two domains. When
the data distributions of the two domains are similar, the model that performs well in
the source domain can theoretically achieve good accuracy in the target domain as well,
which aligns with the results in Section 4.1. A similar phenomenon is also observed in the
distribution of optical features (Figure 11). However, the change in optical features was
relatively weaker compared with those of SAR features. This could be due to the greater
quantity of features present in optical data, which poses a challenge for domain alignment.
Overall, these visualization figures provide intuitive evidence of MDACCN’s superiority
in mitigating domain shift and offer an explanation for the high crop classification accuracy
achieved by the model in the target domain.
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5.2. Impact of Multi-Modal Data

The proposed model MDACCN was designed to fuse the optical features and SAR
features for crop mapping. We explored the impact of S1, S2, and the combination of S1
and S2 data on model performance. The results discovered that the lowest accuracy was
obtained when only SAR data was used, which is consistent with the results of previous
studies [14,15,64]. The previous studies also show that the combination of optical and SAR
features resulted in higher classification accuracy compared with using single-modal data.
For instance, Van Tricht et al. (2018) employed time series S1 and S2 data to classify eight
crop types in Belgium, and their findings revealed that the inclusion of SAR enhanced the
overall accuracy from 0.76 to 0.82 [14]. However, the results in the source domain indicated
that combining the two modal features did not improve classification accuracy significantly
compared with using only optical data. With the additional SAR features, the OA of RF
and SDNN only increased by 0.006 and 0.001, while the OA of MDACCN decreased by
0.008. One possible reason is that the classification task in this study is much easier than
that in Belgium. Here there are only four crop types, and time series optical features can
supply sufficient information to obtain satisfactory performance (OA > 0.94).

In contrast, the results in the target domain showed the benefits of combining multi-
modal data. Using optical and SAR features, the OA of the MDACCN was 0.26 better than
using only SAR data and 0.035 higher than using only optical data. The discrepancy in the
results between the two domains may be due to the domain adaption in the MDACCN.
Two key factors influence the accuracy in the target domain. First, the model must perform
well in the source domain. Second, the discrepancy between the source and the target
domains should be minimized. Although the performances of using multi-modal features
and using single optical features were similar in the source domain, multi-modal features
can better describe the data distribution of a specific crop and help the LMMD to measure
and alleviate the domain discrepancy between the two domains, leading to improved
performance in the target domain. In particular, the middle fusion strategy outperformed
the early and late fusion strategies significantly in the target domain. The early fusion
strategy concatenates the two-modal data first and then applies the LMMD to align the
features, while the middle fusion strategy can enhance the feature alignment by aligning
the modal data individually and thus improve the classification performance in the target
domain. The late fusion strategy individually processes the two-modal data and just
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averages the two classification results to obtain the final result. The middle fusion strategy
can leverage the complementary information from the two-modal data at the processes
of feature extraction and feature learning, leading to superior performance in the target
domain. However, Sections 4.1 and 4.2 demonstrated that all models cannot accurately
identify the “others” type in the target domain. The reason for the phenomenon may be
that the “others” type contains various crops which increases the difficulty of classification.

5.3. Limitations and Future Work

While the proposed model achieved good results, there are still several limitations
that require further attention and resolution in the future, especially for global applications.
Given the variation in crop types and environmental conditions across different regions,
the model cannot be directly applied globally. It is necessary to divide the global data into
several target domains, each with similar major crop types and environmental conditions.
The proposed approach can then be implemented in each target domain with the support
of a source domain that shares the same main crop types to achieve accurate crop mapping.
Furthermore, this study used all temporal features within the crop-growth period to
construct the model. The large volume of the input not only increases the difficulty of data
acquisition and processing but also makes it difficult to generate global-scale crop maps
quickly. We will streamline the model input through feature engineering to improve the
model efficiency while maintaining its performance for global applications.

6. Conclusions

The unavailability of abundant labeled samples is a major constraint in achieving
accurate crop mapping. To address the problem, this study proposed a new unsupervised
domain adaptive crop mapping model, MDACCN, utilizing labeled samples from the
source domain alongside unlabeled samples from the target domain. The middle fusion
strategy was applied to design the structure of the MDACCN for synergistically utilizing
the time series optical and SAR data. It was found that the MDACCN significantly out-
performed the SDNN and RF model in the target domain, obtaining 0.878 OA, 0.746 F1,
and 0.810 Kappa. The proposed model also achieved the most reliable results in actual
crop mapping. Compared with the single-modal data, fusing the optical and SAR data
can enhance the model’s performance in the target domain. The visualization results of
the t-SNE demonstrated that the MDACCN can narrow the distribution discrepancy of a
specific crop between the domains, allowing the accurate classification capability in the
source domain to be transferred to the target domain. This study designed a novel model to
precisely map crops in areas lacking labeled samples, which could greatly benefit scientists
and policymakers in managing agriculture production to ensure food security.
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