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Abstract: Chlorophyll-a (Chl-a) concentration monitoring is very important for managing water
resources and ensuring the stability of marine ecosystems. Due to their high operating efficiency
and high prediction accuracy, backpropagation (BP) neural networks are widely used in Chl-a
concentration inversion. However, BP neural networks tend to become stuck in local optima, and
their prediction accuracy fluctuates significantly, thus posing restrictions to their accuracy and
stability in the inversion process. Studies have found that metaheuristic optimization algorithms
can significantly improve these shortcomings by optimizing the initial parameters (weights and
biases) of BP neural networks. In this paper, the adaptive nonlinear weight coefficient, the path
search strategy “Levy flight” and the dynamic crossover mechanism are introduced to optimize
the three main steps of the Artificial Ecosystem Optimization (AEO) algorithm to overcome the
algorithm’s limitation in solving complex problems, improve its global search capability, and thereby
improve its performance in optimizing BP neural networks. Relying on Google Earth Engine and
Google Colaboratory (Colab), a model for the inversion of Chl-a concentration in the coastal waters
of Hong Kong was built to verify the performance of the improved AEO algorithm in optimizing BP
neural networks, and the improved AEO algorithm proposed herein was compared with 17 different
metaheuristic optimization algorithms. The results show that the Chl-a concentration inversion
model based on a BP neural network optimized using the improved AEO algorithm is significantly
superior to other models in terms of prediction accuracy and stability, and the results obtained via
the model through inversion with respect to Chl-a concentration in the coastal waters of Hong Kong
during heavy precipitation events and red tides are highly consistent with the measured values of
Chl-a concentration in both time and space domains. These conclusions can provide a new method
for Chl-a concentration monitoring and water quality management for coastal waters.

Keywords: water quality; Artificial Ecosystem Optimization; chlorophyll-a; backpropagation neural
network; Hong Kong; Google Earth Engine

1. Introduction

In the past few decades, the challenges faced by coastal ecosystems have been intensi-
fying continuously [1]. Nearshore waters are rich in nutrient salts that can easily lead to
environmental harms such as bottom water hypoxia and red tides, threatening the balance
of marine ecosystems [2]. Continuous water quality monitoring is essential for ensuring
reasonable utilization of water resources and maintaining the health and stability of marine
ecosystems. As an important parameter reflecting phytoplankton biomass, algal activity
and the degree of eutrophication, algal activity is the core indicator of water quality [3].

Traditional shipboard sampling methods have limitations in terms of spatial coverage
and measuring frequency, making it difficult for them to fully capture the dynamic spa-
tiotemporal changes in Chl-a concentration in estuarine waters and rendering them unable
to meet the needs of high-resolution spatiotemporal data and real-time information analysis
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in current scientific research [1,4]. In comparison, remote sensing plays a revolutionary role
in water quality monitoring by using the spectral reflectance characteristics of water [5]. It
can achieve comprehensive and continuous water quality monitoring by analyzing surface
spectral data [6] and effectively compensate for the shortcomings of traditional monitoring
methods, providing a large-scale, real-time and cost-effective monitoring method [7].

Existing Chl-a concentration inversion models can be classified into three main cate-
gories, namely, empirical, semi-empirical, and artificial intelligence-based models [8,9]. Ex-
amples of empirical and semi-empirical methods include ocean color (OC) algorithms [10],
the three-band reflectance difference algorithm [11], and the Normalized Difference Chloro-
phyll Index (NDCI) [12]. These methods are practical, but their prediction accuracy may be
limited due to complex and volatile environmental conditions. In recent years, Support
Vector Regression (SVR) and Random Forest (RF) have been applied to the retrieval of
Chl-a concentration. However, due to the complexity and large volume of data required
during model training, overfitting can easily occur, leading to a decrease in model perfor-
mance [13]. Compared to the aforementioned methods, neural networks have powerful
parallel processing capabilities, superior learning performance, and are suitable for nonlin-
ear problems, making them more suitable for Chl-a concentration retrieval scenarios [13,14].
Among them, BP neural networks, due to their training mechanism of backpropagation,
can flexibly adjust network weights and thresholds, which is advantageous when modeling
complex nonlinear relationships [15,16]. However, this method still suffers from issues
such as susceptibility to local optima and large fluctuations in model accuracy [17,18].

The performance of BP neural networks has strong potential for improvement [19],
and existing research has confirmed that metaheuristic algorithms can effectively optimize
BP neural networks. For example, Deng et al. used particle swarm optimization (PSO)
to optimize the initial parameters of BP neural networks and improve the accuracy and
robustness of BP neural network models [20]; Zhu et al. used genetic algorithms to optimize
the structure of BP neural networks [21]; Huang et al. use an improved PSO algorithm
to optimize BP neural networks and built a model with better prediction performance in
different application scenarios [22]. Their model has improved performance, but its global
search capability and stability still need to be improved.

To address the problems mentioned above, a BP neural network optimized using
the Synthesized Artificial Ecosystem Optimization (SAEO) algorithm is proposed herein,
which is called SAEO-BP neural network. The SAEO algorithm, which is based on the AEO
algorithm [23], integrates the adaptive nonlinear weight coefficient, the “Levy flight” search
strategy, and the dynamic crossover mechanism to improve its performance in solving
complex problems and its global search capability.

In order to verify the effectiveness of the SAEO-BP neural network, the spectral data
collected from Sentinel-2 remote sensing images were selected and used as input features,
and experiments were conducted on the estimation of Chl-a concentration in the coastal
waters of Hong Kong. The performance of the SAEO-BP neural network was evaluated,
and the SAEO-BP neural network was compared with 17 BP neural networks optimized
using different algorithms including the standard AEO algorithm, three variants of the
AEO algorithm, and 13 well-known metaheuristic optimization algorithms. In addition,
the prediction accuracy of the SAEO-BP neural network was investigated under conditions
where Chl-a concentration fluctuates greatly during heavy precipitation events and red
rides. The results show that the SAEO-BP neural network performs excellently in terms
of prediction accuracy and stability. This finding provides an important scientific basis
for water resources management and protection in coastal areas and valuable support for
decision making.
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2. Materials and Methods

This section mainly elaborates on the preprocessing steps of experimental data and
the construction steps of the SAEO-BP neural network. A total of 5754 valid observation
records of water quality parameters and 756 high-quality cloud-free remote sensing images
were collected in the experiment. There were 612 records with water quality data collected
within 2 h of satellite overpasses. Based on the sampling time and coordinates of these
water quality data, 12 bands of reflectance of corresponding image pixels were extracted,
forming 612 sets of data for model training. The preprocessing operations of the data were
conducted on the Google Earth Engine (GEE) cloud platform, and the training task of
the model was completed on the cloud-based Google Colab computing platform (https:
//colab.research.google.com/, accessed on 15 January 2024).

As an advanced cloud-based geospatial analysis platform, GEE can gain instant access
to massive volumes of historical and real-time remote sensing data, thus significantly
reducing the time and storage space consumed during data preprocessing. In addition,
it has a strong parallel processing capability and can efficiently complete the cropping,
stitching and complex analysis of large-scale data sets [24]. As a cloud-based development
platform, Colab is preconfigured with a series of libraries widely used in data science
and machine learning, thus simplifying the time-consuming and complex environment
configuration process and improving the overall experimental efficiency [14]. In addition,
Colab is tightly integrated with Google Drive, providing an efficient and convenient way
to store and recall data sets.

2.1. Study Area

Hong Kong is a highly urbanized subtropical region between latitude 22◦08′N and
22◦35′N, longitude 113◦49′E and 114◦31′E. In terms of natural conditions, Hong Kong’s
climate is characterized by significant seasonal variations. Affected by monsoons, the
precipitation in Hong Kong during the rainy season (from April to September) can reach
80% of the total annual precipitation. Heavy precipitation can cause the Chl-a concentration
in coastal waters to decrease abruptly. In addition, factors such as river runoff, wind and
tide continuously act on the coastal waters of Hong Kong and affect the nutrient content in
water. In terms of human activities, urban wastewater discharge in Hong Kong (a highly
developed and densely populated city) can further affect coastal water quality. The nutrient
salts in urban wastewater can easily cause eutrophication, increasing the probability of
occurrence of red tides.

In order to comparatively analyze the prediction performance of different models,
four coastal areas of Hong Kong with typical characteristics and abundant monitoring
data were selected as experimental areas. Experimental Area A covers the Deep Bay area.
This area is enriched with microalgae due to the inflow of large amounts of nutrients from
the Pearl River [25], and due to its semi-enclosed form, eutrophication is common [26].
Experimental Areas B and C are located in the southern waters of Hong Kong. These areas
are affected by river runoff and monsoons, where large-scale algae blooms often occur in
summer and red tides occur frequently [25]. Experimental Area D covers the Tolo Harbor
area, which is almost completely surrounded by land. In this area, the tidal force is weak,
resulting in limited water exchange, and nutrient salts tend to accumulate in this area,
leading to eutrophication problems [27]. The specific geographical locations of these four
experimental areas (A–D) are shown in Figure 1.

https://colab.research.google.com/
https://colab.research.google.com/
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Figure 1. Study area and selected experimental areas.

2.2. Data Sources and Processing

This section details the sources and processing of model training data (Table 1). The
measured water quality data used for experimental purposes were acquired and down-
loaded from the open data platform of Hong Kong Government (https://data.gov.hk/,
accessed on 1 August 2023). The remote sensing data were acquired from the Sentinel-2
L2A collection and preprocessed on GEE. The other data processing steps and subsequent
model building and training tasks were efficiently executed on Colab.

Table 1. The data used and their sources in the study.

Data Data Source

Water Quality Data Hong Kong Environmental Protection Department (https://data.gov.hk/, accessed on 1 August 2023)
Remote-Sensing Data Google Earth Engine (https://earthengine.google.com/, accessed on 1 August 2023)
Climate Data Hong Kong Observatory (https://www.weather.gov.hk/, accessed on 15 January 2024)
Red Tide Data Hong Kong Red Tide Database (https://redtide.afcd.gov.hk/urtin/#/maps, accessed on 15 January 2024)

2.2.1. Water Quality Data

The complexity and variability of Hong Kong’s coastal environment make it necessary
to estimate the water quality parameters of the coastal waters of Hong Kong in a highly
accurate and adaptive manner. Such estimation requires an accurate prediction model to
be built based on a large amount of real-time monitoring data. Since 1986, the Environ-
mental Protection Department (EPD) of Hong Kong has established 76 widely distributed
water quality monitoring stations and implemented a comprehensive marine water quality
monitoring plan to maintain the health of Hong Kong’s marine ecosystem. A total of
5754 valid observation records of surface water were selected from the set of measured
Chl-a concentration data for the period from 2017 to 2022 provided by Hong Kong EPD.
The measured data set is characterized by wide coverage and even distribution in space
and high continuity in time, providing high-quality data for building a highly accurate and
adaptable Chl-a concentration inversion model. Figure 1 illustrates the specific locations
of 76 water quality monitoring stations. The color of each monitoring station intuitively
reflects its average Chl-a concentration level, while the annotated numbers represent the
amount of valid data obtained at each site.

2.2.2. Remote Sensing Data

The remote sensing data used for experimental purposes are sourced from the Sentinel-
2 L2A collection of the European Space Agency, preprocessed using radiation calibration

https://data.gov.hk/
https://data.gov.hk/
https://earthengine.google.com/
https://www.weather.gov.hk/
https://redtide.afcd.gov.hk/urtin/#/maps
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and atmospheric correction. The accuracy of its spatial coordinates is suitable for small- and
medium-scale research. A total of 756 high-quality images were selected from the remote
sensing images for the period from 28 March 2017 to 31 December 2022 depending on
cloud cover and used for analysis. Considering that some images are affected by sun glints,
reference was made to the research idea of Kay et al. [28], and a simple correction strategy
was employed. The idea of the correction strategy is to subtract 50% of the reflectance of
the shortwave infrared (SWIR) band (i.e., Band 11) from the reflectance of each band. This
method is based on the fact that the scattered radiation in water has a very slight effect on
the SWIR band; therefore, the high signal intensity of this band in the image is believed to
result mainly from the influence of sun glints. The correction values were selected based
on the previous analysis of surface reflectance performed by Kuhn et al. [29] and manual
inspections of the images of adjacent strips from different perspectives to ensure that the
interference of sun glints can be effectively eliminated.

Finally, based on the corrected data, the Modified Normalized Difference Water Index
(MNDWI) [30] of each pixel was calculated using the reflection values of the SWIR band
and the green band, and only the pixels with MNDWI values greater than 0 were retained,
thereby accurately extracting water quality information from remote sensing images.

2.2.3. Data Set for Model Building

Based on the condition of a two-hour difference between satellite overpass time and
observation time, pairing and screening were conducted between remote sensing images
and field-acquired water quality data. Through spatial overlay operations, the positions
of 76 water monitoring points were precisely matched with the images, and the spectral
values of 12 bands corresponding to each point were extracted. The experiment eventually
identified 612 valid data records, forming the training set foundation required to build
the Chl-a concentration inversion model. Subsequently, to standardize the data scale and
improve model training efficiency, normalization preprocessing was applied to the acquired
band data. Finally, the normalized dataset was randomly divided into two parts, a training
set and a validation set, in a 7:3 ratio.

2.3. Methodology

This subsection details how to train a neural network using the backpropagation
algorithm, briefly describes the basic principle of the AEO algorithm, deeply analyzes the
scope and mechanism of improvement of the SAEO algorithm proposed in this paper, and
describes in detail how to use the SAEO algorithm to optimize a BP neural network and
how to train the Chl-a concentration inversion model.

2.3.1. BP Neural Networks

BP neural networks are multilayer feedforward networks trained using the backprop-
agation algorithm, which consists of input, hidden and output layers [31]. The workflow of
a BP neural network can be divided into two major processes, namely, forward propaga-
tion and backward propagation of errors (backpropagation). In the forward propagation
process, the input layer receives external input signals and passes them to the hidden layer;
the hidden layer performs nonlinear signal transformation; the processed information is
transmitted to the output layer, and the output layer outputs the result. The activation
function of a single neuron can be mathematically expressed by Equation (1).

xl+1
j = f

(
∑

i
wl

ijx
l
i + wl+1

bj

)
(1)

E =
1
2 ∑

j

(
xl+1

j − f (xi)
)2

(2)
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where xl
i is the input signal of the ith neuron in the lth layer, wl

ij is the weight of the

connection from the ith neuron in the lth layer to the jth neuron in the (l + 1)st layer, wl+1
bj

is the bias term of the jth neuron in the (l + 1)st layer, and f (*) is a nonlinear activation
function. When there is an error E between the actual output f (xi) from the output layer and
the expected output, the system enters the backpropagation stage. In the backpropagation
stage, an error is propagated backward from the output layer through the hidden layer(s)
toward the input layer, and the weights of connections between neurons in each layer
are updated according to the principle of error gradient descent. This iterative process
is repeated until the weights of all connections in the network are optimized so that the
network model’s output gradually approaches the actual target value.

The above principle indicates that the initialization of model weights is crucial for
training neural networks. Choosing an appropriate initialization method is advantageous
for improving the convergence speed and performance of the model.

2.3.2. AEO Algorithm

The Artificial Ecosystem Optimization (AEO) algorithm created by Zhao et al. [23]
is a metaheuristic optimization algorithm based on the principles of ecosystem energy
dynamics. This algorithm represents a model based on three stages, namely, production,
consumption, and decomposition. The populations in the model include producers repre-
senting the worst solution, decomposers representing the optimal solution, and multilevel
consumers ranked by fitness, among which consumers simulate the herbivores, carnivores,
and omnivores in the food chain depending on their fitness.

Production stage: In the production stage, the worst individual (producer) is updated
based on the upper and lower bounds information in the search space and the characteristics
of the best individual (decomposer), the step control parameter α is adjusted through linear
decrease to achieve search balance, and a new individual with higher exploration potential
is generated. This process can be mathematically expressed as:

x1(t + 1) = (1 − α)xn(t) + αxrand (t) (3)

α = (1 − t/T)r1 (4)

xrand = r(U − L) + L (5)

where T is the maximum number of iterations, r1 is a random number within the range
of [0, 1], a is a coefficient used for linear weighting, n is the population size, r is a random
vector within the range of [0, 1], U is the upper bound, and L is the lower bound.

Consumption stage: In the consumption stage, consumers obtain “nutrition” from
other organisms based on their position in the food chain to improve the solution. In
order to avoid complexity in parameter adjustment, a simple, parameter-free random walk
strategy with the characteristics of Levy flight is proposed, which is called the consumption
factor C. In this stage, different types of consumers are updated according to different rules.
Specifically, herbivores are updated according to Equation (7), carnivores are updated
according to Equation (8), and omnivores are updated according to Equation (9).

C = 1
2

v1
|v2|

, v1 ∼ N(0, 1), v2 ∼ N(0, 1) (6)

xi(t + 1) = xi(t) + C.(xi(t)− x1(t)), i ∈ [2, . . . , n] (7)

xi(t + 1) = xi(t) + C.
(
xi(t)− xj(t)

)
, i ∈ [3, . . . , n], j = randi([2, i − 1]) (8)

xi(t + 1) = xi(t) + C · (r2 · (xi(t)− x1(t))
+(1 − r2) ·

(
xi(t)− xj(t)

))
, i = 3, . . . , n, j = rand i( [2, i − 1])

(9)

where r2 denotes uniformly distributed random numbers between 0 and 1.
Decomposition stage: This stage is similar to the process of decomposition of biologi-

cal remains by decomposers in an ecosystem, and its purpose is to enhance the exploration
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and exploitation of the neighborhood of the optimal solution. This process can be mathe-
matically expressed as:

xi(t + 1) = xn(t) + D · (e · xn(t)− h · xi(t)) (10)

D = 3u1, u1 ∼ N(0, 1) (11)

e = r3 · randi
([

1 2
])

− 1 (12)

h = 2 · r3 − 1 (13)

2.3.3. SAEO Algorithm

In this paper, an improved metaheuristic algorithm based on the AEO algorithm,
which is called the SAEO algorithm, is proposed to improve the performance of the original
AEO algorithm.

Production stage: The original AEO algorithm adjusts the step control parameter α
through linear decrement during the production phase to achieve search balance. However,
this method has limitations when simulating complex nonlinear ecological evolution [32].
The SAEO algorithm addresses this limitation by introducing a nonlinear function to
dynamically update the α value during the development phase. This optimization strategy
aims to enhance the algorithm’s ability to solve nonlinear problems.

α = r1

(
1 − 1

cos−1(0)
(cos−1(1 − t/T))

)
(14)

Consumption stage: The original AEO algorithm adopts a simple, parameter-less ran-
dom walk strategy, which lacks flexibility when dealing with complex problems. The SAEO
algorithm addresses this limitation by optimizing it. During each iteration, each individual
has a 50% chance of evolving according to the basic AEO algorithm. Simultaneously, there
is a 50% chance of incorporating global exploration using Levy flight trajectories based
on Equation (15) [33]. This optimization strategy aims to enhance the algorithm’s global
exploration capability.

xi(t + 1) = xi(t) + step(t + 1) · (x i(t)− xn(t)) (15)

where step is generated based on the Levy distribution, and the parameter β of this distribu-
tion is randomly selected in the range of [0, 2] [34,35]. The related mathematical formulas
are given below.

s =
u∣∣v|1/β

(16)

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v ) (17)

σu =
Γ(1 + β)sin πβ

2

Γ
(

1+β
2

)
β2

β−1
2

, σv = 1 (18)

Γ(1 + β) =
∫ ∞

0

kβ

e
dk (19)

step(t) = 0.01 · s(t) · uni f orm(0, 1) (20)

Decomposition stage: The original AEO algorithm employs a single strategy for evo-
lutionary operations, which may lead to overfitting risks. The SAEO algorithm optimizes
this by introducing a dynamic crossover strategy. During each iteration, each individual has
a 50% chance of evolving according to the basic AEO algorithm, and there is a 50% chance
of adopting the dynamic crossover strategy. This strategy involves randomly selecting an
individual, xR, from the entire population and updating it according to Equation (21). This
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optimization strategy aims to ensure that the population can continuously optimize and
move towards the global optimal state throughout the iterations.

CL =

{
m · xR + (1 − m) · xI rand < 0.5
m · xI + (1 − m) · xR rand ≥ 0.5

(21)

m = αmax −
(

αmax − αmin
)

t/T (22)

The operation process of the SAEO algorithm is shown in Figure 2.
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2.3.4. Building of the SAEO-BP Neural Network Model

In this study, the Chl-a concentration prediction model was trained using the SAEO
algorithm in combination with a BP neural network. The complete process of this model
consists of three major links, namely, data preprocessing, model building, and model
performance evaluation (Figure 3).

In the data preprocessing stage, a total of 612 valid data records were obtained and
divided into a training set and a test set. The training set was used for model building and
training, and the test set was used for model evaluation.

In the model building stage, the spectral values of 12 bands in the training set were
used as input features, and the SAEO-BP neural network was used to train the Chl-a
concentration prediction model. Specifically, the weights and biases in the network were
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set as decision variables of the optimization problem, and the mean squared error (MSE) for
the objective function was set. Subsequently, the SAEO algorithm was used to iteratively
optimize these parameters until the preset maximum number of iterations was reached.
When the optimal solution was produced, the optimal parameter vector was extracted and
used to train the BP neural network. After training was completed, it was applied on the
test set to evaluate the performance of the SAEO-BP neural network.
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In the model evaluation stage, the trained SAEO-BP neural network was quantitatively
evaluated using a series of performance indicators widely used in the field of remote
sensing, including the coefficient of determination (R2), mean squared error (MSE), mean
absolute error (MAE), and root mean squared error (RMSE). The mathematical expressions
of these indicators are given below.

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (23)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (24)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (25)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (26)

where ŷi is the predicted value of Chl-a concentration,yi is the actual (measured) value of
Chl-a concentration, y is the average of all measured values of Chl-a concentration, and N
is the total sample size.

Finally, the Chl-a concentration prediction model was applied on the Sentinel-2 satellite
imagery data selected for a particular period, including the data of heavy precipitation
events and red tides, to produce spatial distribution maps for Chl-a concentration in the
experimental areas. The spatial and temporal variations in Chl-a concentration during
particular events were visually analyzed to demonstrate the model’s actual performance in
application scenarios and its capability to monitor environmental changes.
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3. Results

First, the performance of the SAEO-BP neural network model was evaluated. Subse-
quently, the model was applied in scenarios involving large fluctuations in Chl-a concentra-
tion resulting from heavy precipitation events and red tides, the patterns of spatiotemporal
variation in Chl-a concentration in the coastal waters of Hong Kong were identified through
inversion, and the model’s prediction accuracy in scenarios involving dramatic changes
was verified.

3.1. Model Performance Evaluation

This section focuses on investigating the performance of the SAEO-BP neural net-
work in predicting Chl-a concentration. First, an ablation experiment was conducted to
determine the performance of the optimization scheme. Then, the performance of the
SAEO-BP neural network was compared with that of the BP neural network optimized us-
ing the AEO algorithm (AEO-BP neural network). Finally, 16 representative metaheuristic
optimization algorithms were selected for comparison, and the performance of different
neural network models in Chl-a concentration prediction was comparatively analyzed in
an in-depth manner.

During the experiment, all metaheuristic optimization algorithms to be compared were
programmed and implemented using the open source Python library MEALPY 2.4.1 [36] to
ensure the consistent execution of different optimization strategies and effective comparison
of the results produced.

3.1.1. Ablation Experiment

An ablation experiment was conducted to investigate the feasibility of the AEO
algorithm-based optimization scheme and demonstrate the specific meaning of each mod-
ule. Figure 4 shows the training losses of the BP neural networks optimized using different
metaheuristic optimization algorithms, including the original AEO algorithm and AEO
algorithms incorporating one or more of the nonlinear weight coefficient, the “Levy flight
path” search strategy, and the dynamic crossover mechanism. The experiment showed that
when these mechanisms were, respectively, integrated with three algorithms, the balance
between global exploration and local exploitation was affected, resulting in training loss
fluctuations, slower convergence, and poor convergence performance. When two of these
mechanisms were incorporated into one algorithm, the optimization performance was not
stable; when these three mechanisms were integrated with the same algorithm, the model’s
convergence performance tended to become stable, and its training loss was significantly
reduced. These results show that each of the three mechanisms plays an important role in
optimizing the AEO algorithm.

3.1.2. Comparative Analysis of the Performance of the SAEO-BP and AEO-BP Neural Networks

In this study, the performance of the SAEO-BP and AEO-BP neural networks was
evaluated using the following four indicators: R2, MSE, MAE, and RMSE. All models were
trained for 10 times with the same settings (epoch = 500, pop_size = 50), and the average
values of all indicators was recorded (Table 2). The experimental results show that the
SAEO-BP neural network performs better than the AEO-BP neural network in the training
process, and the superior performance of the former is reflected in higher R2 (0.9214) and
lower MSE (1.1201), MAE (0.2774) and RMSE (1.0581). This indicates that the SAEO-BP
neural network can better describe the data set and produces smaller prediction errors in
the learning process. For the testing process, the R2 value of the SAEO-BP neural network is
0.7307, which is greater than that of the AEO-BP neural network (0.6828), and the SAEO-BP
neural network has the lowest values of MSE, MAE and RMSE, which clearly demonstrates
its high prediction accuracy. Figure 5 depicts a line graph of the validation dataset, which
includes both the measured values of Chl-a concentration and the predicted values obtained
using two models. It is observed that compared to the AEO-BP neural network model, the
predictions of the SAEO-BP neural network model exhibit higher overall consistency with
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the measured values. The SAEO-BP model provides more accurate descriptions of both
extreme values and minor fluctuations, enabling it to predict short-term rapid changes in
Chl-a concentration more effectively.
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Table 2. Average values of performance indicators for the AEO-BP and SAEO-BP neural network
models. The unit of Chl-a concentration is µg/L.

Model
Training Set Test Set

R2 MSE MAE RMSE R2 MSE MAE RMSE

AEO-BP 0.906 1.3384 0.3258 1.1543 0.6828 3.5948 0.9851 1.892
SAEO-BP 0.9214 1.1201 0.2774 1.0581 0.7307 3.0521 0.9185 1.746
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Figure 5. Comparison between the measured and predicted values of Chl-a concentration. AEO-BP
neural network and SAEO-BP neural network.

In addition, the results from 10 occasions of training were visually presented in box
plots and compared (Figure 6). The comparison results show that the SAEO-BP neural
network performs more stably than the AEO-BP neural network.

3.1.3. Comparative Analysis of the Performance of the SAEO-BP Neural Network and
Other BP Neural Networks Based on Metaheuristic Optimization Algorithms

Other BP neural network models optimized using 16 metaheuristic optimization
algorithms were used to predict Chl-a concentration. All models were trained for 10 times
with the same settings (epoch = 500, pop_size = 50), and the average values of all indicators
was recorded. The results in Table 3 show that the SAEO-BP neural network has advantages
in the training set, and these advantages are further enhanced in the validation set. The
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SAEO-BP neural network has achieved the best results in terms of R2 (0.7307), MSE (3.0521),
MAE (0.9185), and RMSE (1.746). Figure 7 illustrates the distribution of validation set data
after training with the SAEO-BP neural network, along with the fitting lines of validation
set data after training with 17 other algorithms, providing visual evidence of the superiority
of the SAEO-BP neural network in predicting Chl-a concentration.
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Table 3. Average values of performance indicators for 17 models. Note: SAEO-BP neural network
and BP neural networks optimized using other metaheuristic optimization algorithms. The unit of
Chl-a concentration is µg/L.

Model
Training Set Test Set

R2 MSE MAE RMSE R2 MSE MAE RMSE

PSO-BP [37] 0.9068 1.3281 0.3470 1.1455 0.6295 4.1992 1.0367 2.039
GWO-BP [38] 0.9132 1.2361 0.3460 1.1096 0.5313 5.3121 1.0844 2.286

DE-BP [39] 0.9021 1.3947 0.3508 1.1758 0.6756 3.6771 1.0197 1.915
CRO-BP [40] 0.9115 1.2605 0.357 1.1208 0.407 6.7210 1.1778 2.586
TWO-BP [41] 0.9276 1.0319 0.2589 1.0131 0.6624 3.8261 1.0254 1.955
MVO-BP [36] 0.9195 1.1472 0.3242 1.0655 0.6599 3.8550 1.0553 1.954
TLO-BP [42] 0.9249 1.0696 0.3033 1.0257 0.6619 3.8325 1.0343 1.947
LCO-BP [36] 0.9169 1.1835 0.2905 1.0844 0.6579 3.8771 1.0072 1.953
SMA-BP [36] 0.9181 1.1668 0.3213 1.0766 0.5135 5.5148 1.1069 2.336
VCS-BP [36] 0.9203 1.1347 0.3147 1.0625 0.6803 3.6234 1.0159 1.899
SCA-BP [36] 0.9126 1.2451 0.2857 1.1148 0.6484 3.9848 1.0446 1.990
AOA-BP [43] 0.9167 1.1862 0.2851 1.0863 0.6961 3.4441 0.9882 1.851
WCA-BP [44] 0.9127 1.2436 0.3502 1.1145 0.6656 3.7904 1.0468 1.944
EAEO-BP [45] 0.8995 1.4314 0.3161 1.1935 0.6066 4.4589 1.0577 2.099
IAEO-BP [32] 0.8976 1.4586 0.3517 1.2045 0.6909 3.5034 0.9999 1.871
AAEO-BP [46] 0.9096 1.2873 0.3324 1.1313 0.594 4.6015 1.0899 2.136

SAEO-BP 0.9214 1.1201 0.2774 1.0581 0.7307 3.0521 0.9185 1.746

The stability of different models was comparatively analyzed in an all-round way
using box plots showing the results of 17 models trained on the test set for 10 times
(Figure 8). The results show that, in terms of MAE, the SAEO-BP neural network has the
highest stability, followed by the IAEO-BP and VCS-BP neural networks; in terms of the
other three performance indicators, the SAEO-BP has a high stability, second only to the
IAEO-BP neural network.
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In summary, the SAEO-BP neural network proposed in this paper performs better
than the BP neural networks optimized using other metaheuristic optimization algorithms
in terms of prediction accuracy and stability, providing a good solution to predicting Chl-a
concentration under complex environmental conditions.

3.2. Investigation of the Inversion Performance of the SAEO-BP Neural Network under Conditions
of Significant Changes in Chl-a Concentration

As mentioned earlier, the SAEO-BP neural network model established based on
historical data performed well during the evaluation phase. To assess whether the model
can accurately predict short-term drastic changes in chlorophyll-a concentration caused
by extreme events, this study evaluates the model’s prediction results for extreme low
values during heavy rainfall periods and extremely high values during red tide outbreaks
in the study area. Specifically, predictions were made for the Chl-a concentration during
heavy rainfall periods in regions A, B, and C from 6 October 6 to 10 November 2021, as
well as during the red tide outbreak period in region D from 8 March to 23 March 2021.
By comparing the model’s predicted values with the actual scenarios, and assessing the
consistency between the maximum and minimum values at the same observation location
on different days within the experimental period, the paper aims to determine the model’s
predictive accuracy.

3.2.1. Analysis of the Accuracy of the SAEO-BP Neural Network and Its Sensitivity to
Spatial and Temporal Changes in Chl-a Concentration during Extreme Precipitation Events

According to the research findings of Zhou et al. [25], Chl-a concentration will decrease
during typhoons, but in a few days after a typhoon, new conditions favorable for algae
growth will be established and Chl-a concentration will increase. In order to verify the
sensitivity of the SAEO-BP neural network to the spatial and temporal (dynamic) changes
in Chl-a concentration, the remote sensing images for the period in which Hong Kong
was affected by tropical cyclones Lionrock and Kompasu (October 2021) were selected
for inversion and analysis, with the focus on the spatial and temporal changes in Chl-a
concentration in experimental Areas A, B, and C.

In October 2021, affected by the two typhoons mentioned above, the cumulative pre-
cipitation in Hong Kong during this period increased significantly and reached 631.1 mm,
which is more than five times the average precipitation for the same period in history.
According to the climate data provided by the Hong Kong Observatory, after Lionrock
made landfall on 7 October 2021, Hong Kong experienced continued heavy rainfall; as the
typhoon moved away on 11 October 2021, the precipitation decreased, and the weather
cleared up. Kompasu approached Hong Kong on 12 October 2021, resulting in widespread
precipitation, and the weather gradually cleared up on 16 October 2021.

Based on these changes in precipitation, two groups of key points in time were selected.
The time points in the first group are 6, 11 and 16 October 2021, which were selected to
reveal the changes in Chl-a concentration within the study area on the day before the
onset of heavy precipitation, during heavy precipitation, and on the day when heavy
precipitation ended. The time point in the second group is 10 November 2021, which was
selected to observe the changes in Chl-a concentration within a certain period of time after
heavy precipitation ended. Since the cumulative precipitation in the period from 16 October
to 10 November 2021 is less than 10 mm, its impact on Chl-a concentration in the study
area can be ignored.

The study employed the trained SAEO-BP neural network model to retrieve the Chl-a
concentration from images taken on different dates in each experimental area (Figure 9).
Table 4 lists the mean Chl-a concentration obtained through inversion from each image
and the records of the cumulative precipitation in Hong Kong for several five-day periods
are given in Table 5. The tabulated data show that the cumulative precipitation in the first
five-day period before the onset of heavy precipitation (from 2 October to 6 October 2021)
is only 1.9 mm and the average values of Chl-a concentration in the three experimental
areas are at levels higher than 7 µg/L. The cumulative precipitation in the five-day period
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of the first heavy rainfall event (from 7 October to 11 October 2021) reached 549 mm,
resulting in abrupt decreases in the average Chl-a concentration in the three experimental
areas. The inversion results for 11 October 2021 show that the average Chl-a concentration
is 3.90 µg/L in experimental Area A, 3.12 µg/L in experimental Area B, and 1.38 µg/L
in experimental Area C. Subsequently, the second heavy rainfall event occurred from
12 October to 16 October 2021, resulting in cumulative precipitation of 75.8 mm in five days
and the average values of Chl-a concentration in the three experimental areas decreased
again. The average Chl-a concentration as of 16 October 2021 is 3.08 µg/L in experimental
Area A, 1.93 µg/L in experimental Area B, and 1.22 µg/L in experimental Area C. As the
second heavy rainfall event ended, the Chl-a concentration in the coastal waters began
to increase. The average Chl-a concentration as of 10 November 2021 is 4.81 µg/L in
experimental Area A, 4.73 µg/L in experimental Area B, and 3.16 µg/L in experimental
Area C. These results are consistent with the monitoring results (https://khoyinivan.
users.earthengine.app/view/marine-water-quality-hk, accessed on 15 January 2024) [22]
and demonstrate that the SAEO-BP neural network model can effectively capture large
fluctuations/changes in Chl-a concentration under heavy precipitation conditions.
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Figure 9. Images of Chl-a concentration in experimental Areas A, B, and C. Three experimental areas
(A, B, and C) and four observation dates (6 October 2021, 11 October 2021, 16 October 2021, and
10 November 2021).

Table 4. Average predicted values of Chl-a concentration in various experimental areas.

Study Area
Average Predicted Values of Chl-a Concentration (µg/L)

6 October 2021 11 October 2021 16 October 2021 10 November 2021

(A) 7.02 3.90 3.08 4.81
(B) 7.12 3.12 1.93 4.73
(C) 7.92 1.38 1.22 3.16

https://khoyinivan.users.earthengine.app/view/marine-water-quality-hk
https://khoyinivan.users.earthengine.app/view/marine-water-quality-hk
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Table 5. Cumulative precipitation in Kong Hong in five days.

Study Area
Cumulative Precipitation (mm) in Five-Day Periods

2 October to
6 October 2021

7 October to
11 October 2021

12 October to
16 October 2021

2 October to
10 November 2021

Hong Kong 1.9 549 75.8 2

3.2.2. Simulation of Changes in Chl-a Concentration during Red Tides and Its Spatial
Distribution Characteristics Using the SAEO-BP Neural Network Model

In addition, the effectiveness and stability of the SAEO-BP neural network model
under complex environmental conditions were further verified by comparing the data
acquired during red tides; this study further confirmed the effectiveness and stability of
the SAEO-BP neural network model under complex environmental conditions. According
to information from the Hong Kong Red Tide Database (https://redtide.afcd.gov.hk/
urtin/#/maps, accessed on 15 January 2024), a continuous red tide caused by Gonyaulax
polygramma occurred in the Tolo Channel northeast of Hong Kong during the period from
8 March to 23 March 2021.

Chl-a concentration is usually used to represent phytoplankton biomass. In this
study, the SAEO-BP neural network model was used to perform the inversion of Chl-a
concentration in experimental Area D, and the Chl-a concentration distribution in this area
on 17 March and 25 March 2021 was visually displayed (Figure 10) to demonstrate the
spatial variations in Chl-a concentration during and after the red tide.
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Figure 10. Images of Chl-a concentration in experimental Area D obtained by inversion.

It can be seen that the Chl-a concentration map for 17 March 2021 has accurately
captured the distribution characteristics (high levels) of Chl-a concentration in the Tolo
Channel on that day, and the predicted values of Chl-a concentration in the surrounding
areas are basically consistent with the measured data from the monitoring station on that
day. The Chl-a concentration map for 25 March 2021 shows the distribution of Chl-a
concentration in the Tolo Channel and surrounding areas after the red tide dissipated. It
can be seen that the Chl-a concentration in the Tolo Channel decreased significantly on
25 March 2021. These results show that the SAEO-BP neural network model can effectively
reflect water conditions during red tides.

4. Discussion

In this section, we first introduce the results of optimizing the BP neural network using
the SAEO algorithm. Secondly, we describe the effectiveness of the Chl-a inversion model
constructed using the SAEO-BP neural network model, confirming the advantages of the
SAEO-BP neural network model in prediction accuracy and stability. Finally, by comparing
it with traditional regression algorithms, simplified physical model algorithms (QAA),

https://redtide.afcd.gov.hk/urtin/#/maps
https://redtide.afcd.gov.hk/urtin/#/maps
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and commonly used machine learning algorithms (SVR), we verify the effectiveness of the
SAEO algorithm in optimizing the BP neural network model.

4.1. Performance of the SAEO Algorithm in Optimizing BP Neural Networks

In the AEO algorithm, producers are mainly responsible for exploring new possible
solutions, consumers further explore the solution space through three mechanisms, and
decomposers improve the exploration efficiency by referring to existing solutions. Such
configuration enables the AEO algorithm to further expand the scope of search for solutions
while maintaining efficient exploration. On this basis, the nonlinear weight coefficient,
the “Levy flight” path search strategy, and the dynamic crossover mechanism were in-
corporated into the AEO algorithm to further improve its performance in optimizing BP
neural networks, and an ablation experiment was conducted. The results show that the
incorporation of these three mechanisms can effectively balance global exploration and
local exploitation, stabilize the loss in the training process (training loss), and thereby
improve the convergence rate and performance.

The SAEO algorithm was compared with other 17 metaheuristic optimization algo-
rithms to verify its performance in optimizing BP neural networks. The results show that
the BP neural network optimized using the improved AEO algorithm has advantages
in terms of prediction accuracy and stability. In addition, these results demonstrate the
powerful performance of the original AEO algorithm and prove that the SAEO algorithm
can effectively overcome the limitations of BP neural networks, such as their tendency to
become stuck in local optima and large fluctuations in accuracy.

4.2. Performance of the Chl-a Concentration Inversion Model Built Based on the SAEO-BP
Neural Network

In water environment research, water quality monitoring plays a vital role, and Chl-
a concentration is widely recognized as a key measure of water quality. In this study,
an innovative optimization algorithm based on the AEO algorithm, namely the SAEO
algorithm, was proposed and used to optimize the BP neural network to improve the
accuracy of Chl-a concentration prediction. The SAEO-BP neural network model for
predicting Chl-a concentration in the coastal waters of Hong Kong was built. The results
of comparison and verification show that the SAEO-BP neural network model is more
accurate and stable than the neural networks optimized using the AEO algorithm and other
metaheuristic optimization algorithms.

By inverting and analyzing the remote sensing data of Hong Kong waters for the
period in which Hong Kong was affected by Lionrock and Kompasu (October 2021), previ-
ous theories on the impact of typhoons on marine ecosystems were verified. Specifically,
heavy precipitation and wind caused drastic changes in the water environment of the study
area, significantly enhanced vertical mixing, accelerated the dilution process, and increased
the water exchange rate, resulting in rapid short-term (for the period from 6 October to
11 October 2021 and the period from 12 October to 16 October 2021) decreases in Chl-a
concentration from high levels (above 7 µg/L) to around 3 µg/L or even lower levels. After
typhoons ended, with the decrease in precipitation and the weakening of vertical mixing, a
large amount of Pearl River water (runoff) rich in nitrogen-containing nutrient salts flew
into the ocean, providing favorable conditions for algae reproduction. Therefore, for a
certain period of time (such as 10 November 2021), the average levels of Chl-a concentra-
tion in various monitored coastal areas of Hong Kong rose to 4.81 µg/L, 4.73 µg/L, and
3.16 µg/L, respectively.

In addition, a red tide that occurred in the Tolo Channel northeast of Hong Kong in
the period from 8 March to 23 March 2021 was investigated. The results of the inversion of
remote sensing images show that the Chl-a concentration in the Tolo Channel increased
abruptly on 17 March 2021, which is consistent with the occurrence of the red tide in this
area, and on 25 March 2021, the Chl-a concentration near the Tolo Channel decreased to
a normal level, which is consistent with the reported dissipation of the red tide. These
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results further verify the accuracy of the SAEO-BP neural network model in predicting
Chl-a concentration during the occurrence and dissipation of red tides.

4.3. Validation of the Effectiveness of SAEO Algorithm Optimized BP Neural Network Model

In research related to the inversion of water quality parameters in small samples,
traditional algorithmic models are simple to establish and computationally fast, but their
accuracy is relatively low. Physical methods have clear mechanisms, but the models
are overly complex, requiring numerous parameters, and exhibit unstable prediction
accuracy across different water bodies. Machine learning algorithms are suitable for
solving nonlinear problems, but finding the optimal parameter settings for the model is
challenging, although their accuracy is relatively higher compared to the first two types
of algorithms. This paper compares the proposed SAEO-BP neural network model with
empirical algorithms, commonly used simplified physical model algorithms (QAA [47]),
and the Support Vector Regression (SVR) algorithm (Figure 11), which is widely used
in machine learning algorithms, to verify the effectiveness of the SAEO algorithm in
optimizing the BP neural network model for data prediction.
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Figure 11. Scatter plots of predicted and measured values for Chl-a concentration from the complete
sample dataset are plotted for four models: (a) LR model, (b) QAA model, (c) SVR model, and
(d) SAEO-BPNN model.

In the experiment, the model trained with the training dataset will be applied to the
dataset covering all samples. By comparing the distribution of predicted values with actual
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measurements and plotting fitting curves, the study found significant differences between
the predicted values calculated using the linear regression algorithm and QAA algorithm
and the actual measurements, indicating a lower accuracy of the algorithms. Machine
learning algorithms demonstrated superiority in predicting accuracy, especially the model
based on SAEO-BP neural network, which showed the best predictive performance and
significantly outperformed the other three methods, validating the effectiveness of the
SAEO-BP neural network algorithm in data prediction.

5. Conclusions

In order to improve the accuracy and stability of the Chl-a concentration prediction
model, 5754 valid observation records of Chl-a concentration in the coastal waters of
Hong Kong for the period from 2017 to 2022 and 500 high-quality Sentinel-2 remote sensing
images for the same period were collected, and 612 pieces of valid data were selected
and used for model training and validation. Based on this data set, the levels of Chl-a
concentration in the coastal waters of Hong Kong were predicted and analyzed through
inversion. The main achievements of this study are summarized below.

1. Algorithm innovation and model building: An improved metaheuristic optimization
algorithm, namely, the Synthesized Artificial Ecosystem Optimization (SAEO) algo-
rithm, was proposed. First, the algorithm was integrated with the adaptive nonlinear
weight coefficient, the “Levy flight” path search strategy, and the dynamic crossover
mechanism to overcome its limitations in solving complex problems and to enhance
its global search capability. Then, a novel model named the SAEO-BP neural network
model was built by combining the SAEO algorithm with a BP neural network and
was used for Chl-a concentration prediction.

2. Performance evaluation and comparative analysis: The experimental results show
that, compared with the AEO-BP neural network model, the SAEO-BP neural network
model produced smaller prediction errors in the training and testing stages and
performed more stably in the testing stage. In addition, the SAEO-BP neural network
model has obvious advantages over 16 BP neural networks optimized using different
metaheuristic optimization algorithms in terms of all key performance indicators. The
comparative analysis of the stability of these models shows that the SAEO-BP neural
network model has the highest stability in terms of MAE and is highly stable in terms
of the other three indicators.

3. Prediction and evaluation of abrupt changes in Chl-a concentration: The SAEO-BP
neural network model was used to identify the patterns of spatiotemporal variation in
Chl-a concentration in the coastal waters of Hong Kong during heavy precipitation
events and red tides. The results show that the SAEO-BP neural network model
can predict the spatiotemporal changes in Chl-a concentration under the influence
of heavy precipitation caused by typhoons, identify the spatial variations in Chl-a
concentration during and after red tides, and predict abrupt Chl-a concentration
changes and extrema in an accurate and stable manner.

There are still some shortcomings in this study. The Chl-a concentration inversion
model built using Sentinel-2 remote sensing data still has some inherent limitations. The
discontinuity of satellite revisit cycles and cloud cover pose obstacles to obtaining con-
tinuous and high-quality remote sensing data. Moreover, although Sentinel-2 satellite
remote sensing imagery data provide a rich information basis for Chl-a inversion, the gen-
eralizability of algorithms to other marine areas under different geographical conditions,
lighting conditions, water characteristics, and other environmental variables still needs to
be considered.

Future research should focus on integrating multi-source remote sensing data re-
sources, optimizing atmospheric correction algorithms, and improving the quantity and
quality of remote sensing data applicable to coastal water quality monitoring. Addition-
ally, combining field sampling data, considering key water quality parameters such as
suspended sediment and nutrient concentration that affect the optical properties of water



Remote Sens. 2024, 16, 1503 20 of 22

bodies, thoroughly analyzing the complex relationships between water quality parameters,
constructing coupled models, and more accurately describing the water quality status and
variation characteristics of coastal waters will provide a more reliable data source for water
environment monitoring and management.
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