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Abstract: Floods are among the most serious natural disasters worldwide; they cause enormous
crop losses every year and threaten world food security. Many studies have focused on flood impact
assessments for administrative districts, but fewer have focused on postdisaster impact assessments
for specific crops. Therefore, this study used remote sensing data, including the normalized difference
vegetation index (NDVI), elevation data, slope data, and precipitation data, combined with crop
growth period data to construct a crop flood damage assessment index (CFAI). First, the analytic
hierarchy process (AHP) was used to assign weights to the impact parameters; then, the Weighted
Composite Score Method was used to calculate the CFAI; and finally, the impact was classified as
sub-slight, slight, moderate, sub-severe, or severe based on the magnitude of the CFAI. This method
was used for the Missouri River floods of 2019 in the United States and the Henan flood of 2021 in
China. Due to the lack of measured data, the disaster vegetation damage index (DVDI) was used to
compare the results. Compared with the DVDI, the CFAI underestimated the evaluation results. The
CFAI can respond well to the degree of crop impact after flooding, providing new ideas and reference
standards for agriculture-related departments.

Keywords: flooding; crop damage assessment; analytic hierarchy process

1. Introduction

Flooding is one of the most serious agricultural disasters and can cause extensive
agricultural losses, leading to reduced crop production or even crop failure [1,2]. Every
year, agricultural production activities are affected by floods [3], and recent climate change
impacts may exacerbate crop production losses due to floods [4–7]. Therefore, timely
and rapid crop damage assessment is very helpful for disaster mitigation and relief, crop
insurance claims, and providing information to government emergency departments.
Traditional crop damage assessment methods rely on human labor to conduct field surveys;
however, these methods are slow and costly [8]. Therefore, a more economical, convenient,
and easily accessible method is needed for crop loss assessment, and remote sensing
technology has the advantages of wide spatial coverage, objectivity, and low cost; thus,
remote sensing has become the preferred method for crop loss assessment.

Currently, there are three main types of remote sensing-based flood crop loss assess-
ment methods: flood intensity-based crop loss assessment, crop condition-based crop loss
assessment, and model-based crop loss assessment methods [9]. Crop loss based on flood
intensity is usually assessed in terms of crop inundation area. However, this approach is
very general and does not consider the impact on the crop itself. Although the extent of
flood inundation is an evident parameter, this method considers only the area of inundation
and does not consider the extent of crop damage nor does it allow for crop-specific damage
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estimates. In addition, inundated crops may not necessarily be damaged, which could
lead to an overestimation of the damage. Some scholars have attempted to incorporate
flood information into their assessments to improve accuracy. Flood information such as
flood depth, duration, and flow rate has also been used for assessment. Waisurasingha and
Pacetti used flood depth thresholds of 80 cm and 100 cm to determine crop damage [10,11].
Dutta and Kwak utilized crop-specific depth—damage curves to obtain accurate estimates
of crop damage [12,13]. Many studies have used three to four depth classes and associated
potential damage in crop loss assessments [14,15]. Although the depth–damage curve in-
cludes flood information, it does not consider the condition of the crop itself, and different
crop types have different levels of tolerance to flood depth. Therefore, it is important to
consider water depth loss curves for different crop types. The main drawback of these
studies is the use of generic curves or categories for all crop types. Such broad assumptions
can lead to overestimates or underestimates of crop losses.

Crop loss assessments based on crop conditions mainly assess the impact of floods
on vegetation growth, and these assessments are largely based on vegetation indices and
comparisons of vegetation indices before and after a disaster or use methods such as
regression analysis between vegetation indices and crop yields. The vegetation indices
used for crop loss assessment can be broadly categorized into two types: vegetation indices
calculated directly from remotely sensed bands (e.g., NDVI, EVI, and SAVI) and new
vegetation indices developed from other vegetation indices (e.g., VCI and DVDI) [16–
19]. While some vegetation indices were originally developed to monitor the impact of
drought on crops, many recent studies have used these indices in the context of other
hazards, such as floods. Some scholars have used normalized difference vegetation index
(NDVI) time series data for comparison with the historical median normalized difference
vegetation index (NDVI) over recent years to reveal the impact of floods on crops [20].
Yu et al. believed that, compared with single vegetation indices, multi-vegetation indices
can detect the impact of floods on crops; furthermore, the VCI is more accurate than the
RMVCI and MVCI in estimating the extent of vegetation damage [21]. Di et al. used
the vegetation index to construct the DVDI to assess the damage degree of crops under
flood events [22]. However, cloud variation before and after a rainstorm can interfere
with the data, potentially making it impossible to obtain the correct vegetation index for
flood crop damage assessment. How to remove the influence of clouds to obtain better
quality data is a challenge. The advantage of regression modeling is that it can provide
a quantitative assessment of loss, which can be expressed as a reduction in postdisaster
yields compared to historically normal yields. Silleos et al. developed a linear regression
model using the normalized difference vegetation index (NDVI) and loss rates collected
from field surveys [23]. Shrestha et al. used a linear regression model relating the rate
of change in the NDVI to the rate of change in the yield of pure maize-like elements for
maize loss assessment in the U.S. [24]. There are many similar studies [25,26]. However,
these regression-based methods usually require historical data on yield and independent
variables to construct regression equations [27]. Therefore, regression modeling cannot be
used in areas where historical data are lacking.

There are many crop loss assessment models, such as the Hazards US (HAZUS) model,
impact analysis for planning (IMPLAN) model, and methods for evaluating direct and
indirect losses (MEDIS) model [28]. The HAZUS model is one of the most popular flood
crop hazard assessment models [29]. Although the HAZUS model was developed primarily
for the United States, many studies worldwide have used the HAZUS model for crop loss
assessment using local input parameters [30]. The HAZUS and MEDIS models both include
extensive national databases embedded in their software [31]. Tapia-Silva et al. and Förster
et al. used the MEDIS model to estimate crop losses for the 2002 Elbe River flood [2,32].
Crow evaluated the HAZUS crop loss modeling methodology through a case study of the
2011 Iowa floods, and she concluded that the HAZUS model overestimated losses [33]. The
above models do not consider crop conditions and crop types; furthermore, these models
are built for specific geographic areas and may not be applicable to other areas unless
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significant changes are made to make them appropriate for the study area. Moreover, these
models often rely on ancillary data, which are also more difficult to obtain in some areas,
further limiting the extent to which these models can be used.

To better assess the impact of flooding on crops, this study proposed a new index
called the crop flood damage assessment index (CFAI) to measure the impact of floods
on crop yields. We used this index to measure the extent of flood damage to crops. The
objective of this study is to construct the CFAI and use the CFAI to assess the impact of
floods on crops.

2. Materials
2.1. Study Area

In this study, two flood events were selected for case assessment, namely, the Missouri
River Basin flood event in the United States in 2019 and the Henan Province rainstorm
flood event in China in 2021. Here, we provide a detailed look at both flood events.

The Missouri River is one of the major rivers in the U.S. and the longest river in
North America. The Missouri River Basin is prone to flooding due to short-term storms or
prolonged rainfall, as well as spring snowmelt. In March 2019, a major flood event occurred
in the Missouri River Basin. This flood event began on 18 March when a levee on the upper
Missouri River collapsed, causing water levels in the lower Missouri River to exceed its
banks and causing flooding in the Missouri River from Omaha to Kansas City, along the
tri-state border of Nebraska, Iowa, and Kansas. Flooding was rampant in the watershed.
The main feature on both banks of this basin was cropland, and at the time of flooding,
the main crop was spring wheat, which was affected by flooding. Therefore, this area was
selected as the study area.

A severe rainstorm occurred in Henan Province on 19 July 2021 and caused flooding.
The areas of crop damage were mainly concentrated in Xinxiang, Hebi, Anyang, and
other cities. This paper selected four areas—Hua County, Qi County, Xunxian County,
and Weihui County—in Henan Province as the research areas. The total area of the study
area is approximately 4969 square kilometers, of which the total area of arable land is
approximately 2646.51 square kilometers, accounting for approximately 54% of the total
area. The range of crops is wide, the crops are roughly the same, mainly summer corn, and
floods occur during the peak growing season. The study area is near the epicenter of heavy
rainfall; crop damage during the selected rainstorm was severe.

2.2. Research Data
2.2.1. Sentinel-2 Data

As part of the Copernicus program, the Sentinel series of satellites is primarily tasked
with obtaining Earth observations and observation data with high spatial and temporal
resolution. Each Sentinel satellite achieves high revisit cycles and coverage by carrying
two satellites. Sentinel-2 consists of two satellites, Sentinel-2A and Sentinel-2B, which are
capable of polar orbit multispectral high-resolution imaging missions. Sentinel-2A was
launched on 23 June 2015, and Sentinel-2B was launched on 7 March 2017. Equipped
with a wideband multispectral imager, the platform images the Earth’s surface by us-
ing 13 bands at three different spatial resolutions (10 m, 20 m, and 60 m) from the visi-
ble to shortwave red outfield of the electromagnetic spectrum, with a spectral range of
443 to 2190 nm. Sentinel-2 data can be downloaded from the ESA official website
(https://scihub.copernicus.eu/dhus/#/home, accessed on 2 April 2024). The purpose of
using Sentinel-2 data in this paper is to determine the extent of flooding.

2.2.2. MODIS Data

This study used Moderate Resolution Imaging Spectroradiometer (MODIS) data.
MODIS is a sensor installed on the Terra and Aqua satellites; its primary responsibility
is to perform Earth observation missions and obtain observation data with high spa-
tial and temporal resolution. MODIS has 36 spectral bands covering the spectrum from
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0.4 microns to 14.4 microns. The MODIS instruments have ground resolutions of 250 m,
500 m, and 1000 m, respectively, with a scanning width of 2330 km. During Earth obser-
vation, global observation data can be obtained every one to two days. MODIS data are
used in this study to calculate daily NDVI data via reflectivity. In this study, the 10-year
NDVI average of the same area on the day before the disaster is used as the benchmark, the
change in the NDVI is calculated with the NDVI value four days after the disaster, and this
value is it for loss assessment. The MODIS data can be downloaded from NASA’s website
(https://ladsweb.modaps.eosdis.nasa.gov, accessed on 2 April 2024).

2.2.3. Elevation and Slope Data

The SRTM90m DEM is a digital elevation model that provides a spatial resolution of
90 m, and these data can be used to generate topographic and slope maps. The elevation
and slope data can be downloaded from the Geospatial Data Cloud website (https://www.
gscloud.cn/, accessed on 2 April 2024). Elevation and slope can have an impact on flood
distribution; therefore, elevation and slope are analyzed as impact parameters in this paper.

2.2.4. Precipitation Data

The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset
contains global precipitation data. The dataset combines satellite infrared information
and ground-based meteorological station data to provide global precipitation estimates
from 1981 to the present. The CHIRPS dataset has a high temporal resolution (daily,
decadal, monthly) and a high spatial resolution (0.05◦), which allows it to provide accurate,
timely, and reliable precipitation data for climate research, disaster risk assessment, and
other applications. The CHIRPS data can be downloaded from the Google Earth Engine
platform (https://earthengine.google.com/, accessed on 2 April 2024). Rainfall is a causal
parameter of flooding, so CHIRPS daily rainfall data were used for disaster assessment.
The cumulative rainfall of the week prior to the disaster was used.

2.2.5. Growth Period

Floods occur in different crop growth stages, and the damage to crops is different.
Therefore, the growth period must be considered as an influencing parameter. In this
study, according to their growth patterns, crops can be divided into seven growth stages:
emergence, green-up, tillering, jointing, heading, grain filling, and maturity. In the Missouri
River Basin flood event, the wheat was in the green-up stage when the flood occurred. In
the Henan rainstorm flood event, maize was in the jointing stage when flooding occurred.
Table 1 presents the specific divisions of the growth periods for winter wheat and summer
corn. However, the actual growth period may vary due to geographical location, climate
conditions, and planting varieties. Therefore, it should be applied according to specific
circumstances.

Table 1. Rough time division table for crop growth period.

Growth
Period Emergence Green-Up Tillering Jointing Heading Grain Filling Maturity

Winter wheat September–
October March March–April April–May May–June June–July July

Summer
maize Late May Early June Mid-June Late June–

Early July
Late June–
Early July

Mid-August–
Late August September

3. Methods
3.1. Model

The construction of this model can be divided into three parts: influencing parameter
selection and grading, the determination of influencing parameter weights, and the con-
struction of a crop flood damage assessment index. The NDVI, cumulative precipitation,
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relative elevation, slope, and growth period were selected as the main parameters. These
five parameters were used to objectively and comprehensively express the degree to which
crops were affected by flooding. Then, the analytic hierarchy process was used to determine
the weights of these five parameters in different directions and at different scales. Finally,
the Weighted Composite Score Method was used to calculate the size of the affected image
area according to the magnitude of the index to evaluate the impact. The specific process is
shown in Figure 1.
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3.1.1. Selection and Grading of Impact Parameters

In this study, five parameters, namely, the normalized difference vegetation index
(NDVI), cumulative precipitation, relative elevation, slope, and growth period, were se-
lected to determine the degree of crop damage. The NDVI is a remote sensing vegetation
index that quantifies vegetation growth by calculating the difference between the near-
infrared and infrared bands. In general, the higher the NDVI is, the more vigorous the crop
growth. In addition, the NDVI is also used to invert crop yield, and many scholars have
proven that there is a strong correlation between the NDVI and yield [34–37]. Therefore,
the change in the NDVI can be used to measure the extent of flood impacts on crops. To
quickly obtain the degree of crop damage after the disaster, prior knowledge was used. The
NDVI was obtained for the year of the disaster, and then the average NDVI value for the
first 10 years following the disaster in the same region was calculated. This method can
quickly obtain the degree of change in the NDVI after a disaster, which is needed for the
assessment of the degree of crop damage.
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The depth of inundation is one of the most important parameters for determining the
extent of flood impact on crops, but it is difficult to obtain precise data for this parameter.
Therefore, we chose to use the cumulative precipitation, relative elevation, and slope to
reflect the inundation depth simultaneously. The greater the cumulative precipitation is,
the lower the relative elevation, the lower the slope, and the greater the inundation depth.

The crop growth period is one of the impact parameters. Flooding has different
impacts on crops during different growth periods, and flooding during the early growth
period usually has less impact on growth because crops tend to have long growing seasons
and because replanting can be used to reduce losses; additionally, the self-healing ability
of crops should be considered. During the middle stage of growth, crop growth is lush,
respiration is vigorous, and pollen transfer occurs; thus, during this period, flooding-related
growth damage is high. In the late growth period, crops are maturing, so flooding can
be harmful to crop fruits, and prolonged immersion may produce qualitative changes;
thus, flooding during the period when crops are maturing is also a great hazard. The
combination of these parameters makes our assessment method more comprehensive
and accurate.

There are different levels and units for each influencing parameter, and the range of
attribute values varies greatly; therefore, to facilitate calculation, it is necessary to grade the
raw data and choose the natural breaks method or grade according to national and local
standards in the grading method. The grading results are assigned values according to the
degree of crop damage and the degree of damage to crops. The grading and assignment
results are shown in Table 2.

Table 2. Results of grading and assignment values for each impact parameter.

Norm
Grading/Score

Sub-Slight/1 Slight/2 Moderate/3 Sub-Severe/4 Severe/5

Change in NDVI 0–0.05 0.05–0.1 0.1–0.2 0.2–0.3 >0.3
Cumulative precipitation/mm 50–100 100–150 150–250 250–300 >300

Growth period Green-up/emergence Maturity Heading Grain filling Jointing/Tillering
Relative elevation/m >12 9–12 6–9 3–6 0–3

Slope/degree >15 12–15 9–12 6–9 0–6

3.1.2. Determining the Weights of Impact Parameters

Since the parameters impacting the affected crops vary, it is necessary to assign
different weights to different impact parameters according to the actual situation. There are
many methods for determining the weights of impact parameters, and the analytic hierarchy
process method has many advantages as a basis for decision-making; this method can
reflect the main parameters of the degree of crop damage in the study area and is targeted,
indirect, practical, and systematic [38]. Qualitative and quantitative analyses are combined
to analyze and interpret complex systems according to a hierarchical and quantitative
approach. The advantage of this approach is that it simplifies complex problems, is simple
to calculate, and is commonly used in assessment and evaluation. Therefore, in this study,
the analytic hierarchy process (AHP) proposed by T.L. Saaty was used for determining
the weights of the impact parameters [39]. The AHP is a decision-making method that
decomposes the elements related to the overall goal of decision-making into different levels,
such as goals, criteria, and schemes, and carries out qualitative and quantitative analysis
on this basis. The core principle of an AHP is to decompose the problem into various
component parameters according to the characteristics and ultimate goals of the problem
and combine these parameters according to different levels based on the relationships
and subordinations among them to form a multilevel analysis structure model. Thus, the
problem ultimately boils down to determining the relative importance or order of merit of
the lowest level relative to the highest level. The calculation steps of the AHP include four
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steps: establishing a hierarchical structure model, constructing a judgment matrix, carrying
out consistency tests, and calculating weights.

3.1.3. The Construction of the Crop Flood Damage Assessment Index

The establishment of a comprehensive assessment index is one of the main methods
for assessing disasters; the degree of crop damage is the result of a variety of parameters,
and the directions of influence of each influencing parameter are not the same [40,41]. In
this study, the Weighted Composite Score Method was used to establish the following crop
flood damage assessment index:

CFAI = N × WN + W × WW + G × WG + H × WH + S × WS (1)

where CFAI is the crop flood damage assessment index; N is the NDVI change value; WN
is the NDVI change value weight; W is the cumulative precipitation; WW is the cumula-
tive precipitation weight; G is the growth period; WG is the growth period weight; H is
the relative elevation; WH is the relative elevation weight; S is the slope; and WS is the
slope weight.

When grading the results of the comprehensive evaluation indicators, we defined
five impact categories: sub-slight, slight, moderate, sub-severe, and severe. Areas with
CFAI values between 1 and 1.5 are considered sub-slightly affected, those with CFAI values
between 1.5 and 2 are considered slightly affected, those with CFAI values between 2
and 2.5 are considered moderately affected, those with CFAI values between 2.5 and 3
are considered sub-severely affected, and those with values greater than 3 are considered
severely affected.

4. Results
4.1. Extent of Flood Inundation

Flood extraction can be expressed by the variation range of the water body before and
after the disaster, and the flood inundation range can be obtained through the identification
and monitoring of the water body. To date, a variety of water body indices have been
proposed and applied to water body extraction. The more classical water body index is
the normalized difference water index (NDWI), which was proposed by McFeeters and is
calculated using the near-infrared (NIR) and green bands [42]. The formula is as follows:

NDWI =
Green − NIR
Green + NIR

(2)

This study utilized postdisaster and predisaster Sentinel 2 data with the help of the
NDWI to extract the extent of change in the water bodies in the study area before and after
heavy rainfall to determine the extent of flood inundation. The land use map of the study
area was then superimposed to determine the extent to which the inundation of crops was
affected by flooding, as shown in Figure 2.

For the Missouri River flood event, due to missing data, the NDWI was used to extract
the extent of water bodies in the same area in 2018 and 2019. The inundation area of
this flood event was obtained by taking the water area extracted in 2019 and subtracting
that extracted in 2018. For the flood event in Henan Province, the Sentinel-2 data before
and after the rainstorm were used to extract the flood area. The flooded area is shown
in Figure 2.



Remote Sens. 2024, 16, 1527 8 of 17
Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

  

(a) (b) 

Figure 2. A schematic diagram showing the extracted water bodies. (a) The extent of crop damage 

in the Missouri River Basin; (b) the extent of crop damage in the Henan flood. 

For the Missouri River flood event, due to missing data, the NDWI was used to ex-

tract the extent of water bodies in the same area in 2018 and 2019. The inundation area of 

this flood event was obtained by taking the water area extracted in 2019 and subtracting 

that extracted in 2018. For the flood event in Henan Province, the Sentinel-2 data before 

and after the rainstorm were used to extract the flood area. The flooded area is shown in 

Figure 2. 

4.2. Crop Damage Assessment in the Missouri River Basin 

4.2.1. Weight Determination 

The change in the NDVI was taken as the most important parameter in the present 

study because the change in the NDVI is the most intuitive reflection of crop growth status 

and can indirectly indicate the impact of flooding on crop yield. Since the flood in this 

study area was caused by a dike failure, we considered the contribution of precipitation 

to the timing of this flood to be small and therefore ranked it last in the importance rank-

ing. The area has a low elevation and slope, which can reflect the degree of flood aggre-

gation, and the impact of the disaster will be more severe when the elevation and slope 

are lower. The parameters of the growth period were also combined considering that 

crops during different growth periods have different resistances to flooding and self-heal-

ing abilities and that measures such as replanting can be taken to compensate for losses 

in the early growth period. After comprehensive consideration, the overall importances 

were ranked as follows: change in the NDVI, relative elevation, slope, growth period, and 

cumulative precipitation. The judgment matrix is shown in Table 3. The numbers in the 

table represent the following: 1: equally important; 3: slightly important; 5: obviously im-

portant; 7: strongly important; 9: extremely important; 2, 4, 6, and 8 represent the medians 

of the above two neighboring judgments; and in addition, the judgment of i and j is 𝑎𝑖𝑗; 

Figure 2. A schematic diagram showing the extracted water bodies. (a) The extent of crop damage in
the Missouri River Basin; (b) the extent of crop damage in the Henan flood.

4.2. Crop Damage Assessment in the Missouri River Basin
4.2.1. Weight Determination

The change in the NDVI was taken as the most important parameter in the present
study because the change in the NDVI is the most intuitive reflection of crop growth status
and can indirectly indicate the impact of flooding on crop yield. Since the flood in this
study area was caused by a dike failure, we considered the contribution of precipitation to
the timing of this flood to be small and therefore ranked it last in the importance ranking.
The area has a low elevation and slope, which can reflect the degree of flood aggregation,
and the impact of the disaster will be more severe when the elevation and slope are lower.
The parameters of the growth period were also combined considering that crops during
different growth periods have different resistances to flooding and self-healing abilities and
that measures such as replanting can be taken to compensate for losses in the early growth
period. After comprehensive consideration, the overall importances were ranked as follows:
change in the NDVI, relative elevation, slope, growth period, and cumulative precipitation.
The judgment matrix is shown in Table 3. The numbers in the table represent the following:
1: equally important; 3: slightly important; 5: obviously important; 7: strongly important;
9: extremely important; 2, 4, 6, and 8 represent the medians of the above two neighboring
judgments; and in addition, the judgment of i and j is aij; then, the judgment of j and
i is aji = 1/aij. The results passed the unit root test, and the weighted values of each
influencing parameter were obtained; the results are shown in Tables 4 and 5.
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Table 3. Judgment matrix.

Norm Change in
NDVI

Relative
Elevation Slope Growth

Period
Cumulative
Precipitation

Change in NDVI 1 4 4 5 6
Relative elevation 0.25 1 1 4 5

Slope 0.25 1 1 4 5
Growth period 0.2 0.25 0.25 1 3

Cumulative precipitation 0.167 0.2 0.2 0.333 1

Table 4. Consistency test.

Consistency Test Results

Largest characteristic root CI value RI value CR value Consistency test results
5.329 0.082 1.11 0.074 pass

Table 5. Indicator weights of crop damage impact parameters.

AHP Hierarchical Analysis Results

Norm Eigenvector Weight (%) Largest Characteristic Root CI Value
NDVI 2.425 48.497

5.329 0.082

Relative elevation 0.973 19.462

Slope 0.973 19.462

Growth period 0.404 8.089

Cumulative
precipitation 0.225 4.491

4.2.2. Assessment Results

In this paper, MODIS reflectivity data were used to calculate the NDVI from 19 to
22 March 2019. The change in the NDVI is based on the 10-year average NDVI of the
same region on the day before the disaster. The CFAI was calculated by combining the
NDVI change value, the relative elevation and slope data of the study area, the cumulative
precipitation data during the disaster period, and the crop growth period when the disaster
occurred. In addition, according to the results of the index, the damage level is divided
into five levels: sub-slight, slight, moderate, sub-severe, and severe. Based on this method,
time series monitoring was carried out to track the development and impact of floods. The
evaluation results are shown in Figure 3.

The Missouri flood occurred early in the growing season, so we believe that the overall
damage to crops was relatively minimal. On the first day of the flood, there was lim-
ited upstream damage and slight damage in most areas, while downstream damage was
more severe, with moderate and sub-severe damage being predominant. Over time, on
the second and third days of flooding, a large proportion of the area experienced slight
damage, which was mainly concentrated in the upstream and downstream regions, with
higher levels of damage in the middle reaches. By the fourth day of flooding, moder-
ate and sub-severe damage were prevalent across most areas. Over time, there was a
gradual reduction in the mildly affected areas, while the moderately and sub-severely
damaged areas expanded. Compared with a single parameter, the CFAI uses multiple
parameters in the evaluation, thus increasing the comprehensiveness and reliability of the
evaluation results.
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4.3. The Assessment of Crop Damage in the Henan Rainstorm Area
4.3.1. Weight Determination

Similar to the Missouri River flood event, five parameters, change in the NDVI,
cumulative precipitation, relative elevation, slope, and growth period, were selected for
postdisaster loss assessment for the Henan rainstorm event. Because the flood event was
caused by heavy rainfall, the proportion of cumulative precipitation in the assessment
was increased. Taking the above parameters into consideration, the overall importance is
ranked as follows: change in the NDVI, cumulative precipitation, growth period, relative
elevation, and slope. The judgment matrix is shown in Table 6. The results passed the unit
root test, and the weighted values of each influencing parameter were obtained; the results
are shown in Tables 7 and 8.

Table 6. Judgment matrix.

Norm Change in
NDVI

Relative
Elevation Slope Growth

Period
Cumulative
Precipitation

Change in NDVI 1 2 4 8 8
Cumulative precipitation 0.5 1 3 7 7

Growth period 0.25 0.333 1 6 6
slope 0.125 0.143 0.167 1 1

relative elevation 0.125 0.143 0.167 1 1

Table 7. Consistency test.

Consistency Test Results

Largest characteristic root CI value RI value CR value Consistency test results
5.203 0.051 1.11 0.046 pass

Table 8. Indicator weights of crop damage impact parameters.

AHP Hierarchical Analysis Results

Norm Eigenvector Weight (%) Largest Characteristic Root CI Value

NDVI 3.482 45.138

5.203 0.051

Cumulative
precipitation 2.362 30.616

Growth period 1.246 16.148

Slope 0.312 4.05

Relative elevation 0.312 4.05

4.3.2. Assessment Results

The rainstorm in Henan Province occurred on 19 July 2021 and ended on 23 July 2021.
However, the clouds associated with floods caused by heavy rainfall are thicker before and
after disasters, making it difficult to obtain useful optical data. Therefore, in this paper,
MODIS reflectivity data are used to calculate the NDVI from 31 July 2021 to 3 August
2021, and the change in the NDVI is calculated based on the 10-year average NDVI of the
same region on 18 July 2021. In this study, the NDVI change value was combined with
the relative elevation and slope data of the study area, the cumulative precipitation data
during the disaster, and the crop growth period when the disaster occurred to calculate
the CFAI. In addition, according to the results of the index, the damage level is divided
into five levels: sub-slight, slight, moderate, sub-severe, and severe. Based on this method,
time series monitoring is carried out to track the development and impact of floods. The
evaluation results are shown in Figure 4.
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The floods occurred in the middle of the growing season, so we believe that the overall
damage to crops was relatively large. Since the optical data of the scarf for several days
after the end of the flood were contaminated, 31 July was taken as the first day. On the first
day after the flood, moderate damages were the most widely distributed; secondary severe
damages were distributed in the northeast part of the study area, and severe damages
accounted for a relatively small proportion. The day after the flooding ended, the severely
damaged area expanded rapidly. On the third and fourth days, the severely damaged area
decreased; the moderately damaged area was the most distributed and similar to that on
the first day. The damage then gradually stabilized. Compared with a single parameter,
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the CFAI uses multiple parameters in the evaluation, making the evaluation results more
comprehensive and reliable.

4.4. Comparison of Damage Assessment Results

Since plot-level data are not publicly available, it was not possible to use plot-level
yield loss data for result comparison. We used the DVDI developed by Di for the compari-
son of the results [8]. This method has achieved good results in natural disaster damage
assessments, such as flood and typhoon damage. The main calculation process of the
method is as follows:

mVCI =
NDVI − NDVImed

NDVImax − NDVImed
(3)

First, the mean vegetation condition index (mVCI) was calculated, where NDVImed
represents the median value of the NDVI historical series, and NDVImax represents the
maximum value of the NDVI historical series.

DVDI = mVCIa − mVCIb (4)

where mVCIa and mVCIb represent the vegetation conditions after and before the disaster,
respectively. The DVDI divides the damage degree into five categories: 0 > DVDI ≥ −0.1,
sub-moderate damage; −0.1 > DVDI ≥−0.2, slight damage; −0.2 > DVDI ≥−0.3, moderate
damage; −0.3 > DVDI ≥ −0.4, sub-severe damage; and −0.4 > DVDI, serious damage.
In addition, for comparison with the DVDI, we also extracted data from the same time
windows of the predisaster and postdisaster DVDI for the index calculations and compared
the results. The results are shown in Figure 5.
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As shown in Figure 5, the CFAI and DVDI results are roughly equally distributed up-
stream and downstream. In the middle reaches, there is a large difference, mainly reflected
in the difference between the sub-severe damage area and the severe damage area. Com-
pared with those of the DVDI, the evaluation results of the CFAI are underestimated. The
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proportions of damage grade distributions obtained by the two methods were calculated
experimentally, as shown in Table 9.

Table 9. Proportions of the degree of influence of the CFAI and DVDI.

CFAI DVDI

Sub-slight 0% 0.30%
Slight 13% 6%

Moderate 57.30% 31.80%
Sub-severe 29.50% 44.60%

Severe 0.20% 17.30%

Compared with the CFAI model, the DVDI overestimates the proportions of moderate,
sub-severe, and severe damage grades. This may be mainly because the NDVI data used
by the DVDI have a long time series, and optical images are susceptible to pollution by
atmospheric parameters, cloud cover, and other parameters, which may have an impact on
the final results. In addition, the DVDI focuses primarily on crop changes and does not
consider topographic and elevation data that affect flood distribution, flood-related rainfall
parameters, or differences in resilience at different stages of the crop growing season. These
parameters are very important in flood assessment. In contrast, we incorporate these
parameters into the CFAI calculations to make the assessment more comprehensive. This
method accounts for not only changes in the crop itself but also the impact of flooding, thus
providing a more comprehensive assessment of flood hazards.

5. Discussion

The crop loss assessment method based on flood intensity is more general than specific;
it does not consider the impact of the crop itself, so the damage degree of the crop cannot
be obtained. In this study, to solve the above contradictions, the disaster scope of crops
is extracted by combining flood-inundated areas with land use classification, and the
parameters of crops themselves are fully considered by adding the NDVI and growth
period as influencing parameters in calculating the CFAI. Crop loss assessment based
on crop status is mainly based on the change in the vegetation index before and after a
disaster, but the impact of floods is neglected; furthermore, the distribution of floods greatly
impacts crop damage. Therefore, in the calculation of the CFAI, elevation data and slope
data affecting the flood distribution are added to improve the comprehensiveness of the
assessment results. The methods based on loss assessment models are limited mainly by
data; moreover, large amounts of auxiliary data are difficult to obtain, and some models
do not consider the conditions of the crops themselves. Satellite data are mainly used
in this study, and the entire assessment process relies mainly on freely available remote
sensing data, so its application is not limited by time or location. This approach does not
require extensive surveys or historical data. The lack of survey and historical data in many
developing countries makes this assessment method advantageous in data-limited settings.
Finally, the CFAI can conduct rapid assessments immediately after a flood, which can be
invaluable in determining response measures and decision-making to reduce disaster risk.

Although the crop flood damage assessment methodology proposed in this paper can
be used to quickly assess crop damage, there are still several limitations and constraints
associated with this methodology. First, the use of remotely sensed data to extract flood
inundation areas may lead to an underestimation or overestimation of the actual flood
extent. Second, the delineation of the extent of damage needs to be adapted to different
geographic settings and crop types, which adds to the complexity of the assessment. In
addition, heavy rainfall-induced flooding usually precedes and is followed by thick cloud
cover, which can be problematic for extracting flood extents and calculating the NDVI
using optical data. This may affect the accuracy of the assessment results. Finally, due
to the confidentiality of plot-level data, we were unable to obtain real and valid data for
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validation, which made it difficult to compare our method with the actual situation to
verify its accuracy and reliability.

In addition to the limitations and constraints mentioned above, there are some other
factors that need to be considered. Firstly, the crop flood damage assessment index is based
on a set of simplified assumptions, which will greatly affect the generalization ability of
the proposed method. These assumptions may be too idealized to fully reflect the actual
situation, thereby affecting the accuracy and reliability of the assessment results. Secondly,
the assumptions of the model do have an impact on the results. Both the grading of various
impact parameters and the grading of assessment results have a high degree of subjectivity.
This means that different evaluators may come up with different results, which increases the
complexity and uncertainty of the assessment. Therefore, although the method proposed in
this paper can quickly assess crop flood damage, in practical applications, these limitations
and constraints, as well as other factors that may affect the assessment results, need to
be considered. This requires us to further improve and perfect the assessment method in
future research

6. Conclusions

In this study, we proposed a new method for assessing crop damage from flood disas-
ters, namely the CFAI. We used multiple impact parameters and focused on the Missouri
River flood disaster in the United States in 2019 and the Henan rainstorm flood disaster in
2021 as case studies. According to the magnitude of the CFAI, we classified the degree of
damage into five levels: sub-slight, slight, moderate, sub-severe, and severe. The results
show that the CFAI can assess the impact of flood disasters on crops, providing a more
comprehensive assessment than a single variable indicator. However, our approach has
some limitations and constraints, including the use of remote sensing data, the need to
adapt to different geographical environments and crop types, and the lack of measured data.
In addition, the CFAI is based on a simplified set of assumptions, which could affect its gen-
eralizability. Therefore, we need to further refine the assessment methods in future studies,
including improving the use of remote sensing data, adapting to different geographical
environments and crop types, addressing issues related to cloud cover, obtaining measured
data, and refining model assumptions. In general, the CFAI offers a novel approach to
assess the impact of flood disasters on crop losses.
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