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Abstract: A detection algorithm of dust and smoke for application to satellite 

multi-channel imagers is introduced in this paper. The algorithm is simple and solely based 

on spectral and spatial threshold tests along with some uniformity texture. Detailed 

examinations of the threshold tests are performed along with explanations of the physical 

basis. The detection is performed efficiently at the pixel level and output is in the form of 

an index (or flag): 0 (no dust/smoke) and 1 (dust/smoke). The detection algorithm is 

implemented sequentially and designed to run on segments of data instead of pixel by pixel 

for efficient processing. MODIS observations are used to test the operation and 

performance of the algorithm. The algorithm can capture heavy dust and smoke plumes 

very well over both land and ocean and therefore is used as a global detection algorithm. 

The method can be applied to any multi-channel imagers with channels at (or close to) 

0.47, 0.64, 0.86, 1.38, 2.26, 3.9, 11.0, 12.0 m (such as current EOS/MODIS and future 

JPSS/VIIRS and GOES-R/ABI) for the detection of dust and smoke. It can be used to 

operationally monitor the outbreak and dispersion of dust storms and smoke plumes that 

are potentially hazardous to our environment and impact climate. 
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1. Introduction 

Aerosols perturb the Earth’s energy budget by scattering and absorbing radiation and by altering 

cloud properties and lifetimes. They also exert large influences on weather, air quality, hydrological 

cycles, and ecosystems. Industrialization and human activities in the past several decades have caused 

changes to the air quality and Earth’s climate by releasing excessive amounts of trace gases and aerosol 

particles [1]. It is compelling to regularly monitor the global aerosol distributions and study how they 

are changing, especially for those aerosols with large spatial and temporal variability, such as dust 

storms and smoke plumes. Detection of these highly variable aerosol events is challenging because of: 

episodic features, short lifetimes, multiple-scales, and strong impact of local surface and 

meteorological conditions. 

Mineral dust and smoke particles can directly alter solar and Earth radiation in both visible and 

infrared (IR) spectral regions through scattering and absorption processes. Due to specific optical 

properties of dust and smoke particles, satellite observed radiances carry the spectral signatures of dust 

and smoke particles that are different from molecular, cloud, and underlying surface. Based on these 

differences, various detection schemes have been developed to distinguish dust and smoke  

(e.g., [2,3-8]. In practice, the detection is based on the analysis of reflectance (or radiance) in visible 

bands or brightness temperature (BT) in IR bands. The magnitude of the difference in reflectance or 

BT in selected bands (or channels) can be used to infer the signature of dust and smoke. This is the 

essence of aerosol imagery detection algorithms. In this paper, we introduce a detection algorithm of 

dust storms and smoke plumes, respectively, for satellite multi-channel imagers by combing visible 

channel radiances/reflectances with IR channel brightness temperatures. Dust and smoke detection 

algorithms are introduced in Section 2 and 3, respectively; Detection results are given in Section 4; 

Comparison with quantitative aerosol optical thickness (AOT) retrieval is performed in Section 5; and 

summary and conclusions are given in the closing section. 

2. Dust Detection Algorithm 

Dust detection is performed only for daytime (defined as solar zenith angle < 80 degrees) in this 

algorithm. Different detecting schemes are developed for land and ocean and are discussed below. 

Let’s first define some variables and their symbols that will be used throughout the paper: 

BT—brightness temperature (wavelength is given in subscript, e.g., BT11m) 

R—reflectance (wavelength is given in subscript, e.g., R0.64µm) 

BTD—brightness temperature difference 

MeanR—mean of reflectance for 3 x 3 pixels (wavelength is given in subscript, e.g., MeanR0.86µm) 

StdR—standard deviation of reflectance for 3 x 3 pixels (wavelength is given in subscript, e.g., 

StdR0.86µm) 

Rat1 = (R0.64µm − R0.47µm)/(R0.64µm + R0.47µm) 

Rat2 = (Rat1 × Rat1)/(R0.47µm × R0.47µm) 

R1 = R0.47µm/R0.64µm 

R2 = R0.86µm/R0.64µm 

NDVI = (R0.86µm − R0.64µm)/(R0.86µm + R0.64µm) 
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MNDVI = NDVI
2
/(R0.64µm × R0.64µm). 

2.1. Dust Detection over Land 

Dust detection over land is not performed over snow and ice or in the presence of higher ice clouds 

due to bright surface perturbation on the aerosol signal. The specific visible reflectance and IR 

brightness temperature tests currently implemented are: 

(1) Good data test for BT and R: 

• R0.47µm, R0.64µm, R0.86µm, R1.38µm > 0  

• BT3.9µm, BT11µm, BT12µm > 0K 

(2) BTD and R tests: 

• BT11µm − BT12µm ≤ −0.5K & BT3.9µm − BT11µm ≥ 20K & R1.38µm < 0.055 

(screen for pixels that are water cloud free. If these conditions are not met, then the 

pixels are cloudy and terminate testing) 

(3) Dust test: 

• If BT3.9µm − BT11µm ≥ 25K then dust 

• If MNDVI < 0.08 & Rat2 > 0.005 then dust 

(4) Thick dust test: 

• BT11µm − BT12µm ≤ −0.5K & BT3.9µm − BT11µm ≥ 25K & R1.38µm < 0.035 

• MNDVI < 0.2 

The above conditions (1) and (2) are used to remove bad observations and cloudy pixels, 

respectively. For condition (3), if BT3.9µm − BT11µm ≥ 25K is satisfied, the pixel is flagged as dust 

laden. This is because dust reflects solar energy at 3.9 µm and so increases the brightness temperature 

difference with BT11m during the day. Moreover, MNDVI < 0.08 and Rat2 > 0.005 are added to 

identify dust over some semi-arid surfaces with small amounts of vegetation. This is because dust 

absorbs at blue wavelengths and appears visually to be brownish in color. Clouds are spectrally neutral 

and appear white to our eyes. For this reason, the reflectances at 0.86, 0.64 and 0.47 µm have been 

used to identify dust. This is often done in a ratio of one to another or as a normalized difference index 

(such as MNDVI or Rat2). For example, for a MODIS granule with dust plume over Mexico (see 

Figure 1), we select the pixels of clear-sky (cl), dust (ds), and cloud (cd) in the regions defined by the 

three red rectangles and display them in scatter plots of Figure 2. Dust pixels are confined in the range 

of MNDVI < 0.08 and Rat2 > 0.005. In the ratio tests described here, we square the reflectances trying 

to take better advantage of the non-linear behavior.  
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Figure 1. Aqua MODIS RGB image for a granule with dust plume over Mexico. cl, ds, and 

cd symbols represent clear-sky, dust, and cloud, respectively. 

  

Figure 2. Scatter plot of MNDVI versus Rat2 for dust (yellow x’s) and cloud (black 

crosses) pixels in Figure 1. 

  

Two tests are used to indicate the presence of optically thick dust in condition (4). The first is 

BT11µm − BT12µm ≤ −0.5K and BT3.9m − BT11m ≥ 25K and R1.38m < 0.035. The bulk transmittance of 

many aerosols displays a strong spectral variation in the 8–10 m and 10–12 m regions. This is also a 

spectral region over which the atmosphere is fairly transparent (or window regions). For these reasons, 

techniques have been developed which successfully employ satellite radiance measurements at 11 and 

12 m to detect aerosols. These split window IR techniques have primarily been applied to the 

detection of volcanic aerosols, particularly those from sulfur-rich eruptions [e.g., 9,10], and dust 
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outbreaks [11-13]. As demonstrated in Figure 3 for the case of Figure 1, dust absorbs more radiation at 

12 µm than 11 µm, which causes the brightness temperature difference between the two to become 

negative. Moreover, there is absorption and emission of water vapor in the 11 and 12 µm channels. 

Because the weighting function for the 11 µm channel peaks lower in the atmosphere (higher in 

temperature) than the 12 µm channel does, the presence of a dry air mass, often associated with dust 

events, will tend to reduce the positive BT11m − BT12m values associated with clear-sky atmospheres. 

In addition, dust has a larger absorption at 12 µm than at 11 µm, so that dust plumes generally have a 

higher emissivity and lower transmissivity in the 12 µm channel [4,14]. For elevated dust layers, the 

increased temperature separation between the dust layer and the surface, and the coincident reduction 

of dry air closer to the peak of the 11 µm weighting function, makes the split window brightness 

temperature difference less positive. This difference has also been observed to be affected by the 

optical thickness of a given dust plume, so that with thick optical thickness the BT11m − BT12m 

difference has a negative value. 

Figure 3. Scatter plot of the brightness temperature difference between MODIS 3.9 and 

11.0 µm versus that between MODIS 11.0 and 12.0 m for dust (yellow x’s), clear-sky 

(light-blue crosses), and cloud (black crosses). 

  

Darmenov and Sokolik [15] further explored the brightness temperature difference technique using 

MODIS data applied to dust outbreaks from different regions of the globe. In general, BT8m − BT11m 

becomes less negative and BT11m − BT12m becomes more negative with increasing dust loading, which 

is confirmed by our analysis as shown in Figure 4 for the case of Figure 1. Since Figure 4 provides similar 

information content to Figure 3 so that BT8m − BT11m is not used in the current dust detection algorithm. 

However, low level clouds (often towering cumulus) can also have a negative split window brightness 

temperature difference. Therefore, two additional tests are applied to attempt screening out cloud 

contaminated pixels. The first is BT11µm − BT12µm ≤ −0.5K & BT3.9m − BT11m ≥ 25K & R1.38m < 0.055 

(see Figures 3 and 5). The second test is MNDVI < 0.2. The MNDVI values for clouds and clear-sky 
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are generally larger than 0.2 (as shown in Figure 2 for cloud and the following Figure 5 for clear-sky) 

but less than this value for dust pixels, especially for heavy dust scenarios. 

Figure 4. Scatter plot of the brightness temperature difference between MODIS 8.5 and 

11.0 µm versus that between MODIS 11.0 and 12.0 m for dust (yellow x’s), clear-sky 

(light-blue crosses), and cloud (black crosses) pixels in Figure 1. 

  

Figure 5. Scatter plot of MNDVI= NDVI
2
/(R0.64µm × R0.64µm) versus R1.38m for clear-sky 

(light-blue crosses) and dust (black crosses). 

  

Through the analysis which is similar to Figures 1–5 for a few of training images over the globe, a 

set of initial threshold values were selected visually. This selection is somewhat subjective but selected 

values can reasonably separate dust from clouds and underlying surface for these training cases. These 

initial thresholds were further refined by application to more sample images mainly through  

trial-and-error, which is painstaking. The current thresholds need to be further adjusted in future 

practical operational applications. Similar methodology is also used to determine the threshold values 

of the smoke detection algorithm introduced below.  
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2.2. Dust Detection over Ocean 

Dust detection over ocean is not performed over sea ice or in the presence of higher ice clouds. The 

specific tests currently implemented are as follows: 

(1) Good data test: 

• R0.47µm, R0.64µm, R0.86µm > 0  

• BT3.9µm, BT11µm, BT12µm > 0K 

(2) BTD and R tests plus uniformity texture tests: 

• 4K < BT3.9µm − BT11µm ≤ 20K 

• R0.47µm ≤ 0.3 

• MeanR0.86µm > 0 and StdR0.86µm ≤ 0.005 (3 × 3 pixels) 

(identify water cloud) 

(3) Dust test: 

• if BT11µm − BT12µm < 0.1K and -0.3 ≤ NDVI ≤ 0 then dust 

• if R0.47m/R0.64m < 1.2 then dust 

• if BT3.9µm − BT11µm > 10K & BT11µm − BT12µm < −0.1K then dust 

(4) Thick dust test: 

• BT3.9µm − BT11µm > 20K (define potential thick dust regime) 

• if BT11µm − BT12µm ≤ 0K and −0.3 ≤ NDVI ≤ 0.05 then heavy dust 

Since dust over ocean is more uniformly distributed than cloud and less reflective than cloud, 

uniformity test (StdR0.86µm ≤ 0.005) and reflectance test (R0.47m ≤ 0.3) are added to BTD test  

(4K < BT3.9µm − BT11µm ≤ 20K) to separate better the dust from cloud over ocean. There are three 

separate tests for dust over water and each is described below. Any pixel that passes any of the three 

tests is flagged as dusty, although some of the tests have multiple conditions that must be satisfied. 

If BT11m − BT12m < 0.1K and −0.3 ≤ NDVI ≤ 0 then the pixel is set as dust contaminated. 

Ackerman [4] studied the possibility of detecting airborne dust using the difference between the BT11m 

and BT12m. He found that airborne dust caused a depression of this value and therefore may be useful 

in detecting and tracking dust plumes. This split window brightness temperature difference is also the 

basis for current efforts to use airborne dust in assisting the tracking of the Saharan air layer [14] using 

GOES satellite observations. However, the split window difference can also lead to false positive tests, 

and so it is coupled with a NDVI-type condition of the pixel. The presence of smaller aerosols, like 

smoke, tends to reduce the values of R0.86m/R0.64m ratio, as smaller particles are more efficient at 

scattering light at 0.64 µm. Although dust particles are observed to scatter more light at 0.64 m than 

at 0.86 m probably due to their size, they tend to exhibit more uniform scattering across this spectral 

region [16]. Thus, the R0.86m/R0.64m ratio test [13] has been found useful in discriminating pixels 

containing smoke from those with dust. Rather than directly using the ratio, a modified version (or 

NDVI test) is employed here.  

Another test for examining dust over ocean is the requirement of R0.47m/R0.64m < 1.2 since 

clear-sky ocean surface tends to reflect more in 0.47 m than 0.64 m compared with dust particles. 

Similar to the dust detection over land, low level clouds (often towering cumulus) can also have a 
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negative split window brightness temperature difference. Therefore, the two additional tests  

(BT3.9m − BT11m > 10K and BT11m − BT12m < −0.1K) are applied to attempt reducing cloud 

contaminated pixels. 

Similar to the tests of heavy dust over land, two conditions that indicate the presence of optically 

thick dust over ocean are employed. The first test, BT3.9µm − BT11µm > 20K, is used to define thick dust 

regime by separating from thin dust. The second test is BT11µm − BT12µm ≤ 0K and −0.3 ≤ NDVI ≤ 0.05. 

The first part of the test associated with BTD is the ocean version of the split window IR detection 

technique for heavy dust. The second part of the test associated with NDVI is similar to the detection 

of non-thick dust, which is used to reduce the false detection in the split window test. 

The above tests and thresholds have been examined by using MODIS observations. Figure 6 is an 

example of MODIS granule with dust over the coastal ocean of Africa. Similar to the case of Figure 1 

over land, we select pixels with clear-sky (cl), dust (ds), and cloud (cd), in the regions defined by the 

three red rectangles. and display them in scatter plots in Figure 7. It is seen that dust, cloud, and clear-sky 

pixels are clustered in different regimes defined by BTDs or reflectances (and/or their ratios). The 

threshold values set in the detection scheme are well justified. This result is not a surprise since the 

threshold values are determined by using the similar analysis approach shown in Figure 7 for many 

sample images. 

Figure 6. Terra MODIS RGB image for a granule with dust plume over coastal ocean of 

Africa. cl, ds, cd symbols represent clear-sky, dust, and cloud, respectively. 
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Figure 7. Scatter plots of the BTD and reflectances (and their ratios) in selected MODIS 

channels for the pixels with dust, clear-sky, and cloud over ocean for the case of Figure 6. 

  

3. Smoke Detection Algorithm 

Smoke detection is also performed only for daytime. Different detecting schemes are developed for 

land and ocean and they are introduced below. 

3.1. Smoke Detection over Land 

Smoke detection over land is performed without the presence of higher ice clouds. The specific tests 

currently implemented are as below: 

(1) Good data test: 

• R0.47µm, R0.64µm, R0.86µm, R2.26µm > 0  

• BT3.9µm, BT11µm > 0K 

(2) Fire detection:  

• BT3.9µm > 350K and BT3.9µm − BT11µm ≥ 10K 

(3) Spectral and uniformity tests: 

• R2.26µm < 0.2  

• R0.64µm > (−0.006 + 0.611R2.26µm) 

• R1 ≥ 0.85 and R2 ≥ 1.0 

• if StdR0.64µm ≤ 0.04 (3x3 pixels) then thick smoke 

(4) If fire or thick smoke then smoke. 
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First, fires are hot spots with a high brightness temperature at 3.9 m. The hot spots are detected 

with BT3.9µm > 350K and BT3.9µm − BT11µm ≥ 10K and flagged as fire pixels, with which smoke should 

be accompanied. The solar channel tests over land take advantage of a linear relationship observed 

with MODIS for clear sky vegetated land surfaces at R0.64m versus R2.26m for R2.26m < 0.2 (see [5]). 

The relationship gets noisy once R2.26m > 0.2. When smoke is added to the scene, there is a larger 

increase in R0.64m than R2.26m, so smoke contaminated pixels should lie above the linear relationship 

between the two channels. The value of 0.006 in the test is to avoid the natural variability in surface 

reflectance. Thus, the initial smoke detection condition of R2.26m < 0.2 is to identify dark surface, 

where fire and smoke may break out. R0.64µm > (−0.006 + 0.611R2.26µm) is used to separate from clear-sky 

surface. In addition, R1 ≥ 0.85 and R2 ≥ 1.0 are used to confine the smoke regime. This definition is not 

sufficient to completely separate smoke from cloud as illustrated in Figure 8 for a scene with smoke 

over Georgia shown in Figure 9. Thus, a uniformity test, StdR0.64µm ≤ 0.04, is added to separate heavy 

smoke from cloud since the reflectance at 0.64 m from clouds in general has a relatively larger spatial 

variability than that from heavy smoke plume. As a result, the current detection algorithm works better 

for heavy smoke plume over dark vegetated surface. More research is needed for improving the 

detection of non-heavy or dispersed smoke, especially over semi-arid land surface. The artificial neural 

networks (NN) approach [8] is worth further exploration since it has an advantage of producing 

continuous outputs representing the mixture portions of smoke, cloud, and clear background. However, 

its limitation of being time consuming for global and operational applications needs to be 

evaluated carefully. 

Figure 8. Scatter plots of R2 = R0.86m/R0.64m versus R1 = R0.47m/R0.64m for clear-sky 

pixels (blue), smoke pixels (dark), heavy smoke pixels (yellow), and cloudy pixels (gray). 
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Figure 9. Terra MODIS RGB image for a granule with smoke plume over Georgia. Four 

rectangle regions influenced, respectively, by cloud (cd), clear-sky (cl), smoke (smoke), 

and heavy-smoke (hsm) are selected for sensitivity tests. 

 

3.2. Smoke Detection over Ocean 

Smoke detection over ocean is performed without the presence of higher ice clouds. The specific 

tests currently implemented are as below: 

(1) Good data test: 

• R0.47µm, R0.64µm, R0.86µm > 0  

• BT11µm > 0K 

(2) Reflectance test:  

• 0.2 < R0.47µm < 0.25 and 0.05 < R0.86µm < 0.15 

(3) Brightness temperature and uniformity test:  

• BT11µm > 290K 

• StdR0.86µm ≤ 0.005 (3 × 3 pixels) 

(4) Reflectance ratio test: 

• 1.5 < R1 < 2.0 and 0.6 < R2 < 1.0 

Smoke in visible channels looks brighter than ocean surface but darker than cloud. Thus, reflectance 

from smoke should be larger than that from clear-sky ocean surface but less than that from cloud. To 

select the proper threshold values for the tests, we examined many MODIS observations with smoke 

over ocean. As an example, Figure 10 is a MODIS granule with smoke over ocean and its examination 

is shown in Figure 11. According to the scatter plot of Figure 11 for clear-sky (cl), smoke (sm), and 

cloud pixels (cd) selected, respectively, from the regions confined by three red rectangles in Figure 10, 

smoke is confined in the range of 0.2 < R0.47µm < 0.25 and 0.05 < R0.86µm < 0.15. Smoke plumes are 
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more spatially uniform than clouds and the BT is also warmer than clouds, which is the physical basis 

of the brightness temperature and spatial uniformity tests. Since smoke and cloud are very similar over 

ocean, it is very difficult to completely separate them by solely using the reflectance test as seen in 

Figure 11. However, more information can be used to enhance the separation of cloud and smoke. For 

example, cloud reflects more at 0.86 m relative to at 0.64 m compared to smoke and both cloud and 

smoke reflect less at 0.47 m relative to at 0.64 m compared to ocean surface under clear-sky 

condition. Thus, spectral different reflectance features between smoke and cloud (or smoke and ocean 

surface) can be further used to separate them. As shown in Figure 12, the reflectance ratio test of 

1.5 < R1 < 2.0 and 0.6 < R2 < 1.0 can help us better separate smoke from cloud and clear-sky over 

oceans in addition to the reflectance test itself. Thus, our detection scheme includes reflectance test as 

well as reflectance ratio test. 

Figure 10. Terra MODIS RGB image for a granule with smoke plume over ocean. Three 

rectangle regions influenced, respectively, by cloud (cd), clear-sky (cl), and smoke (smoke) 

are selected for sensitivity tests. 

 

As a summary, the processing outline of our dust and smoke detections is shown in Figure 13, 

which includes the basic modules for input, output, and detection over land and water. 

Calibrated/navigated satellite reflectances and brightness temperatures on selected channels, 

geolocation (latitude/longitude) information, and sensor quality flags are used as the sensor input data 

for the algorithm. Some ancillary information, including cloud mask, snow/ice mask, sun glint mask, 

and day/night flag, are needed as input. The final output of the detection algorithm for smoke and dust 

is a single yes/no mask (or index). The output also includes some cloud screening results, sun glint, 

surface types for the purpose of QA/QC analysis. The detection algorithm is implemented sequentially. 

The detection includes checking the validity of each channel before applying the appropriate tests. The 

detection also expects the Level 1b processing to flag any pixels with missing geolocation or viewing 
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geometry information. The detection does check for conditions where the algorithm cannot be 

performed. These conditions include saturated channels. In these non-detection cases, the appropriate 

flag is set to indicate that no dust or smoke mask was produced for that pixel. To balance the efficiency 

and memory requirement for the full disk processing from a geostationary satellite, a block of scanning 

lines are read into a RAM buffer together instead of reading data pixel by pixel. The algorithm is 

written in C++, and products are output in HDF format. 

Figure 11. Scatter plots of R0.86m versus R0.47m for clear-sky pixels (blue), smoke pixels 

(yellow), and cloudy pixels (black) for the case of Figure 10. 

  

Figure 12. Scatter plot of R2 = R0.86m/R0.64m versus R1 = R0.47m/R0.64m for clear-sky 

pixels (blue), smoke pixels (yellow), and cloudy pixels (black) for the case of Figure 10. 
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Figure 13. High level flowchart of the dust and smoke detection algorithms, illustrating the 

main processing sections. 
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4. Detection Results and Validation 

The detection algorithm has been tested using measurements from MODIS [17]. Results will be 

presented below to demonstrate the performance of the algorithm. 

4.1. Dust over Land 

An example of detection results for dust storms over Saudi Arabia desert and Chinese Taklimakan 

desert is shown in Figure 14. The dust plumes in the red-green-blue (RGB) false color images for both 

cases (top panels) are captured by the detection algorithm (dust index) very well (bottom panels). A 

second example is shown in Figure 15, which indicates the dust detection algorithm can even 

successfully capture small dust outbreak in Mexico. 
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Figure 14. Top: red-green-blue (RGB) false color images of an Aqua MODIS observation 

of dust storm in Saudi Arabia (left) and in Taklimakan desert (right).  Bottom: the results 

of the dust detection where pixels flagged as dusty are red. 

 

Figure 15. Top: Red-green-blue (RGB) false color images of Aqua MODIS observations.  

Bottom: The results of the dust test where pixels flagged as dusty are red. 
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4.2. Dust over Ocean 

The results of the application of the ocean dust detection to MODIS data on March 8, 2006 at 

approximate 12:05 UTC is shown in Figure 16. A dust outbreak is flowing from the Sahara desert over 

the adjacent Atlantic Ocean. The left panel is the RGB image and dust is in brownish color. The dust 

detection results over water and land are given in right panel, where red regions indicate the presence 

of dust. Another case is given in Figure 17. The Trans-Atlantic dust (the brownish color in the RGB 

image) above broken clouds is captured successfully by our detection algorithm. 

Figure 16. Terra MODIS RGB Image on March 8, 2006 at about 12:05 UTC in left panel 

and the results of the dust detection in right panel (pixels flagged as dusty are in red). 

 

Figure 17. A Sahara dust outbreak is flowing across the Atlantic Ocean above cloud in a 

RGB image (yellowish color) of left panel and the corresponding dust index (red) of right 

panel. This is an Aqua MODIS granule on June 23, 2007 at 16:00 UTC. 

 

4.3. Smoke over Land 

The results of the application of the land smoke detection to Aqua MODIS data on August 19, 2003 

at approximately 19:00 UTC is shown in Figure 18. Smoke over Ontario and Quebec in Canada are 

detected. The heavy smoke plumes have been well captured but light plumes were missed. This 

suggests that the current algorithm still has difficulty separating light smoke plumes from surface, 

especially for arid and semi-arid surfaces, which deserves further studies for improvement. 
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Figure 18. A RGB image of an Aqua MODIS granule on August 19, 2003 at 19:00 UTC is 

given in the left panel. The results of the smoke detection are shown in the right panel 

where pixels flagged as smoky are red. 

 

4.4. Smoke over Ocean 

The results of the application of the ocean smoke detection to Terra MODIS data on October 28, 

2003 at approximately 18:25 UTC are shown in Figure 19. Smoke over the coast of California due to 

dry season fire is detected. The detected coverage of the smoke is somewhat less than that observed 

from the RGB image. This is because it is still difficult to separate smoke and cloud without any 

ambiguity over ocean. We prefer to set threshold values for smoke more conservatively to make sure 

the pixels flagged as smoky are free from cloud contamination, which, on the other hand, may also 

result in missing thinner smoke plumes in the detection. 

Figure 19. A RGB false color image of a Terra MODIS granule on October 28, 2003 at 

approximately 18:25 UTC in the left panel (cd, cl, and sm represent cloud, clear-sky, and 

smoke, respectively). The results of the smoke detection are in the right panel where pixels 

flagged as smoky are red. 

 

5. Comparison with MODIS Aerosol Retrieval 

Aside from the comparison of the detection results from MODIS observation with the 

corresponding MODIS RGB images presented in the previous section, the results are also compared 

with the aerosol optical thicknesses (AOT) retrieved from the MODIS radiances using a physically 
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based algorithm by the official MODIS aerosol team (see [18]) for a further check on the performance 

of our detection. 

Dust particles are mainly located in desert regions and downwind areas, and a dust event is mainly 

associated with high aerosol optical thickness, so that the AOT distribution retrieved from satellite 

observation can help us examine the dust detection algorithm based on satellite images. One example 

is shown in Figure 20 for the same case as Figure 16. Comparison of dust detection flag with MODIS 

retrieved AOT image shows good consistency, even though MODIS AOT product has gaps in the 

bright areas (e.g., sun glint region over ocean and desert over land) and very high AOTs are masked as 

clouds in the MODIS AOT retrieval algorithm. More detailed checks (with the help of the RGB image 

in Figure 16) indicate that the dust detection algorithm misses some very thin dust plumes but can 

capture thick dust plumes even in the bright areas, where AOT retrieval is not available. Aside from 

MODIS AOT product, MODIS aerosol fine mode fraction (FMF) product can also be used to confirm 

the pixels with high AOT values are with large particles (low FMF values), such as dust. One example 

comparing RGB image, AOT, and FMF with our dust detection (dust index), is given in Figure 21 for 

the Trans-Atlantic dust case of Figure 17. Our dust index image compares very well with the 

corresponding RGB, AOT, and AFM images (remember there is no AOT and AFM retrieval in sun 

glint region). 

In general, aerosol optical thickness of smoke is high and its spatial distribution is in the plume 

structure. Thus, AOT images can be used to validate our smoke detection result. Figure 22 is an 

example for the smoke case presented in Figure 18. High AOT plumes compare well with the smoke 

flags, especially the thicker plumes. As the previous comparison with the RGB image in Figure 18, this 

comparison with AOT also indicates the current smoke detection scheme has difficulty to capture 

thinner smoke plumes. Since smoke particles fall in fine mode category, aerosol fine mode fraction 

(FMF) product produced by MODIS aerosol retrieval can be used together with AOT for the validation 

of smoke detection to identify the existence of smaller smoke particles (with high FMF value) as for 

the validation of dust detection. 

Figure 20. Comparison of MODIS AOT retrieval (left panel) with the dust detection result 

(right panel) for the case of Figure 16. There is no MODIS AOT retrieval for bright areas 

(e.g., sun glint region over ocean and desert over land). 
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Figure 21. Comparison of RGB image, dust index, AOT, and FMF for the Trans-Atlantic 

dust case of Figure 17. The gap in AOT and FMF is in sun glint region, where there is no 

AOT and AFM retrieval available. 

 

Figure 22. Left: Aqua MODIS AOT on August 19, 2003 at about 19:00 UTC. Right: the 

results of the smoke detection (pixels flagged as smoky are in red). 
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6. Summary and Conclusions 

A dust and smoke detection algorithm is presented in this paper. The detection product (dust and 

smoke) is produced for each pixel observed by a satellite multi-channel imager. The detection relies on 

spectral and spatial threshold tests along with some uniformity texture examinations by using radiances 

(or reflectances) and brightness temperatures from a multi-channel radiometric imager. The algorithm 

output is written in HDF format for both smoke and dust flags with values: 0 (no dust/smoke) and 1 

(dust/smoke). The detection algorithm is implemented sequentially and designed to run on segments of 

data instead of pixel by pixel for efficient processing. MODIS observations are used to test the 

operation and performance of the algorithm. 

The algorithm enables detection for all satellite pixels during daytime. It can capture heavy dust and 

smoke plumes over both land and ocean so that it can be used as a global detection algorithm. Due to 

the relatively weak aerosol signal and large uncertainties associated with a bright surface, the current 

algorithm has difficulty capturing thinner or dispersed dust and smoke plumes. It also does not work 

for the snow/ice surface due to associated strong surface perturbation on the aerosol signal. The 

algorithm can be applied to any multi-channel imagers (such as current EOS/MODIS and future 

JPSS/VIIRS and GOES-R/ABI) with proper detection channels used by the algorithm. 

The above comparison and evaluation is limited to pre-operation (or pre-launch) phase so that the 

focus is mainly on indentifying the capability and limitation of the algorithm using some golden 

validation cases. Since the algorithm is designed for global operational applications, it would be better 

to provide a conclusive statistical evaluation, based on extensive validation cases accumulated from 

practical operational runs. The algorithm is designed for the future JPSS/VIIRS and GOES-R/ABI 

imagers to operationally monitor the outbreak of dust storms and smoke plumes so that conclusive 

statistic evaluation will be provided once it is up and running. However, we will continually perform 

comparisons for different scenarios during the evolution of the algorithm in the pre-operation (or  

pre-launch) phase. 

There is room for improvement of the algorithm that can be explored in the future, including 

(1) alternative detection approach for thinner or dispersed dust and smoke plumes (such as the neural 

networks approach), (2) refining smoke detection over the ocean to better separate from cloud 

(especially shallow cloud), (3) extending the smoke detection to semi-arid land surface, (4) exploring 

smoke and dust detection at night using brightness temperature only, (5) performing additional 

comparisons by using complementary measurements to the imagers, such as lidar measurement 

from CALIPSO.  
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