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Abstract: Climate change and rising temperatures have been observed to be related to the 

increase of forest insect damage in the boreal zone. The common pine sawfly (Diprion  

pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine 

forests. Defoliation by D. pini can cause severe growth loss and tree mortality in Scots pine 

(Pinus sylvestris L.) (Pinaceae). In this study, logistic LASSO regression, Random Forest 

(RF) and Most Similar Neighbor method (MSN) were investigated for predicting the 

defoliation level of individual Scots pines using the features derived from airborne laser 

scanning (ALS) data and aerial images. Classification accuracies from 83.7% (kappa 0.67) 

to 88.1% (kappa 0.76) were obtained depending on the method. The most accurate result 

was produced using RF with a combination of data from the two sensors, while the 

accuracies when using ALS and image features separately were 80.7% and 87.4%, 

respectively. Evidently, the combination of ALS and aerial images in detecting needle 

losses is capable of providing satisfactory estimates for individual trees.  

Keywords: ALS; defoliation; Diprion pini; forest disturbance; logistic regression; MSN; 

random forest 
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1. Introduction 

The world’s climate has experienced dramatic changes over the past decades causing, among other 

things, rising temperatures across the globe [1]. The present changes have already resulted in 

numerous effects on species’ distribution and phenology, leading to damage by insect pests in 

managed forests (e.g., [2-4]). The rate of change, e.g., in mean annual temperature, is higher at higher 

latitudes, such as in Nordic countries. Biological invasions and climate change are two of the 

components of global change comprising the greatest environmental challenges of today [5]. 

Predicting changes in the distribution of and damage from pest organisms has become a topical issue 

in the field of forest research. 

Some forest insects, formerly regarded as harmless species, have now altered their pest status and 

are causing serious damage in Finland [6,7]. Economic losses from needle defoliators can be 

considerable, approximately EUR 300–1000 per hectare, depending on the intensity of needle loss and 

number of years with high population densities. It can require over a decade for a tree to fully recover 

after a 1–3 year outbreak [8]. 

Diprion pini is a univoltine species in Scandinavia that consumes all the needle age-classes of Scots 

pine in August and September. This could lead to a total defoliation of host trees in the peak phase of 

population dynamics [9,10]. Mature and maturing trees have the highest defoliation risk [10,11], and 

trees of that age have the highest economic value. A massive outbreak by D. pini occurred in dry and 

dryish pine forests in central Finland between 1997 and 2001, covering 500,000 ha [6]. The outbreak 

reached easternmost Finland in 1999 (Ilomantsi district), and the chronic sawfly densities have 

fluctuated in the area ever since. 

There is an increased need for rapid assessment methods of forests affected by such hazardous 

events [12]. The symptoms of forest damage by insects are in many cases visible from far distances. 

Some types of forest damage such as crown discoloration, defoliation and dieback are even more 

visible from a bird’s eye view than from the ground. In particular, a better assessment of the dispersion 

and range extension pattern can be based on remote sensing (RS) data. RS can produce data for large, 

inaccessible forest lands quickly and at a much lower cost than ground surveys [13,14]. 

The recent development of RS technologies, particularly airborne laser scanning (ALS), has 

provided new tools for forest inventory and monitoring. With its ability to directly measure forest 

structure, including canopy height and crown dimensions, ALS is increasingly used for forest 

inventories at different levels. Previous studies have shown that ALS data can be used to estimate a 

variety of forest inventory attributes including tree, plot and stand level estimates for tree 

height [15-18], biomass [19-21], volume [22-24], basal area [20,25,26] and tree species [21,27-30].  

ALS is also a promising method for monitoring forest hazards and defoliation, because of its ability 

to derive vegetation structure properties. The capability of ALS to map defoliation has been 

demonstrated for a pine sawfly attack in Norway [31]. ALS data were acquired both before and after 

the insect attack, and the defoliation was derived from the change in penetration rate and Leaf Area 

Index (LAI). Further studies have indicated that it might be possible to derive defoliation data even 

without having repeated ALS acquisitions [32], and that different types of disturbances to some extent 

can be distinguished based on the type of ALS penetration through the forest canopy [33]. In those 
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studies the defoliation mapping was carried out with a spatial resolution of 10 × 10 m, 20 × 20 m or for 

forest stands. However, an attempt to derive single tree defoliation data was not successful [34].  

The aim of the present study was to test the accuracy of needle loss detection, determined by 

features extracted from ALS and image data. We propose the hypothesis that the distribution of the 

laser returns of a defoliated tree differs from that of a healthy tree estimated by LASSO, RF and MSN 

methods. Classification accuracy (%) and kappa values were calculated for accuracy evaluation. 

2. Material and Methods 

2.1. Study Area 

The current study was performed in Eastern Finland, in the Ilomantsi district (62°53′N, 30°54′E) 

(Figure 1). The study area, covering 34.5 km2, was located in a region where D. pini has caused 

considerable damage in an area of 10,000 ha during the past 10 years. The field inventory was carried 

out in May and June 2009. The forest stands in the study area were mainly pure pine stands growing 

on dry to dryish sandy soil sites. The majority of the stands were young or middle-aged forests having 

an average age of 53 years and a diameter of 14.7 cm. 

Figure 1. Location (left) and map with forest compartments (right) of the study area in 

Ilomantsi district. 

   

2.2. Field Data 

The visual assessment of defoliation intensity was carried out simultaneously with tree-wise 

measurements in the field sampling plots. The sampling plot centers were located in the field with a 

Trimble Pro XH (Trimble Navigation Ltd., Sunnyvale, CA, U.S.), which can reach up to 30-cm 

precision. Differential post processing was applied. The individual trees were located by measuring the 

distance and angle from north of a tree from the plot center. The intensity of defoliation of a single tree 

was visually estimated from different directions from the tree according to Eichhorn [35]. In the 
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method, the amount of the needles of a tree under investigation is compared to a reference tree with 

full healthy foliage growing on the same site type. An accuracy of 10% was used in the estimation of 

needle loss. The defoliation percentage of 20% was determined as a threshold of severe needle loss, 

due to annual growth losses of 40–50% in the forthcoming years, after a consumption of 20% of the 

total needle biomass by D. pini [36].  

A sample of 271 single Scots pines detected from the ALS data was chosen for the analysis. Half of 

the pines suffered from severe needle loss and the other half were healthy (Table 1). The data were 

randomly divided into training data (136 trees) and test data (135 trees). Size, age and canopy strata 

affect the defoliation level of a tree. In the study area, the taller and older trees in dominant canopy 

strata were typically more defoliated than younger ones. To achieve reliable results, the 

aforementioned effects needed to be eliminated. Therefore, the analysis was limited to the same size 

and age categories of trees from the dominant canopy strata in both classes. Size distribution was based 

on tree height (Figure 2). The trees in healthy classes had a defoliation level 10% or less and in 

defoliated classes 20% or more. 

Table 1. Statistics of trees in defoliated and healthy categories, where d is the laser 

diameter at breast height and h is the laser height of a tree. 

    n dmean dmin dmax dsd hmean hmin hmax hsd 

Training Defoliated 62 19.3 12.8 24.2 3.0 14.8 10.1 18.4 2.2 
Training Healthy 74 16.7 12.7 24.2 3.5 13.0 10.0 18.4 2.5 
Test Defoliated 74 19.7 12.9 23.2 2.7 15.1 10.2 17.7 2.0 
Test Healthy 61 17.0 12.6 24.2 3.6 13.2 10.0 18.3 2.6 

Figure 2. Plotted heights of healthy and defoliated trees. The x axis presents the 

identification number of a tree in class i and the y axis presents the height of a tree in class 

I, where i is a defoliation class in data set. 
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2.3. Remote Sensing Material 

The ALS data were acquired in July 2008 with a Leica ALS50-II SN058 laser scanner (Leica 

Geosystem AG, Heerbrugg, Switzerland). The flying altitude was 500 m at a speed of 80 knots, with a 

field of view of 30 degrees, pulse rate of 150 kHz, scan rate of 52 Hz and size of the laser footprint on 

the ground of 0.11 m. The density of the returned pulses within the field plots was approximately 

20 pulses per m2. Aerial images were taken with a Vexcel Ultracam digital camera (Vexcel 

Corporation, Boulder, CO, U.S.). The flying altitude was 5,850 m and the resolution of the images was 

50 cm. It was assumed that there were no significant changes in defoliation status between the 

acquisition of ALS data and the field measurements due to finalized elongation of current shoots of 

pine trees.  

ALS data were classified into ground or non-ground points using the standard TerraScan approach 

as explained by Axelsson [37]. A digital terrain model was created using classified ground points. 

Laser heights above ground (normalized height or canopy height) were calculated by subtracting the 

ground elevation from corresponding laser measurements. Heights greater than 2 m were considered as 

vegetation returns, and only these were used for tree feature extraction. 

2.4. Tree Detection and Feature Extraction 

A raster canopy height model (CHM) was created from normalized data for individual tree 

detection and crown segmentation. Single tree segmentations were performed on the CHM images 

using a minimum curvature-based region detector [38]. During the segmentation processes, the tree 

crown shape and location of individual trees were determined. The procedure consisted of the 

following steps: 

(1). The CHM was smoothed with a Gaussian filter to remove small variations on the crown 

surface. The degree of smoothness was determined by the value of standard deviation (Gaussian scale) 

and kernel size of the filter. 

(2). Minimum curvatures were calculated. Minimum curvature is one of the principal curvatures. 

For a surface like CHM, a higher value of minimum curvature describes the tree top.  

(3). The smoothed CHM image was then scaled based on the computed minimum curvature 

resulting in a smoothed yet contrast-stretched image. 

(4). Local maxima were then searched for in a given neighborhood. These were considered as tree 

tops and used as markers in the following marker-controlled watershed transformation for tree crown 

delineations.  

Each segment was considered to present a single tree crown. Laser returns falling within each 

individual tree segment were extracted and the canopy heights of these returns were used to derive the 

tree features. Spectral features near-infrared (NIR), red (R) and green (G) were extracted from the 

aerial images using a window size of 4 × 4 pixels, representing the average crown size (determined 

from individual tree detection (ITD) results; Table 2).  
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Table 2. Features extracted from ALS data and aerial images for individual trees. 

Feature Description 

Hmax Maximum laser height 

Hmean Arithmetic mean of laser heights 

Hstd Standard deviation of heights 

CH Crown height 

CA Crown area as a convex hull 

CV Crown volume as a convex hull in 3D 

HP10-90 Heights 0th–90th percentile 

DS10-90 Percentage of returns below 10–90% of total height 

MaxD Maximum crown diameter when crown was considered as an ellipse 

Ponly Percentage of only returns 

Pfirst Percentage of first returns 

Pintermedian Percentage of intermedian returns 

Plast Percentage of last returns 

NIR Spectral value of NIR band from aerial image 

G Spectral value of green band from aerial image 

R Spectral value of red band from aerial image 

2.5. Classification Methods 

2.5.1. Logistic LASSO Regression 

The logistic regression is a basic method for classifying phenomena to two different classes. The 

LASSO is a shrinkage and selection method for linear regression. It minimizes the usual sum of 

squared errors, with a bound on the sum of the absolute values of the coefficients. The LASSO method 

is described in further detail in Tibshirani [39]. The probability of the defoliation class of the trees was 

modeled with multiple logistic LASSO regression, using the function glm in the R statistical 

package [40]. Logistic regression is commonly used in modeling the probability of occurrence of an 

event. In logistic regression, logit transformation is used to make the relationship between the response 

probability and the explanatory variables linear. The multiple logistic regression model is expressed as 

follows: 

logit(p) = ln[p/(1 − p)] = β0 + β1 × 1 + β2x2 +….+ βnxn   (1) 

where p is the probability that an event will occur and x1…xn are the variables explaining the 

probability. The predicted probabilities are calculated by reverting back to the original scale:  

p = exp(logit(p))/[1 + exp(logit(p))].     (2) 

2.5.2. RF 

The Random Forests algorithm, proposed by Breiman [41], is a nonparametric estimation approach. 

The method is composed of a set of regression trees that are constructed from bootstrapped training 
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data. The bootstrapped data consist in general of sets of samples taken randomly with replacement 

from the original training set. A regression tree is built for each of the bootstrap sets. Random forests 

are created by averaging over trees. A regression tree is a sequence of rules that split the feature space 

into partitions having similar values to the response variable. A method based on a classification and 

regression tree is usually adopted to generate regression trees. At each node of a regression tree, data 

are split until the leaf nodes contain fewer samples than some preselected value, or the sum of squares 

of distances to the mean value of the respective group is less than the threshold. RF is described and 

used for the estimation of tree variables (e.g., in [38]). The R yaimpute library [42] was used 

in calculations. 

2.5.3. MSN 

A common nonparametric estimation method that is applied in operational forest management 

planning ALS inventory in Finland is k-Most-Similar-Neighbor (k-MSN). In k-MSN, the similarity is 

based on canonical correlations and the Mahalanobis distance [43]. The benefit of the k-MSN method 

is that the similarity measurement can be solved analytically. The k-MSN method is the same as MSN 

except that it takes the k nearest observations (in feature space) into account. The R yaImpute 

library [42] was applied in the MSN estimations.  

Before MSN estimation, automatic feature selection was carried out using the simple genetic 

algorithm (GA) presented by Goldberg [44] and implemented in the R GALGO library [45]. The GA 

process starts by generating an initial population of strings (chromosomes or genomes) that consists of 

separate features (genes). The strings evolve during a user-defined number of iterations (generations). 

The evolution includes the following two operations: (1) Selecting strings for mating using a  

user-defined objective criterion (better if more copies are in the mating pool); (2) Letting the strings in 

the mating pool swap parts (crossing over), causing random noise (mutations) in the offspring 

(children) and passing the resulting strings onto the next generation. GA was used with promising 

results previously in ALS feature selection for nonparametric estimation [46]. 

3. Results 

It can be seen that distributions of ALS and spectral features of the aerial photographs vary between 

healthy and defoliated trees (Figure 3). Mean spectral values of the NIR band from aerial image show 

that defoliated trees are brighter than healthy ones. Furthermore, more pulses are returned from lower 

heights if trees are defoliated (Figure 3, DS10, DS50), and the mean crown area determined from ALS 

data (CA) is smaller in defoliated trees than in those which are healthy. 

LASSO regression achieved an accuracy of 86.7% with a respective kappa value of 0.73. Selected 

LASSO features, such as CA, DS10, DS50, and NIR gained the highest values (Table 3). The RF 

method classified the defoliated trees with an accuracy of 88.1%. The respective kappa value was 0.76. 

The most important features used in the RF classification were NIR, DS40, DS50, DS30, DS20, DS10, 

DS60 and G. Figure 4 shows the relatively scaled importance of different features from RF, e.g., NIR 

from aerial image is over two-times more important than the ALS feature DS40, which is the second 

most important. Before MSN estimation, the following features were selected with GA: CA, HP70, 

DS50, DS60, NIR and G (Table 3). Classification accuracy using MSN was 83.7% (kappa value 0.67). 
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The errors in classification occurred both ways in every method. There were few more defoliated trees 

classified to healthy group than healthy ones to defoliated group. 

Figure 3. NIR, DS10, DS50 and CA features used in the classification of defoliated (DEF) 

and healthy (HEA) trees. Table 2 describes the features. 

 

Table 3. Selected features and parameter estimates for LASSO and MSN. Classification 

accuracies and kappa values for LASSO, RF and MSN are presented under the selected 

features. Table 2 describes the features. 

Predictor      LASSO 
RF MSN 

     Estimate 

intercept    5.6742999   
CA    0.1391846  • 

HP70      • 

DS10    −2.375357  • 

DS50    −4.244455   

DS60      • 

NIR    −0.042489  • 

G          • 

Train set Classification accuracy 91.20% 96.30% 85.30% 
  Kappa value 0.81 0.91 0.66 

Test set Classification accuracy 86.7% 88.1% 83.7% 
  Kappa value 0.73 0.76 0.67 
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With the RF method, single sensor data was also tested for classification. When only laser derived 

features were used, classification accuracy of 80.7% was achieved. The respective accuracy with aerial 

photographs only was 87.4%.  

Figure 4. Importance of features in classifying defoliated trees using RF. Higher values 

indicate features that are more important to the classification. For feature descriptions, see 

Table 2. 

 

4. Discussion 

In the present study, statistical ALS features combined with spectral features of aerial images were 

tested in the classification of defoliation of individual trees. LASSO, RF and MSN methods were 

applied to classification of defoliation into severely defoliated and healthy trees. This kind of 

classification procedure enables testing the possible ability to detect severe defoliation from ALS data.  

The methods (RF, LASSO and MSN) showed seemingly promising results, when applied to 

detecting heavy defoliation by means of ALS data. According to our knowledge, this study is the first 

one for detection of insect defoliation. These methods have been used in several studies in the 

estimation of forest characteristics other than defoliation at stand and tree level [29,30,38,47,48].  

The MSN and RF were chosen for this study for the following reasons. MSN is a widely used 

method in Finnish forest planning and thereby has a straight linkage to practical forestry. The new 

applications for a method already used should be easier to adapt. In recent studies, the RF has proved 

to be a promising method in estimating tree- and stand wise variables. One advantage of using the RF 

is that no separate feature selection is needed.  
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operational level, the aerial images are often acquired at the same time as ALS and the combination of 

both can be utilized.  

Defoliation level was visually estimated using the same procedure utilized by the National Forest 

Inventory (NFI) of Finland [49]. However, visual interpretation could easily cause deviation in the 

results if the surveyors were not professionals. Naked-eye calibration is essential when two or more 

researchers are estimating the critical variable. Observers should also recognize a natural variation in 

the growth pattern of foliage biomass. In addition, prevailing conditions could also cause bias in the 

defoliation assessment, e.g., weather, brightness, heavy wind, high tree density, difficult terrain, etc. In 

this study, it was assumed that there were no significant changes in defoliation status between 

acquisition of ALS and field measurement due to increased diapause rate and mortality of sawflies. 

Temperature was exceptionally low and precipitation high during the summer months in 2008, 

enabling most of pine trees to finalize elongation of current shoots without a significant 

sawfly activity. 

According to our results, it is possible to detect trees and forest stands with high defoliation 

intensity using combined high pulse density ALS and aerial images. This may be an important finding 

for detecting and mapping insect damage which is usually a rare and clustered phenomenon. It may 

also be meaningful auxiliary information for improving the inventory of forest damage. For example, 

with RS data, the stratification could be carried out by focusing on more plots in areas where pest 

damage could already be detected from the preliminary RS data. 

To the best of our knowledge the use of ALS ITD inventory for estimating tree defoliation has not 

been previously investigated. However, the results of this study are in some ways comparable with 

those of Ilvesniemi and Karjalainen et al. [50,53]. Ilvesniemi [50] used the same Palokangas study area 

as was utilized here when investigating the usability of aerial photographs and Landsat TM in 

classifying Scots pine defoliation at plot level. The tested estimation methods were the maximum 

likelihood method, unsupervised classification and linear regression model. The image features used 

for needle loss detection were spectral and textural features and vegetation indices. The classification 

accuracies when using features extracted from aerial photographs varied between 38% (nine classes) 

and 87.3% (two classes). The best explanatory variable for needle loss was aerial image NIR channel 

maximum radiation (r2 = 0.69). Classification results with Landsat image features were slightly poorer 

than with the best aerial image feature set (accuracy between 25.4% and 88.7%). Aerial images have 

been applied also in other studies to detect the plot or stand wise defoliation level (see e.g., [51,52]). 

Haara and Nevalainen [51] studied also the tree wise detection accuracy for Norway spruce (Picea 

abies L.). The classification accuracy for reference data was 68.9% with four classes. 

Karjalainen et al. [53] used multitemporal ERS-2 and Envisat satellite images and calculated the 

SAR backscattering intensities (squared amplitude) of 400 m × 400 m grid cells. These SAR features 

were used to estimate defoliation (same two classes as used here). The reference information on the 

forest health status of each grid cell was determined by a specialist in forest protection, applying the 

method over the last two decades. A threshold value of 20% was employed, i.e., if needle defoliation 

in the grid cell was estimated to be more than 20%, then the reference value for classification was set 

as “Heavy defoliation exists”. When 30% of the field reference was used in training and 70% for 

testing the model, an overall classification accuracy of 67.8% was obtained. 
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This study is one of the first steps towards developing an ALS- and aerial photograph-based system 

for monitoring changes in forest health (defoliation) in Finland. Optimally, defoliation mapping should 

be included in current practices; for example, it should be part of the National Forest Inventories (NFI) 

or operational forest management planning that will in the future be performed based on the ALS 

inventory. Field surveys will provide information on growing stock estimation and also more precise 

information about needle defoliation when needed. Then, ALS and aerial images can be applied on 

demand to create stem volume maps and detect status and spatial occurrence of forest defoliation. In 

this study, the high density ALS was utilized. The classification accuracies might have been 

presumably lower using low density ALS data, which is commonly used at the operational level at 

present. However the pulse densities are assumingly increasing in the future also in practical 

implementations. 

Further studies will focus on testing the classification accuracy with more defoliation classes. From 

a practical point of view, it is most important to detect areas of severe defoliation, therefore the use of 

only two classes in our first tests was justified. When several defoliation classes are used,  

non-parametric estimation methods will also be tested. The optimal feature extraction and selection for 

this kind of purpose should be studied further. Further, the use of ALS intensity could improve 

classification accuracy. 

5. Conclusions 

We showed that distributions of ALS pulses and spectral features of aerial photographs vary 

between healthy and defoliated trees. It was possible to achieve 83.7%–88.1% (kappa values  

0.67–0.76) classification accuracy for the two defoliation classes. RF provided the best results, but the 

difference compared to the other methods (LASSO and MSN) was not large. The difference between 

the best (RF) and the worst (MSN) performing method in this study was 4.4%. The accuracies of using 

ALS and image features separately were 80.7% and 87.4%, respectively. It seems that high pulse 

density ALS data combined with aerial images could be utilized when mapping and monitoring forest 

defoliation. However, further studies are needed with respect to using more defoliation classes and for 

linking developed methods to operational forest inventories. 
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