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Abstract: Remotely sensed reflectance spectra may be biased by several intervening factors,
and the biases are propagated into estimations of the fraction of vegetation cover (FVC) by
algorithms based on a linear mixture model (LMM). The errors propagated in FVCs depend
on the retrieval algorithm used, due to differences in the assumptions of the model as well as
constraints employed in the algorithm. These differences should be fully understood prior to
algorithm selection for practical applications. Although numerous studies have investigated
the relationships between errors propagated by different algorithms, these relationships have
not been fully understood from a deterministic perspective. This study introduces a technique
for deriving the analytical underpinnings of error propagation in FVC based on several
LMM-based algorithms. The derivation assumes that measurement noise is band-correlated
additive noise. The bias errors propagated in FVC depended on the endmember spectra
assumed in the algorithm, the target spectrum, and the coefficients of the spectral vegetation
index, which were employed as constraints, as well as magnitude of the input error. It was
found that the relationships among the propagated errors assume asymmetric elliptical forms
with coefficients that are determined by the input variables. These results suggest that the
relationships depend heavily on the choice of endmember spectra as well as the spectrum
of the target pixel and the vegetation index employed as a constraint. The present findings
should assist in the selection of an optimum algorithm based on prior knowledge of the target
field.



Remote Sens. 2010, 2 2681

Keywords: fraction of vegetation cover; linear mixture model; propagated error;
inter-algorithm relationship; vegetation index

1. Introduction

Land vegetation plays an important role in climatic, hydrologic, and geochemical cycles [1–3]. Thus,
changes in the quantity and distribution of vegetation over land surfaces have a tremendous impact on the
global climate. The status of land vegetation must be observed accurately to improve predictive climate
models for carbon emission rates. Such a vegetated surface is often described precisely using biophysical
parameters in a model [4]. One such parameter is the fraction of vegetation cover (FVC), which is a
measure of the horizontal vegetation distribution, usually provided by satellite remote sensing data [4,5].
Information regarding the FVC is also considered to be an important indicator of forest degradation [6],
land-use, land-cover change [7], and management or policy development [8]. Hence, accurate estimation
of the FVC from remotely sensed data would contribute to a variety of environmental studies.

There are several approaches to retrieve the FVC from satellite data, for example, spectral unmixing
of linear mixture models (LMM) [9–11], numerical inversion of radiative transfer models [12,13],
and signal processing approaches, including neural networks [14,15]. Among these models, the first
approach (LMM-based algorithm) is used most frequently due to its simplicity, rationality, and feasibility
in practical applications.

The LMM-based algorithm permits some variations in implementing the model, which produces
different FVC values, from a given target spectrum, via different algorithms. These variations arise
from differences in the choice of endmember variable (which represents a pure spectral component) and
the constraints imposed on the modeled spectrum in the algorithms. In a previous study [16], we derived
the relationships among FVCs using three types of LMM-based algorithms, namely, reflectance-based
LMM, vegetation index (VI)-based LMM, and isoline-based LMM. The first two algorithms differed
in the identity of the endmember variable (reflectance or VI). The third algorithm differed from the
other two in the choice of VI constraint. Information about the relationships among FVCs themselves
is insufficient to inform the choice of an optimum algorithm, because the amplitude of the error due
to measurement noise that is propagated in the FVC value should also vary among algorithms. To
proceed one step further from our previous work, this study investigates the relationships among the
errors propagated in FVCs using the three algorithms.

A remotely sensed reflectance spectrum suffers from some degree of uncertainty due to numerous
intervening factors, such as instrumental noise, poor radiometric and geometric calibration, atmospheric
influences, and soil background effects [17,18]. The errors in the spectral measurements should
propagate into retrievals, and the amplitude of the propagated errors depends on the algorithm
used. Several studies have investigated error propagation in fractional abundances retrieved using the
reflectance-based LMM. Numerical simulations have been conducted to analyze the dependency of
errors induced by uncertainties in the spectrophotometric calibration on the fraction of endmember
components under the two-endmember assumption [19]. Similarly, the errors propagated into
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determination of the fractional abundance, induced by atmospheric contamination, were analyzed
numerically using the multiple-endmember LMM [20]. The relationship between error-prone
measurements (input) and fractional abundances (output) was derived analytically as a function of the
standard deviation of the input error under the multiple-endmember assumption [21].

In this study, we focus on the errors propagated into FVC retrievals obtained from LMM-based
algorithms. Although the relationships between FVCs by LMM-based algorithms have been
examined [16], the relationships that describe the propagated errors have not been articulated. This
information is necessary to guide selection of an optimum algorithm based on prior knowledge of the
endmember spectra and variations in the range of target spectra within a field of study. This study
contributes to this goal. Our objective is to derive the relationships that describe errors propagated into
FVC retrievals computed using several LMM-based algorithms under the two-endmember assumption.
We derive the relationship for errors propagated through all conceivable combinations of the algorithms
within this framework.

2. Background

In the LMM, a target spectrum is represented by a linear sum of endmember spectra [7,8,10,11]. In
this study, we limit both the number of endmembers and bands to two in order to facilitate an analytic
discussion and to normalize the framework with respect to our previous discussion [16]. One of the
endmember classes is vegetation, and the other is non-vegetation, usually represented by a soil spectrum.
Hence, the weight for the vegetation endmember spectrum is the FVC value to be determined. The bands
used in this study are in the red and near infrared (NIR), which are regions of the spectrum that are
most frequently used for vegetation monitoring with respect to VI. Under these limitations, the modeled
spectrum can be written in terms of the vegetation and the non-vegetation spectra (ρρρv = (ρv,r, ρs,r) and
ρρρs = (ρs,r, ρs,n), respectively), where the FVC (ω̂) is a weight,

ρρρm(ω̂) = ω̂ρρρv + (1 − ω̂)ρρρs. (1)

Note that the unity constraint is imposed on the weights in the above equation. Below, we introduce
three algorithms based on LMM under a two-endmember assumption. The details of these algorithms
are provided in [16].

2.1. Algorithm-1: Reflectance-Based LMM

Algorithm-1 is called the reflectance-based LMM, and the value of the FVC (ω̂1) is determined from
the minimization of the distance measure (often, the Euclidean norm) between the target spectrum,
ρρρt = (ρt,r, ρt,n), and the modeled spectrum, ρρρm [10,11]. The formulation of the FVC retrieval by this
algorithm becomes

ω̂1 =
ddd · (ρρρt − ρρρs)

ddd · ddd
, (2)

where ddd is the vector between ρρρv and ρρρs defined by

ddd = ρρρv − ρρρs. (3)
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Table 1. Coefficients of the two-band VIs (pi, qi, and ri).

p1 q1 r1 p2 q2 r2

NDVI −1 1 0 1 1 0

SAVI −(1 + L) 1 + L 0 1 1 L

EVI2 −2.5 2.5 0 2.4 1 1

2.2. Algorithm-2: VI-Based LMM

The second algorithm, algorithm-2, is a VI-based LMM that replaces reflectance in algorithm-1 with
VI [3,22–27]. Numerous variations of the two-band VI (v) have been proposed, and the function f
represents their model equation in the following general form,

v = f(ρρρ)

=
p1ρr + q1ρn + r1
p2ρr + q2ρn + r2

, (4)

where the coefficients pi, qi, and ri depend on the actual choice of VI. The function f covers some of
the well-known VIs, such as NDVI [28], SAVI [29], and EVI2 [30]. The coefficients for those VIs are
summarized in Table 1. The function f can also be rewritten by

f(ρρρ) =
ccc1 · ρρρ+ r1
ccc2 · ρρρ+ r2

, (5)

where the two vectors represented by ccci are defined by

ccci = (pi,qi), (i = 1, 2). (6)

Using the above definitions, the spectrum of a target pixel ρρρt can be transformed into the VI (vt) by

vt = f(ρρρt). (7)

We define the VI values of each endmember spectrum, vv and vs, for the vegetation and non-vegetation
endmember spectra, respectively,

vv = f(ρρρv), (8)

vs = f(ρρρs). (9)

The FVC value obtained from this algorithm (ω̂2) is written as

ω̂2 =
vt − vs

vv − vs

. (10)

2.3. Algorithm-3: Isoline-Based LMM

The third algorithm, algorithm-3, is the isoline-based LMM, in which a target spectrum is modeled in
the same way as in algorithm-1. The only difference between algorithms-1 and -3 is that in algorithm-3,
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the VI is used as a constraint to determine the FVC, similar to algorithm-2. For this reason, algorithm-3
can be viewed as a combination of algorithms-1 and -2 [31–33]. The FVC estimation by this algorithm
(ω̂3) can be written (as a function of vt) as

ω̂3 =
(ccc1 − vtccc2) · ρρρs + r1 − vtr2

(vtccc2 − ccc1) · ddd
. (11)

2.4. Relationship Among the Estimated FVC Values Retrieved by the Three Algorithms

The analytical functions that describe the three algorithms have been investigated by [16]. From that
work, the FVCs estimated by algorithms-1 and -2 (and algorithms-1 and -3) are related by a one-to-n
mapping, meaning that an FVC value obtained from algorithm-1 cannot be uniquely transformed
to an estimation computed using algorithm-2. Some degree of uncertainty is unavoidable in any
transformation defined between these algorithms. In contrast, FVC estimations from algorithms-2 and
-3 have a one-to-one relationship because these algorithms are both functions of the target VI value, vt.
The relationship becomes

ω̂3 =
ω̂2

νω̂2 + 1 − ν
, (12)

where

ν =
(vv − vsccc2) · ddd
(vvccc2 − ccc1) · ddd

. (13)

This result indicates that an FVC provided by one of the algorithms can be uniquely transformed into an
FVC value provided by the other. Note that Equation (12) is only applicable to cases in which the same
VI model is assumed in both algorithms. If the algorithms assume different VIs, the relationship is no
longer one-to-one.

3. Derivation of the Propagated Error in FVC

Spectral measurements from satellite sensors are degraded by several intervening factors.
Measurement noise inevitably propagates into the estimated FVC. Below, we will derive the error
propagated as a function of an input error, for each algorithm.

3.1. Assumptions Applied to the Measurement Error and Error Propagation During Calculation of the
FVC

The uncertainties in the target spectrum are represented as a two-parameter normal distribution with
standard deviation σt. The additive noise is assumed to be centered at a target reflectance spectrum
in the red-NIR reflectance subspace, as illustrated in Figure 1. This representation has been used
to model the synthetic error in measurements, for example, the instrumental noise, sensor calibration
deficiencies, and atmospheric effects [34]. FVCs are computed from a normally distributed reflectance
spectra around the true target spectrum in each algorithm. The computed FVC distribution can be
described as a transformation of this normal distribution into FVC values, which are then distributed
over the modeled subspace in reflectance space (Figure 1). As an example, Figure 1 illustrates the



Remote Sens. 2010, 2 2685

Figure 1. Two-parameter normal distribution of the input noise centered on a target
spectrum, and FVC distributions estimated using two algorithms. The two-dimensional
distribution is projected onto the modeled subspace spanned by the two endmember spectra
in the red–NIR reflectance space. The FVC distributions estimated using each algorithm are
denoted by red and blue lines, along with the line between the two endmember spectra.

result of transforming a normal distribution onto FVC space using algorithms-1 and -3 with NDVI. The
FVC distributions estimated by these algorithms show large discrepancies, indicative of the differences
between the algorithms. The discrepancies arise not only from the FVC itself, but also from the standard
deviations of the FVC distributions produced by each algorithm. An analytical description of the
relationship between the standard deviations (amplitudes of the propagated error) is the center of our
discussion. In this study, we focus on the difference from mean FVC value as a function of σt.

The variable σt can be considered as representing the magnitude of the uncertainty, i.e., the radius of
a circle circumscribing the target spectrum (Figure 2). We represent the reflectance spectra on the circle
by a directional vector (unit vector) eee,

eee = (cos θ, sin θ). (14)

Using the above representation, a biased target spectrum, ρρρt,ϵ may be written by

ρρρt,ϵ = ρρρt + σteee. (15)

The above expression is equivalent to a measured spectrum that includes band-correlated additive noise
described by the fixed values σt and θ (Figure 2).

3.2. Error Propagated in the FVC Using Algorithm-1

The FVC estimation from algorithm-1, with the propagated error (ω̂1,ϵ), may be written as

ω̂1,ϵ =
ddd · (ρρρt,ϵ − ρρρs)

ddd · ddd
. (16)
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Figure 2. Illustration of the noise added to an assumed target spectrum, used to derive the
noise propagation function. The input noise is modeled as band-correlated additive noise.
The angular parameter θ determines the direction of the band-correlation eee. The magnitude
of the additive noise is represented by a parameter σt, which is equivalent to the standard
deviation of the two-parameter normal distribution describing the band-uncorrelated noise.

We assume that the propagated error in the FVC may be modeled using an additive form. Rewriting
Equation (16) by explicitly expressing the error propagated in the FVC estimation by algorithm-1, ϵ1,
yields

ω̂1,ϵ = ω̂1 + ϵ1, (17)

and we can solve for ϵ1 by subtracting Equations (2) from (16),

ϵ1 = ω̂1,ϵ − ω̂1 =
σt

ddd · ddd
ddd · eee. (18)

3.3. Error Propagated in the FVC Using Algorithm-2

FVC retrieval using algorithm-2, with propagated error ω̂2,ϵ, is written by

ω̂2,ϵ =
vt,ϵ − vs

vv − vs

, (19)

where vt,ϵ is the VI value for ρρρt,ϵ, which is defined by

vt,ϵ =
ccc1 · ρρρt,ϵ + r1
ccc2 · ρρρt,ϵ + r2

. (20)

As in the previous subsection, ω̂2,ϵ is assumed to be expressible as a sum of ω̂2 and the error propagated
in the estimation of FVC using algorithm-2, ϵ2,

ω̂2,ϵ = ω̂2 + ϵ2. (21)

Subtracting Equation (10) from (19), we obtain

ϵ2 = ω̂2,ϵ − ω̂2 =
σtaaa · eee

σtbbb · eee+ ϕ
, (22)
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where

ϕ = (vv − vs)(ccc2 · ρρρt + r2)
2, (23)

aaa = (a1, a2) = (ccc2 · ρρρt + r2)ccc1 − (ccc1 · ρρρt + r1)ccc2, (24)

bbb = (b1, b2) = (vv − vs)(ccc2 · ρρρt + r2)ccc2. (25)

3.4. Error Propagated in the FVC Using Algorithm-3

The biased FVC value obtained from algorithm-3 (ω̂3,ϵ) is written as

ω̂3,ϵ =
(ccc1 − vt,ϵccc2) · ρρρs + r1 − vt,ϵr2

(vt,ϵccc2 − ccc1) · ddd
. (26)

Equations (11) and (26) may be rewritten to facilitate the analytical discussion as follows

ω̂3 = γ +
ζ

vt + η
, (27)

ω̂3,ϵ = γ +
ζ

vt,ϵ + η
, (28)

where

γ = −c
cc2 · ρρρs + r2
ccc2 · ddd

, (29)

η = −d
dd · ccc1
ddd · ccc2

, (30)

ζ =
[(ccc1 · ρρρs + r1)ccc2 − (ccc2 · ρρρs + r2)ccc1] · ρρρv + (r2ccc1 − r1ccc2) · ρρρs

(ccc2 · ddd)2
. (31)

From Equations (27) and (28), the propagated error ϵ3 becomes

ϵ3 = ω̂3,ϵ − ω̂3 =
σtsss · eee

σtttt · eee+ ψ
, (32)

where

ψ = [ccc1 · ρρρt + r1 + η(ccc2 · ρρρt + r2)]
2, (33)

sss = ζ[(ccc1 · ρρρt + r1)ccc2 − (ccc2 · ρρρt + r2)ccc1], (34)

ttt = (ccc1 + ηccc2)[ccc1 · ρρρt + r1 + η(ccc2 · ρρρt + r2)]. (35)

In the next section, we plot the relationships among ϵ1, ϵ2, and ϵ3, obtained by numerical simulation.

4. Numerical Simulations of the Inter-Algorithm Relationships

Before we derive the relationships among the propagated errors analytically, we present numerical
examples of the relationships determined by simulation. These examples provide an empirical starting
point for describing the relationships. The simulations were conducted, assuming that vegetation and
non-vegetation endmember spectra in the red-NIR reflectance subspace could be described by (0.05, 0.4)

and (0.2, 0.2), respectively. Three target spectra were assumed: A, (0.1, 0.2); B (0.06, 0.25); and
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C (0.25, 0.33), as illustrated in Figure 3(a). Note that the solid line in Figure 3(a) represents the
model subspace of the LMM retrieval algorithms, which is the focus of this study. Band-correlated
additive noise was then introduced into the three target spectra represented by σteee in Equation (15).
The magnitude of the noise, σt was set to 0.01 during the simulations. The errors propagated in the
FVC using the three algorithms (ϵ1, ϵ2, and ϵ3) were first computed by varying the parameter θ in
Equations (18), (22), and (32). The relationships among ϵ1, ϵ2, and ϵ3 were obtained numerically and are
plotted in Figure 3(b–d).

From Figure 3(b,c), the relationships between errors propagated in algorithm-1 and errors propagated
in algorithms-2 and -3 tended to be elliptical on all target spectra. In contrast, Figure 3(d) shows the
existence of a one-to-one relationship between the errors propagated in algorithms-2 and -3, in each
spectrum, which was expected from our previous work [16]. In the following sections, we derive these
relationships analytically for all possible combinations of inter- and intra-algorithm relationships. A
schematic diagram describing all algorithm combinations is shown in Figure 4.

5. Inter-Algorithm Relationships of the Propagated Error

In this section, we derive the inter-algorithm relationships describing the errors propagated in FVC
estimations, assuming the same VI model for algorithms-2 and -3. There were no differences in the VI
constraints among the retrieval algorithms.

5.1. Relationship Between Algorithms-1 and -2

The errors propagated by algorithms-1 and -2 can be related by eliminating the parameter θ from the
representations of ϵ1 and ϵ2 (Equations (18) and (22)). These two equations can be written in matrix
form as

σtMMMeee =mmm, (36)

where

MMM =

[
ρv,r − ρs,r ρv,n − ρs,n

b1ϵ2 − a1 b2ϵ2 − a2

]
, (37)

mmm =

[
(ddd · ddd)ϵ1
−ϕϵ2

]
. (38)

Solving Equation (36) for eee, we have

eee =
1

σt

MMM−1mmm, (39)

where

MMM−1 =
1

|MMM |

[
b2ϵ2 − a2 −ρv,n + ρs,n

−b1ϵ2 + a1 ρv,r − ρs,r

]
, (40)

|MMM | = |ddd bbb|ϵ2 − |ddd aaa|. (41)
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Figure 3. Relationships among the errors propagated in each of the three algorithms,
obtained by numerical simulation. (a) Plots of the endmember spectra and the three target
spectra used in the simulation. The target spectra A, B, and C are indicated by blue, green,
and red circles, respectively, in (a). Vegetation and non-vegetation endmember spectra
are denoted by the filled and empty squares, respectively. The solid line indicates the
subspace modeled by the reflectance-based LMM. (b) Cross plot of the propagated error
using algorithms-1 (ϵ1) and -2 (ϵ2). The relationships among errors propagated in the three
target spectra, obtained by simulation, are represented by the lines of the corresponding color,
blue, green, and red, for A, B, and C, respectively. Similarly, (c) and (d) are the relationships
between algorithms-1 (ϵ1) and -3 (ϵ3), and between algorithms-2 (ϵ2) and -3 (ϵ3), respectively.
Note that NDVI was chosen as the conditions or constraints used in algorithms-2 and -3 for
those simulations.

ε

ε

ε

ε

ε

ε
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Figure 4. Schematic diagram describing the relationships among errors propagated in each
algorithm considered in this study. The relationships between the errors propagated by each
pair of algorithms are indicated by the colored bidirectional arrows. Information about the
corresponding sections and equations is also provided in the figure.

Propagated error by algorithm-1

Sec.5 Eq. (44)

Sec.7 Eq. (79)

Sec.6 Eq. (75)

Sec.6 Eq. (66)

Sec.5 Eq. (51)

Sec.5 Eq. (46)

Propagated error by algorithm-2 with VI-1

Propagated error by algorithm-2 with VI-2

Propagated error by algorithm-3 with VI-1

Propagated error by algorithm-3 with VI-2

Equation (39) can also be written by

eee =
1

σt|MMM |

[
b2(ddd · ddd)ϵ1ϵ2 − a2(ddd · ddd)ϵ1 + ϕ(ρv,n − ρs,n)ϵ2

−b1(ddd · ddd)ϵ1ϵ2 + a1(ddd · ddd)ϵ1 − ϕ(ρv,r − ρs,r)ϵ2

]
. (42)

To eliminate θ, which is included implicitly in eee, we use the Pythagorean theorem,

eee · eee = sin2 θ + cos2 θ = 1. (43)

Substituting Equation (42) into Equation (43), we obtain the relationship between ϵ1 and ϵ2,

P1ϵ
2
1ϵ

2
2 + P2ϵ

2
1ϵ2 + P3ϵ1ϵ

2
2 + P4ϵ

2
1 + P5ϵ

2
2 + P6ϵ1ϵ2 + P7ϵ2 + P8 = 0, (44)

where

P1 = (ddd · ddd)2(bbb · bbb), (45a)

P2 = −2(ddd · ddd)2(aaa · bbb), (45b)

P3 = 2ϕ(ddd · ddd)(ddd · bbb), (45c)

P4 = (ddd · ddd)2(aaa · aaa), (45d)

P5 = ϕ2(ddd · ddd) − σ2
t |ddd bbb|2, (45e)

P6 = −2ϕ(ddd · ddd)(ddd · aaa), (45f)

P7 = 2σ2
t |ddd bbb||ddd aaa|, (45g)

P8 = −σ2
t |ddd aaa|2. (45h)

The relationship between the errors propagated by algorithms-1 and -2 can be expressed using a
fourth-degree polynomial. The maximum degree term is the product of the square of the two propagated
errors. The coefficients of the polynomial (Pi, i = 1, 2, · · · , 8) depend on the target spectrum,
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endmember spectra, and the choice of the VI model used in algorithm-2 (below, these variables are called
the input data.), in addition to magnitude of the input noise. Equation (44) represents an asymmetric
ellipse, the shape of which depends on the coefficients Pi. This result agrees with the numerical
experiments (elliptical relationships) shown in Figure 3(b).

5.2. Relationship Between Algorithms-1 and -3

The relationship between errors propagated by algorithms-1 and -3 can be derived using the same
steps taken in the previous subsection. By noting the similarities of the representations between
algorithms-1 and -2, we simply substitute aaa, bbb, and ϕ with sss, ttt, and ψ, respectively, to obtain the final
form. The relationship between ϵ1 and ϵ3 results in the following form,

Q1ϵ
2
1ϵ

2
3 +Q2ϵ

2
1ϵ3 +Q3ϵ1ϵ

2
3 +Q4ϵ

2
1 +Q5ϵ

2
3 +Q6ϵ1ϵ3 +Q7ϵ3 +Q8 = 0. (46)

where

Q1 = (ddd · ddd)2(ttt · ttt), (47a)

Q2 = −2(ddd · ddd)2(sss · ttt), (47b)

Q3 = 2ψ(ddd · ddd)(ddd · ttt), (47c)

Q4 = (ddd · ddd)2(sss · sss), (47d)

Q5 = ψ2(ddd · ddd) − σ2
t |ddd ttt|2, (47e)

Q6 = −2ψ(ddd · ddd)(ddd · sss), (47f)

Q7 = 2σ2
t |ddd ttt||ddd sss|, (47g)

Q8 = −σ2
t |ddd sss|2. (47h)

The maximum degree term (fourth-order term) is also the product of the square of each variable. The
coefficients are determined by the input data as well. This result (elliptical form) agrees with the
numerical simulations (Figure 3(c)).

5.3. Relationship Between Algorithms-2 and -3

The relationship between ϵ2 and ϵ3 can be derived using the one-to-one relationship between the
algorithms represented by Equation (12). First, we solve Equation (12) for ω̂2,

ω̂2 =
(1 − ν)ω̂3

1 − νω̂3

. (48)

The relationship between the FVCs with propagated error can also be expressed by replacing ω̂2 and ω̂3

in Equation (48) with ω̂2,ϵ and ω̂3,ϵ, respectively,

ω̂2,ϵ =
(1 − ν)ω̂3,ϵ

1 − νω̂3,ϵ

. (49)

Using Equations (21) and (32), the above equation is rewritten as

ω̂2 + ϵ2 =
(1 − ν)(ω̂3 + ϵ3)

1 − ν(ω̂3 + ϵ3)
. (50)
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Subtracting Equation (48) from Equation (50), we obtain the following relationship,

ϵ2 =
(ν − 1)ϵ3

(1 − νω̂3)(νω̂3 − 1 + νϵ3)
. (51)

The relationship between ϵ2 and ϵ3 is one-to-one, as expected from Equation (12). Recall that the variable
ω̂3 is a function of the input data, and also that ϵ3 is a function of σt. Therefore, the variable ϵ2 is a
function of both σt and the input data. Note that this one-to-one relationship holds only when both
algorithms use the same VI as a variable or a constraint. If the VIs used in the algorithms are different, the
relationship is no longer one-to-one. The derivation of the relationship in such cases will be introduced
later in this study.

The two propagated errors (ϵ2 as ϵ3) should be positively correlated because the two FVC estimates
(ω̂2 as ω̂3) are positively correlated. To confirm this correspondence, we consider the partial derivative
of ϵ2 with respect to ϵ3,

∂ϵ2
∂ϵ3

=
1 − ν

(νω̂3 − 1 + νϵ3)2
. (52)

Since ν is lower than 1 [16], we have

∂ϵ2
∂ϵ3

> 0, (53)

confirming the positive correlation between ϵ2 and ϵ3. The derived result (one-to-one and positive
correlation) agrees with the numerical example shown in Figure 3(d).

6. Relationships Between Errors Propagated Within an Algorithm (Intra-Algorithm)

Algorithms-2 (and -3) produce variable results, depending on the choice of two-band VI. For example,
algorithm-2 in conjunction with NDVI as the endmember variable provides different values for FVC
from that computed using the same algorithm but assuming SAVI as an endmember variable. Therefore,
the propagated errors depend also on the choice of VI. This motivated us to derive the relationship
between various errors propagated by algorithms-2 or -3 (intra-algorithm relationships).

6.1. Relationships Within Algorithm-2

From Equation (22), the error propagated by algorithm-2 is written by

ϵ2 =
σtaaa · eee

σtbbb · eee+ ϕ
. (54)

The error propagated by algorithm-2, assuming a different choice of VI (ϵ′2), is written as

ϵ′2 =
σtaaa

′ · eee
σtbbb′ · eee+ ϕ′ , (55)

where the two vectors aaa′ and bbb′ and the coefficient ϕ′ all depend on the VI choice, which is different from
the result of Equation (54). The expressions of ϕ′, aaa′, and bbb′ can be defined using the VI values of the
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two endmember spectra, v′v and v′s, and the coefficients of the VI for Equation (55), ccc′1, ccc′2, r′1, and r′2, as
follows,

ϕ′ = (v′v − v′s)(ccc
′
2 · ρρρt + r′2)

2, (56)

aaa′ = (ccc′2 · ρρρt + r′2)ccc
′
1 − (ccc′1 · ρρρt + r′1)ccc

′
2, (57)

bbb′ = (v′v − v′s)(ccc
′
2 · ρρρt + r′2)ccc

′
2. (58)

For the sake of brevity, we abbreviate the components of the four vectors used in the above equations as
aaa = (a1, a2), bbb = (b1, b2), aaa′ = (a′1, a

′
2), and bbb′ = (b′1, b

′
2). A matrix representation of Equations (54) and

(55) is given by

σtXXXeee = xxx, (59)

where

XXX =

[
b1ϵ2 − a1 b2ϵ2 − a2

b′1ϵ
′
2 − a′1 b′2ϵ

′
2 − a′2

]
, (60)

xxx =

[
−ϕϵ2
−ϕ′ϵ′2

]
. (61)

Equation (59) is solved for eee,

eee =
1

σt

XXX−1xxx, (62)

where

XXX−1 =
1

|XXX|

[
b′2ϵ

′
2 − a′2 −b2ϵ2 + a2

−b′1ϵ′2 + a′1 b1ϵ2 − a1

]
, (63)

|XXX| = |bbb bbb′|ϵ2ϵ′2 + |aaa′ bbb|ϵ2 + |bbb′ aaa|ϵ′2 + |aaa aaa′|. (64)

The actual form of eee becomes

eee =
1

σt|XXX|

[
(ϕ′b2 − ϕb′2)ϵ2ϵ

′
2 + ϕa′2ϵ2 − ϕ′a2ϵ

′
2

(ϕb′1 − ϕ′b1)ϵ2ϵ
′
2 − ϕa′1ϵ2 + ϕ′a1ϵ

′
2

]
. (65)

The relationships between ϵ2 and ϵ′2 can be obtained by substituting Equation (65) into Equation (43).
The final form becomes

V1ϵ
2
2(ϵ

′
2)

2 + V2ϵ
2
2ϵ

′
2 + V3ϵ2(ϵ

′
2)

2 + V4ϵ
2
2 + V5(ϵ

′
2)

2 + V6ϵ2ϵ
′
2 + V7ϵ2 + V8ϵ

′
2 + V9 = 0, (66)
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where

V1 = (ϕ′b2 − ϕb′2)
2 + (ϕb′1 − ϕ′b1)

2 − σ2
t |bbb bbb′|2, (67a)

V2 = 2[ϕa′2(ϕ
′b2 − ϕb′2) − ϕa′1(ϕb

′
1 − ϕ′b1) − σ2

t |bbb bbb′||aaa′ bbb|], (67b)

V3 = 2[ϕ′a1(ϕb
′
1 − ϕ′b1) − ϕ′a2(ϕ

′b2 − ϕb′2) − σ2
t |bbb bbb′||bbb′ aaa|], (67c)

V4 = ϕ2(a′1)
2 + ϕ2(a′2)

2 − σ2
t |aaa′ bbb|2, (67d)

V5 = (ϕ′)2a2
1 + (ϕ′)2a2

2 − σ2
t |bbb′ aaa|2, (67e)

V6 = −2[ϕϕ′(a1a
′
1 + a2a

′
2) + σ2

t (|bbb bbb′||aaa aaa′| + |aaa′ bbb||bbb′ aaa|)], (67f)

V7 = −2σ2
t |aaa′ bbb||aaa aaa′|, (67g)

V8 = −2σ2
t |bbb′ aaa||aaa aaa′|, (67h)

V9 = −σ2
t |aaa aaa′|2. (67i)

This relationship becomes a fourth-degree polynomial, and the coefficients of the polynomial depend
on the input data. However, the number of terms is different from the the number of terms in the
relationships obtained in the previous section.

6.2. Relationships Within Algorithm-3

The intra-algorithm error relationships within algorithm-3 are almost the same as those described in
the previous subsection. This is because the equation for ϵ3 can be obtained simply by substituting aaa, bbb,
aaa′, bbb′, ϕ, and ϕ′ with sss, ttt, sss′, ttt′, ψ, and ψ′, respectively. The two vectors sss′ and ttt′, and the coefficient ψ′

are determined by the choice of VI, which is different from that for sss, ttt, and ψ. The definitions of ψ′, sss′,
and ttt′ are

ψ′ = [ccc′1 · ρρρt + r′1 + η′(ccc′2 · ρρρt + r′2)]
2, (68)

sss′ = ζ ′[(ccc′1 · ρρρt + r′1)ccc
′
2 − (ccc′2 · ρρρt + r′2)ccc

′
1], (69)

ttt′ = (ccc′1 + η′ccc′2)[ccc
′
1 · ρρρt + r′1 + η′(ccc′2 · ρρρt + r′2)], (70)

where

η′ = −d
dd · ccc′1
ddd · ccc′2

, (71)

ζ ′ =
[(ccc′1 · ρρρs + r′1)ccc

′
2 − (ccc′2 · ρρρs + r′2)ccc

′
1] · ρρρv + (r′2ccc

′
1 − r′1ccc

′
2) · ρρρs

(ccc′2 · ddd)2
. (72)

The error propagated by algorithm-3 is given by

ϵ3 =
σtsss · eee

σtttt · eee+ ψ
. (73)

Similarly, the error propagated by the algorithm using the different VI is given by

ϵ′3 =
σtsss

′ · eee
σtttt′ · eee+ ψ′ . (74)
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For brevity, the vectors in Equations (73) and (74) are abbreviated by sss = (s1, s2), ttt = (t1, t2), sss′ =

(s′1, s
′
2), and ttt′ = (t′1, t

′
2). Because all derivation steps are the same as those taken in the previous

subsection, we simply summarize the final form.

W1ϵ
2
3(ϵ

′
3)

2 +W2ϵ
2
3ϵ

′
3 +W3ϵ3(ϵ

′
3)

2 +W4ϵ
2
3 +W5(ϵ

′
3)

2 +W6ϵ3ϵ
′
3 +W7ϵ3 +W8ϵ

′
3 +W9 = 0, (75)

where

W1 = (ψ′t2 − ψt′2)
2 + (ψt′1 − ψ′t1)

2 − σ2
t |ttt ttt′|2, (76a)

W2 = 2[ψs′2(ψ
′t2 − ψt′2) − ψs′1(ψt

′
1 − ψ′t1) − σ2

t |ttt ttt′||sss′ ttt|], (76b)

W3 = 2[ψ′s1(ψt
′
1 − ψ′t1) − ψ′s2(ψ

′t2 − ψt′2) − σ2
t |ttt ttt′||ttt′ sss|], (76c)

W4 = ψ2(s′1)
2 + ψ2(s′2)

2 − σ2
t |sss′ ttt|2, (76d)

W5 = (ψ′)2s2
1 + (ψ′)2s2

2 − σ2
t |ttt′ sss|2, (76e)

W6 = −2[ψψ′(s1s
′
1 + s2s

′
2) + σ2

t (|ttt ttt′||sss sss′| + |sss′ ttt||ttt′ sss|)], (76f)

W7 = −2σ2
t |sss′ ttt||sss sss′|, (76g)

W8 = −2σ2
t |ttt′ sss||sss sss′|, (76h)

W9 = −σ2
t |sss sss′|2. (76i)

This expression has the same characteristics as that of the intra-algorithm relationship for algorithm-2,
with modifications to the coefficients.

7. Inter-Algorithm Relationships With Different VI Assumptions

The relationships between algorithms-2 and -3, derived in Section 5, are limited to the cases in which
the same VI is chosen for both algorithms. In this section, we expand this limitation by deriving the
relationship between two algorithms assuming different VIs. The derivation is basically the same as that
described in Section 5, with different definitions of ϵ3. We replace ϵ3 with ϵ′3 to indicate the different
choice in VI for algorithm-3. The errors propagated by the algorithms are expressed by

ϵ2 =
σtaaa · eee

σtbbb · eee+ ϕ
, (77)

ϵ′3 =
σtsss

′ · eee
σtttt′ · eee+ ψ′ . (78)

The final form of the relationship becomes

Z1ϵ
2
2(ϵ

′
3)

2 + Z2ϵ
2
2ϵ

′
3 + Z3ϵ2(ϵ

′
3)

2 + Z4ϵ
2
2 + Z5(ϵ

′
3)

2 + Z6ϵ2ϵ
′
3 + Z7ϵ2 + Z8ϵ

′
3 + Z9 = 0, (79)



Remote Sens. 2010, 2 2696

where

Z1 = (ψ′b2 − ϕt′2)
2 + (ϕt′1 − ψ′b1)

2 − σ2
t |bbb ttt′|2, (80a)

Z2 = 2[ϕs′1(ψ
′b2 − ϕt′2) − ϕs′1(ϕt

′
1 − ψ′b1) − σ2

t |bbb ttt′||sss′ bbb|], (80b)

Z3 = 2[ψ′a1(ϕt
′
1 − ψ′b1) − ψ′a2(ψ

′b2 − ϕt′2) − σ2
t |bbb ttt′||ttt′ aaa|], (80c)

Z4 = ϕ2(s′1)
2 + ϕ2(s′1)

2 − σ2
t |sss′ bbb|2, (80d)

Z5 = (ψ′)2a2
1 + (ψ′)2a2

2 − σ2
t |ttt′ aaa|2, (80e)

Z6 = −2[ϕψ′(a1s
′
1 + a2s

′
2) + σ2

t (|bbb ttt′||aaa sss′| + |sss′ bbb||ttt′ aaa|)], (80f)

Z7 = −2σ2
t |sss′ bbb||aaa sss′|, (80g)

Z8 = −2σ2
t |ttt′ aaa||aaa sss′|, (80h)

Z9 = −σ2
t |aaa sss′|2. (80i)

Recall that the relationship between the error propagated by each algorithm is one-to-one if the same
VI is assumed. However, the relationship is no longer one-to-one if different VIs are chosen for each
algorithm, which is clearly indicated by Equation (79). (The equation represents an asymmetric ellipse.)

8. Discussion and Conclusions

This study presented derivations of the relationships among errors propagated in FVC using the three
types of LMM-based algorithms. A band-correlated additive noise was assumed as the input error in the
target reflectance spectrum. The additive noise depended on the directional parameter (θ) in the red-NIR
reflectance space. The derivations proceeded by eliminating this parameter from the system of equations
describe the relationships between the errors propagated in any combination of the two algorithms and
their variations.

We found that the coefficients of the derived relationships depended on the input data for the
algorithms, namely, the target spectrum, the endmember spectra, and the VI used in each algorithm,
in addition to magnitude of the input error. We also found that the relationships could be represented
by the same polynomial form, which corresponded to an asymmetric ellipse. One exception was found
for the combination of algorithms-2 and -3. Specifically, when the two algorithms used an identical VI,
the relationship between the two propagated errors became one-to-one. These results corresponded quite
well with the numerically demonstrated relationships, which indicated the validity of our results.

From a practical point of view, algorithm selection is always a factor for successful analyses. A
part of supportive information for the decision making is about the robustness against noises in a target
spectrum. To provide such information a set of parameter studies would be required. In order to avoid
such efforts the relationships between the propagated errors should be derived. Since this study provides
a theoretical basis about the robustness of the three algorithms, it would eventually contribute to better
algorithm selection. Further studies will be required to make the derived relationships be practical in the
context of actual data processing and analysis.

The derived relationships provided information about the amplitude differences among the errors
propagated in FVCs using the different algorithms. A comparison of the two algorithms showed that
smaller amplitude propagated errors were indicative of a better algorithm. Therefore, our results can be
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used to select an optimal algorithm with respect to minimizing the propagated errors in FVCs. Moreover,
because the coefficients of the derived relationships included only the magnitude of measurement errors
as a model for input noise, the derived relationships could be used to avoid parameter studies of
band-correlated information.

This study restricts the number of endmember spectra and the number of bands to two in order
to facilitate the analytical discussions. We discussed only a limited number of algorithms under the
framework of LMM. The limitations and restrictions should be expanded. The influence of the condition
imposed in a form of VI is expected to be smaller as the number of endmember increases. In addition,
analytical investigations of this kind would become extremely harder in such a case. However, the
derived relationships clarify several important aspects of FVC retrieval using LMM-based algorithms.
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